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Figure 1: Starting from raw video sequences (a,c), we extract corresponding sets of sparse structure points (b,d), which are then used to
enable direct object level video edits (bottom row). (Please refer to the supplementary for the video sequences.)

Abstract
Video remains the method of choice for capturing temporal events. However, without access to the underlying 3D scene models,
it remains difficult to make object level edits in a single video or across multiple videos. While it may be possible to explicitly
reconstruct the 3D geometries to facilitate these edits, such a workflow is cumbersome, expensive, and tedious. In this work, we
present a much simpler workflow to create plausible editing and mixing of raw video footage using only sparse structure points
(SSP) directly recovered from the raw sequences. First, we utilize user-scribbles to structure the point representations obtained
using structure-from-motion on the input videos. The resultant structure points, even when noisy and sparse, are then used
to enable various video edits in 3D, including view perturbation, keyframe animation, object duplication and transfer across
videos, etc. Specifically, we describe how to synthesize object images from new views adopting a novel image-based rendering
technique using the SSPs as proxy for the missing 3D scene information. We propose a structure-preserving image warping
on multiple input frames adaptively selected from object video, followed by a spatio-temporally coherent image stitching to
compose the final object image. Simple planar shadows and depth maps are synthesized for objects to generate plausible video
sequence mimicking real-world interactions. We demonstrate our system on a variety of input videos to produce complex edits,
which are otherwise difficult to achieve.

1. Introduction

RGB video is the most ubiquitous mode for capturing spatial and
temporal events. With the rapid proliferation of videocams, digi-
tal cameras, and smart phones, capturing video is now easier than
ever before. While decades of research have investigated denois-
ing, deblurring, color/contrast enhancement, segmentation, etc. for
such raw videos, performing object-level editing in a post process-
ing video editing phase remains difficult.

The key difficulty in supporting such object-space edits is the lack
of an underlying 3D model of the scene. This shortcoming makes
the following tasks particularly challenging: ensuring correct per-
spective under view changes, handling occlusion effects under rela-
tive object movements, and updating shadows due to object/camera
changes. Specialized equipments, e.g., recording events with care-
fully synced multiple cameras can address many of these chal-
lenges. However, the corresponding setup costs are high and of-
ten requires extensive rigging of the environments. Alternately, one
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can create detailed 3D models of the underlying scenes. While the
resultant editing framework can be very powerful and compelling,
especially for special effects involving synthetically introduced ge-
ometry, such a workflow is again expensive and only justifiable in
high budget scenarios (e.g., for a movie).

In this paper, we demonstrate that even coarse level 3D scene in-
formation in the form of sparse structure points (SSP), directly ex-
tracted from raw video footage, can be exploited to enable plausi-
ble yet non-trivial video edits. Our approach does not require any
specialized acquisition setup and works under only a few assump-
tions. Specifically, we assume that the video objects are opaque and
rest on planar grounds so that they can be easily moved around or
transplanted onto other planes (in target videos) using SSPs. We do
not, however, assume the objects to be box-like or expect access to
accurate 3D models (e.g., retrieved from a database).

Starting from a raw video footage, we first use structure-from-
motion to extract a sparse set of points along with corresponding
camera information. User-scribbles are then utilized to organize
the raw point sets by grouping them into foreground and back-
ground components. Finally, we propose how to make use of the
structured point sets to support direct object-level video edits for
single or across multiple videos. Technically, we enable this via a
novel image-based rendering approach driven by the sparse struc-
ture points to warp and stitch patches from adaptively selected
video frames. A key observation is that even with sparse 3D in-
formation, we can reliably recover meaningful information about
camera perspectives and plausibly handle inter-object occlusions.
Figure 1 shows a typical example achieved using our system (please
refer to the supplementary video). We evaluated our system on a
range of input videos and present comparisons with baseline meth-
ods as well as 3D reconstruction methods.

In summary, our main contributions are: (i) a video editing frame-
work that directly supports object-level edits (e.g., shuffling, du-
plicating, manipulating objects); (ii) proposing a hybrid represen-
tation for video object using SSP extracted from raw video that
enables direct object manipulation in 3D; and (iii) a novel image-
based rendering algorithm using SSP to plausibly synthesize video
objects in novel views via a structure-preserving image warping on
the adaptively selected video frames and a spatio-temporally coher-
ent image stitching.

2. Related Work

Video editing. The wide availability of portable and affordable
video recorders enables the unrestricted access to the video con-
tents in daily life. This has motivated a large body of research to
develop advanced video editing tools in video compositing [SE02,
XCF06, GGC⇤08, ZDJ⇤09, RWSG13, ZYQ⇤14] and producing af-
ter effects, such as bullet-time [ZDJ⇤09], action shots [KWB⇤15],
etc. These works share a common goal of achieving plausible video
editing without explicitly reconstructing the 3D geometries of the
scenes. For example, in video composition, Schödl and Essa [SE02]
optimize the sequence of source 2D video sprites to adapt to user
specified motion trajectory. Xiao et al. [XCF06] propose a 3D cam-
era trajectory alignment to seamlessly transfer a static video ob-
ject across two video sequences of different scenes. Goldman et

al. [GGC⇤08] exploit the tracked 2D object motion to enable inter-
active video annotations that associates graphical objects (e.g., text,
scribbles) with moving objects, and support intuitive video naviga-
tion by direct manipulation. Zhong et al. [ZYQ⇤14] introduce a
system that uses only estimated 2D transformations between con-
secutive frames to enable replacing the background in a video of
a moving foreground subject without suffering from slippage arti-
facts. Zhang et al. [ZDJ⇤09] reconstruct from raw video the tem-
porally consistent video depth maps, which is utilized to produce a
variety of refilming effects.

With access to only the sparse 3D points and camera motion of in-
put video, Liu et al. [LWCT14] is capable of generating realistic,
3D-aware tracking shots effect from videos, which is otherwise la-
borious even for professionals. Klose et al. [KWB⇤15] demonstrate
how 3D information, when appropriately utilized, can enable many
compelling scene-space video processing effects. With a similar
motivation, we target to further support 3D object-level manipula-
tions using coarse level 3D scene in the form of SSPs. Further, we
handle complex interactions such as inter-object occlusions, which
is beyond the capability of existing alternatives.

Video matting. A key component for realistic video composition
is the extraction of foreground objects along with high quality
alpha mattes. Various algorithms have been developed for natu-
ral video matting and segmentation [CAC⇤02,WBC⇤05,BWSS09,
CHM⇤10]. We benefit from these existing algorithms and leverage
them to extract foreground masks and alpha mattes from raw input
videos.

Novel view video rendering. Our work is also closely related to
the concept of image-based rendering from novel views. Works in
a recent decade appears in various contexts, such as light fields
[DLD12], video stabilization [LGJA09, KCS14], free-viewpoint
navigation [CDSHD13], etc. In general, the problem is solved by
variational image warps guided by estimated meshes [DLD12],
proxy cuboids [ZCC⇤12], synthesized depth maps [CDSHD13],
3D proxy geometries [KCS14], or proxy planes [HM15]. Single
or multiple input frames are warped and blended to synthesize the
novel view. Compelling result is ensured as the change of camera
view is within a controlled range. Instead of changing camera views
in a static scene, we focus on objects with complex structures mov-
ing freely in a dynamic scene. We propose a novel image-based
rendering tailored to our setting (see Section 6.1 for comparison
with Liu et al. [LGJA09]).

Video-based modeling. The ultimate solution to render photoreal-
istic video composition is probably to reconstruct high fidelity 3D
models of the scene from videos. For example, van den Hengel et
al. [vdHDT⇤07] develop an interactive modeling system to build
3D models from a video; Newcombe et al. [NFS15] propose a fully
automatic system based on dense SLAM to reconstruct non-rigidly
deforming scenes in real-time; and Wang et al. [WKM15] introduce
dynamic SfM to simultaneously model moving objects and cam-
era paths. Li et al. [LZS⇤11] fuse image and LiDAR information
to abstract building models as textured cuboid structures. In addi-
tion, reconstructing 3D models of static and rigid objects captured
using hand-held camera is now easy by using commercial tools
such as Autodesk 123D Catch [Aut09] and Vi3Dim [Vi311]. How-
ever, these tools are still limited in its ability to reconstruct scenes
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(a) Inputs

...

(b) Scene modeling (c) User control: Object manipulations

(d) Object frame retrieval (e) Image warping and stitching (f ) Layer composition

Figure 2: Overview: (a) Given the input videos, the system, assisted by users, starts by (b) organizing the recovered 3D information to a set
of sparse structure points (SSP). (c) Such SSPs, when organized properly, enable the user to perform various object-level edits. The system
aims to re-render the edited objects for each of target frames using a novel image-based rendering technique that runs in three stages: (d)
First, multiple input frames are adaptively retrieved from object video, which are further (e) warped and stitched to form the final object
image. (f) Object images along with synthesized shadows and depth maps are blended to generate plausible video sequence.

with complex geometries (e.g., tree). As a result, they may pro-
duce models of mediocre quality (see Figure 10(a,b)) and require
significant post-processing before further edits. Recently, Xu et
al. [XLS⇤11] present a data-driven approach for synthesize real-
istic video animation of humans merely according to user-defined
body motions and viewpoints. Such system, although powerful and
compelling, relies on high quality multi-view video sequences ac-
quired in a setup studio, which quickly gets expensive. In contrast,
we present a much simpler workflow to create plausible manipula-
tion directly from raw RGB videos.

3. Overview

The system takes as input single or multiple video clips captured
from different scenes under respective camera motions. Our goal
is to create a video editing system that allows users to perform
various 3D object-level edits, while the system automatically syn-
thesizes plausible video sequence mimicking real-world interac-
tions between video objects and scene (e.g., occlusions, shadows),
without explicitly reconstructing the 3D geometry models. This
is achieved by exploiting 3D proxy geometry for foreground video
object in the form of sparse structure points (SSP) to enable a novel
image-based rendering technique that warps, stitches and blends
dynamically selected input frames to re-render object images from
novel camera views and compose the final video sequence.

Preprocessing and assumptions. To acquire object-level informa-
tion in both 2D and 3D, we pre-process the input videos using
state-of-the-art tools. In the 2D domain, we segment video ob-
jects from the background in each frame using commercial tools
(e.g., Rotobrush in Adobe After Effects [BWSS09]), and generate
alpha mattes for foreground objects using [HRR⇤11]. We utilize
the Voodoo Camera Tracker [TB], which is based on the structure-
from-motion (SfM) algorithm [PVGV⇤04], to estimate 3D scene
information, including camera motions and a set of sparse structure
points. To guarantee the stable outputs of SfM, we make the fol-
lowing assumptions on input videos: (i) video objects are opaque,

unoccluded and placed statically on some dominant horizontal ref-
erence surfaces (e.g., ground plane, tabletop, etc); (ii) both video
objects and reference surfaces contain adequate texture features for
extracting sufficient structure points; and (iii) videos are free of no-
ticeable motion blur and temporal changes in lighting are prohib-
ited. Note that although such preprocessing is time-consuming, it
needs only to be executed once for each video (see Figure 2(a)).

User control. Given preprocessed input videos, the user can scrib-
ble a few 2D strokes and optionally traces edges or polygons on any
frame of video in which the object is visible, while the system then
automatically extracts a reference plane, object-level SSPs, and a
scene hierarchy describing their mutual relations. We organize the
hierarchical coordinate system in a way such that the object SSPs
can be easily moved around or transplanted onto planes in other
videos (see Figure 2(b)). This facilitates the following object-level
3D manipulations: (i) applying 3D transformations (i.e. transla-
tion, rotation and scaling) to objects, (ii) specifying keyframe ani-
mation on objects, (iii) duplicating objects, and (iv) transferring ob-
jects across videos. For instance, to transfer objects from a video to
the other one, the user simply adds the object SSP to the reference
plane of the other video. By default, the objects rest on the plane
and are centered at the origin of world coordinate frame, while the
user can further refine object placements (see Figure 2(c) and sup-
plementary video).

Our framework consists of three stages: (i) Scene modeling,
(ii) Image-based rendering using SSP, and (iii) Layer composition.

(i) Scene modeling. In this stage, the system leverages the recov-
ered 3D scene information (i.e., camera parameters and sparse 3D
points) from input videos and the user scribbles to model object-
level SSPs and a scene hierarchy (see Section 4). Specifically, the
system is based on the user-prescribed scribbles and line segments
to automatically infer a reference plane and organize sparse 3D
points as well as traced 3D edges to form the object-level SSP
(see Figure 2(b)). To facilitate manipulation in 3D, the system re-
estimates a new hierarchical coordinate system where the world
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(a) (b) (c) (d) (e)
Figure 3: With a few user-scribbles (b,d), the system analyzes the raw video (a) to extract a set of sparse structure points (SSP) as a set of
3D points (c) / edges (e), which we use as scene proxy.

coordinate frame and local coordinate frame of object are aligned
to the reference plane. Object SSP and camera poses are then nor-
malized and transformed to the new world coordinate frame.

(ii) Image-based rendering using SSP. The input to this stage is a
new 3D configuration of object SSP in the world coordinate frame
of target video. We refer to the input video from which the object
SSP is extracted as the object video, while the target video repre-
sents the video where the object is manipulated. Frames of object
video and target video are called object frames and target frames,
respectively. The system aims to re-render the objects from the
camera view of each of target frames. In traditional image-based
rendering from novel views, the goal is to alter original camera
poses. In contrast, we allow users to perform direct 3D object ma-
nipulations that poses two challenges: (a) object and target videos
are captured with very different camera motions, and (b) manip-
ulated objects may introduce complex interactions with scene ge-
ometry, such as occlusion and casting shadows. We overcome these
problems using a novel image-based rendering that exploits the ob-
ject SSP and recovered camera motions from input videos to com-
bine several input object frames to form the target object images.

The system first decomposes the object SSP into partially overlap-
ping parts based on the local shape similarity and spatial proximity
(see Section 5.1). Then it finds appropriate object frames for each
object part based on a similarity metric measuring the distance be-
tween an object frame and a target frame from positions of camera
and object part. We improve the temporal smoothness across the en-
tire target sequences using a Markov Random Field (MRF) model
(see Section 5.2 and Figure 2(d)). For each target frame, the system
jointly warps the retrieved object frames of object parts along with
associated alpha mattes using a structure-preserving image warp-
ing. Such image warping is guided by the projection of underlying
SSP in corresponding object frames and target frame, and aims to
preserve the structures within and across object parts in 2D domain
(see Section 5.3). The system then performs a spatio-temporally
coherent image stitching on warped object frames to compose the
final object image (see Section 5.4 and Figure 2(e)).

(iii) Layer composition. To composite plausible target sequence,
we take a simple approach: our system synthesizes a simple planar
shadow and an approximate depth map for each object. The former
is done by applying aforementioned warping-based approach to the
alpha mattes of object from a user-defined point light source. The
depth map is generated by a smooth interpolation of the depth val-
ues sampled on the projection of SSP to target camera view. Finally,
the object layer (i.e., object image, alpha matte and depth map) and

shadow layer are blended appropriately with the target frame to
compose the final video sequence (see Section 5.5 and Figure 2(f)).

4. Scene Modeling

Modeling SSP. The estimated camera parameters as well as a set
of 3D points describe rough 3D information about the whole scene,
but require further processing to be structured into object-level
SSP. The system starts by finding structure points for each ob-
ject. It tests the projection of visible structure points against the
corresponding object masks in a per-frame basis and collects can-
didates across the entire video sequence. Such SSPs along with the
approximate point normal constitute the baseline SSP of object.
We then fit a reference plane to remaining structure points using
RANSAC. In some cases, where the background scene may con-
tain non-planar surface, our system allows users to guide the fitting
process by specifying 2D scribbles on any of the frame where the
reference surface shows sufficient visible structure points overlaid
on it (see Figure 3(b)).

Modeling scene hierarchy. According to the assumption that ob-
jects are placed on a ground plane, we compute a local coordinate
frame for each object by projecting the structure points to the refer-
ence plane as 2D points and finding an oriented minimum bound-
ing box of the 2D points. The center of 2D points, the two dom-
inant directions of bounding box and plane normal form respec-
tively the origin, xy-plane and z-axis of local coordinate system.
We further pick one of object coordinate frames as a new world
coordinate frame to which the objects and camera poses are trans-
formed (see Figure 3(c)). This provides a scene hierarchy, which
helps users to intuitively manipulate objects (e.g., moving on the
reference plane) and directly transfer objects from the reference
plane of object video to that of target video.

Modeling edge primitives. Some objects in daily life present abun-
dant edge structures, especially in the context of man-made objects
such as vehicles, buildings, etc. Hence using the SSP with only
structure points in our warping-based technique can not guaran-
tee the preservation of these edge structures in the final results. In-
spired by van den Hengel et al. [vdHDT⇤07], we support a similar
user interface to trace polygons (see Figure 3(d,bottom)) or edges
(see Figure 3(d,top)) on video frames, while the system exploits
the structure points and multi-view geometry algorithms [HZ03] to
automatically infer the 3D counterparts to structure the SSP (see
Figure 3(e)). During tracing, the system automatically snaps the
traced lines to nearby 2D edges. Similar to structure points, each
edge primitive is also associated with a list of frames where it is
visible. We determine the visibility of polygonal edges by the visi-
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... ... ...

(a) SSP decomposition (b) Object frame retrieval (c) Image warping (d) Image stitching (e) Final object image
Figure 4: Image-based rendering using SSP: (a) Given a SSP in a target view, the system first decompose the SSP into parts based on local
shape similarity. (b) It then adaptively selects object frames for individual part. Note that the retrieved object frames could have very different
perspective from novel view. (c) The system performs a structure-preserving warp to jointly warp the selected object images to target view.
(d) The warped images are then stitched to form the final object image (e) in a spatio-temporally coherent manner to reduce temporal jitter.

bility of associated polygon. If an edge is shared by two polygons,
then it is visible as long as one of the polygons is visible. However,
determining the visibility of a single edge primitive is tricky as it
has no meaningful normal direction. Instead, we request the user
to manually prescribe the keyframes where the visibility of edges
toggles.

5. Image-based Rendering using SSP

As discussed in Section 3, the object manipulations performed by
users result in a new 3D configuration of object SSP in the world
coordinate frame of target scene. The next stage is to re-render the
object images from the novel target camera views. A straightfor-
ward approach is to find an input frame in object video with clos-
est camera view to the novel view, and warp the entire image us-
ing the point correspondence between the images of SSP in object
frame and target frame. Nevertheless, such global warp would eas-
ily lead to severe distortions especially as the novel camera view
substantially deviates from the original one [CDSHD13]. To alle-
viate visible artifacts incurred by the global warp, we adopt a lo-
cal warp strategy that first decomposes the SSP into parts based
on local shape similarity (see Figure 4(a)), selects carefully ob-
ject frames for individual part (see Figure 4(b)), and performs a
structure-preserving warp to jointly warp the selected object im-
ages to target view (see Figure 4(c)). The warped images are then
stitched to form the final object image in a spatio-temporally coher-
ent manner to reduce temporal jitter (see Figure 4(d,e)). These ob-
ject images along with synthesized object-wise shadow and depth
maps are blended with target frames to imitate complex real-world
interactions in the final compositive video sequence.

5.1. Proxy Geometry Decomposition

Object parts corresponding to nearly planar surfaces will introduce
less perspective distortion in image warp. Hence, we divide the
structure points of SSP into disjoint parts based on a shape sim-
ilarity metric using the estimated point normal and 3D position.

We define the shape similarity measurement between two structure
points, pi and p j, as the weighted norm kpi � p jk2 +bkpn

i · pn
jk2,

where p and pn represent respectively the 3D position and normal
of structure point. The weight b is used to adjust the relative influ-
ence of the positional and normal terms, and we used an empirical
setting of b=1.0. We use non-parametric mean shift clustering algo-
rithm with kernel and bandwidth functions as suggested in [CM02]
to obtain disjoint clusters of structure points. Each cluster corre-
sponds to an object part where the constituent structure points are
used to guide a local warp (see Figure 4(a,bottom)). To enhance the
spatial coherence between adjacent object parts in the final image
warp, we relax the boundary of clusters and allow partial overlap-
ping between clusters, which means structure points can be asso-
ciated with multiple object parts based on its proximity to clusters
using a distance threshold. Similarly, the edge primitives are la-
beled to belong to an object part if the average distance between
endpoints and structure points of object part is within a threshold.
Note that such decomposition needs to be executed only once for
each object and can be subsequently reused.

5.2. Object Frame Retrieval

Given the decomposed SSP, the next step is to find appropriate ob-
ject frames for object parts for the warping-based synthesis. We
base our frame retrieval algorithm on the following observations:
(i) for each object part, the camera view in the retrieved object
frame should be close to the camera view in target frame in or-
der to obtain good warping result; (ii) matching only individual
object part frame-by-frame will obtain retrieved frames that are
not temporally adjacent in object video. This may incur spatial in-
consistency as well as temporal flickering artifacts in the appear-
ance of object. Thus, for the first point, we define a frame-to-frame
distance metric that measures the similarity between two camera
views relative to an object part using camera positions and struc-
ture points. To feature a spatio-temporally coherent time-varying
object appearance, we model the frame retrieval problem using
multi-label Markov Random Fields (MRF) that take into account
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Figure 5: An illustration of spatio-temporal graph. Temporal and
spatial edges are colored black and blue, respectively.

spatio-temporal relationships between object parts, and solve the
problem using optimization.

Frame-to-frame distance metric. We denote each object part as
{X = (P,E, P̃k, Ẽk)}, where P and E stand respectively for struc-
ture points and edge primitives of object part, while P̃k and Ẽk re-
turn respectively structure points and edges that are visible in k-
th frame of object video. Let {Ct

k} and {Co
k} be respectively the

camera positions of target video and object video with subscript k
indicates frame index. Our distance metric is based on the angular
difference of two cameras viewing at a 3D point in object coordi-
nate frame. The system first registers the camera motions of target
video (i.e., novel camera views) and object video to the the local
coordinate frame of object. The distance between a target frame
and an object frame with regard to an object part is defined as:

Dcam(Ct ,Co,P) = 1
|P| Â

p2P
Dang(Ct ,Co, p), (1)

where

Dang(Ca,Cb, p) =
180
p · arccos

 
Ca � p

kCa � pk · Cb � p
kCb � pk

!
. (2)

Multi-label MRF. To model the spatio-temporal relationships be-
tween object parts, we build a graph G = (V,E), where the nodes
V = {vi,k|i = 1, ...,nx,k = 1, ...,nt} represent object parts in tempo-
ral video sequence in which vi,k indicates the i-th object part in the
k-th frame of target video with nx and nt denoting the total number
of object parts and target frames, respectively. The edges E com-
prise of two types of edges, the temporal edge and the spatial edge.
The former connects nodes vi,k and vi,k+1, and the latter connects
nodes vi,k and vnx+1,k, where vnx+1,k indicates a dummy node at
each temporal frame to ensure an acyclic graph. Figure 5 illustrates
such a graph. Our goal is to assign each node vi,k a frame from ob-
ject video that balances among three energy terms, namely frame
similarity, spatial smoothness and temporal smoothness. Let the
object frames assigned to the nodes be F = {Fi,k|i = 1, ...,nx,k =
1, ...,nt}.

The frame similarity term aims to minimize the difference between
target frame and selected object frame based on our frame-to-frame
distance metric, and is defined as:

E f s(F) =
nt

Â
k=1

nx

Â
i=1

Dcam(Ct
k,C

o
Fi,k ,Pi), (3)

The spatial smoothness term prefers using the same or temporally
adjacent object frames for object parts in the same target frame to
enhance the coherence of object appearance, and is defined as:

Ess(F) =
nt

Â
k=1

nx

Â
i=1

Dang(Co
Fnx+1,k ,C

o
Fi,k ,0)d(Fnx+1,k,Fi,k), (4)

where

d(Fi,F j) =

⇢
1 if |Fi �F j|< 60
f otherwise.

We set f to 100 to penalize the case where two selected object
frames are not within a temporal window of 60 frames.

Similarly, we define the temporal smoothness term as:

Ets(F) =
nt�1

Â
k=1

nx

Â
i=1

Dang(Co
Fi,k ,C

o
Fi,k+1 ,0)d(Fi,k,Fi,k+1), (5)

which favors using the same or temporally adjacent object frames
for object parts in consecutive target frames to avoid temporal flick-
ering artifacts.

Solving the object frame retrieval problem then amounts to mini-
mizing the total energy function:

F⇤ = arg min
F

[E f s(F)+ls(Ess(F)+Ets(F))], (6)

with ls controlling the relative importance among the energy terms.
By carefully organizing unary and binary terms, the Equation 6 is
equivalent to the typical formulation of multi-label Markov Ran-
dom Fields, which can be solved efficiently using multi-label graph
cut algorithm [BVZ01].

5.3. Structure-preserving Image Warping

Once we have retrieved the best matching frames from object video
for object parts, the next step is to warp the retrieved object frames
to the target view using the underlying SSPs. In one possible alter-
native, we can adopt existing state-of-the-art techniques in image
warping [LGJA09, IMH05, SMW06] to warp each object frame in-
dividually to the target view based on the point correspondences de-
rived from the projected structure points in object and target views.
However, such direct approach will clearly introduce visual arti-
facts due to the non-linear nature of image warp. Especially in
the context of man-made objects with abundant edge structures,
individual warp will introduce distorted structures (e.g., bending
edges) within object parts and discontinuous structures (e.g., bro-
ken edges) across object parts (see Figure 8). To address above is-
sues, we propose a novel structure-preserving image warping that
augments the existing system [LGJA09] with the terms tailored for
structures preservation, and then warps jointly, rather than individ-
ually, the retrieved object frames to the target view.

Formulation. For each object part, the system first divides the re-
trieved object frame Fo into an n⇥m uniform grid mesh with V̂
denoting the initial grid vertex. We render the image warp as com-
puting new vertex position V for the grid mesh that minimizes an
energy function comprised of following energy terms.

The point alignment term measures how well the projection of vis-
ible structure points in Fo aligns with corresponding projection in

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Chang, Chu, Mitra / Interactive Videos: Plausible Video Editing using Sparse Structure Points

target view after the warp. Since the projected structure point is typ-
ically not coincident with grid vertex, we represent the projected
point as p̄i = wT

i V̂i, where V̂i is a vector of the four vertices enclos-
ing the grid where the p̄i lies in, and wi contains the four bilinear
interpolation coefficients. The energy term is defined as:

Epa(V ) =
1

|P̃Fo | Â
pi2P̃Fo

w(pi)kwT
i Vi � p̄t

ik2, (7)

where p̄t
i is the projected structure point in target view. Note that the

structure points will turn visible and invisible over time instantly,
leading to temporal jitter artifacts [LGJA09]. Therefore we intro-
duce a piecewise-linear function, w(pi), that fades-in and fades-out
the influence of each structure point over time to improve the tem-
poral coherence, and is defined as:

w(p) =

8
><

>:

1 if qp  Tq
1� qp�Tq

p/2�Tq
if Tq < qp < p/2

0 otherwise,
(8)

where qp is the angle between the point normal and target camera
viewing direction, and we set Tq = p/10 in our experiments.

The similarity transformation term measures the deviation of each
deformed mesh grid from a similarity transformation with regard
to the initial mesh grid and is denoted as Est(V ). We follow exactly
the same formulations as in [LGJA09] and refer the readers to the
Section 4.1.2 therein for details.

The edge preservation term captures how well the projection of vis-
ible edges in Fo coincide with the counterpart projection in target
view after the warp. A 2D line can be parameterized using the line
equation l(x,y,a,b) : sin(a)x� cos(a)y+ b = 0. We first estimate
the parameters (ae,be) for each visible edge e using its projected
line segment in target view. Then we uniformly sample on its coun-
terpart projection in object frame a set of 2D points, which is de-
noted as Pe = {p = [Sx(p),Sy(p)]T }, where the Sx(p) and Sy(p)
are the x- and y-components of sample point represented using the
bilinear interpolation of the grid mesh V . We define energy as:

Eep(V ) =
1

|ẼFo | Â
e2ẼFo

Â
p2Pe

l(Sx(p),Sy(p),ae,be)
2. (9)

Note that the energy terms we have discussed so far are formulated
based on the individual object part using independent grid mesh.
This will incur misalignment among individually warped images
and produce discontinuous appearance in the final object image.
We alleviate such artifact by introducing a structure preservation
term that models the spatial alignment of common structure points
and edges shared by object parts as soft constraints. First, we com-
pile the structure points and edges (i.e., two endpoints) shared by
multiple object parts into a set of shared points Ps = {pi, j}, where
pi, j indicates a 3D point shared by i- and j-th object part and is
visible to corresponding retrieved object frames. We represent the
projection of such shared points using bilinear interpolation of in-
dividual grid meshes Vi and Vj , and aim to align the projections
among the warped images. Thus, the energy term is defined as:

Esp =
1

|Ps| Â
pi, j2Ps

kwT
i Vi �wT

j Vjk2. (10)

Influence map. To measure to relative importance of object parts
in both image warp and stitch, we compute an influence map Mi
for each object part based on the visible structure points and edges
in target view. This is done by a simple approach that draws on a
blank image a Gaussian kernel G(x,y) = exp(�x · y/2s2) centered
at each projected structure point and along the projection of edges
in target view with the kernel size of 30w(p̄t) + 1 and 31 pixels,
respectively. Pixel’s value is accumulated during the drawing and
then normalized to [0,1].

Energy optimization. Now, at each target frame, our system
jointly warps the retrieved object frames to target view by simul-
taneously computing the new vertex positions of all grid meshes
such that the following combined warp energy is minimized:

arg min
{V1 ,...,Vnx}

[lspEsp +
nx

Â
i=1

bi(lpaEpa(Vi)+lst Est(Vi)+lepEep(Vi))], (11)

where the four weighting coefficients {li|i 2 {sp, pa,st,ep}} con-
trolling the relative influence of each energy term, while the bi =
Â(x,y) Mi(x,y) is used to control the relative importance of indi-
vidual warps. The resultant formulation in Equation 11 is a linear
least-square problem, which can be solved efficiently using stan-
dard sparse linear system solvers.

5.4. Spatio-temporally Coherent Image Stitching

Our goal in this step is to stitch all the warped object frames
together to obtain the final object image for each of target
frames. Such objective is identical to the work by Agarwala et
al. [ADA⇤04] to combine seamlessly parts of a set of photographs
into a single composite image. Therefore, we build upon their
framework and design novel objective terms that pay attention to
spatio-temporal coherence in the final stitched images.

Spatial domain stitch. For each target frame, the image stitch-
ing problem can be rendered as a discrete pixel labeling problem,
where the system manages to choose a label Lp from one of the
warped object frame for every pixel p in the object image such that
the following objective energy is minimized:

arg min
Lp

[Â
p

Edata(p,Lp)+ Â
p,q2N(p)

Esmooth(p,q,Lp,Lq)], (12)

where the data term Edata(p,Lp) = 1 � MLp(p) encourages se-
lecting pixels with higher influence values, while the smooth-
ness term Esmooth(p,q,Lp,Lq) measures the spatial relationships to
4-neighbors N(p) and favors invisible stitch seams. Specifically,
Esmooth is a weighted combination of three energy terms:

Esmooth = lcEc +lgEg +leEe, (13)

where the Ec and Eg follow the same formulations in [ADA⇤04]
that match pixels respectively in color and gradient domains. We
further introduce the ‘edge’ term Ee to prevent the seams from cut-
ting through the edges, and define the energy term as:

Ee(p,q,Lp,Lq) = kMe
Lp (p)+Me

Lp (q)k+kMe
Lq (p)+Me

Lq (q)k. (14)

Temporal coherence. There is, however, a factor that may cause
temporal flickering in the interior appearance of object image due
to the drastic changes of stitch seams in temporal frames (see Fig-
ure 9). We propose a greedy approach to improve the temporal co-
herence by encouraging the stitch seams in the current target frame
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(a) (b) (c) (d) (e)
Figure 6: Shadow map synthesis. (a) Projection of SSP on the plane
from light view. (b) Warped alpha matte. (c) Applying shadow at-
tenuation effect. (d) Gaussian blurred boundary. (e) Final result.

to be as similar as possible to those in the previous frames. We first
compute a 2D motion field for every two consecutive target frames.
This is achieved by a smooth scatter data interpolation of a sparse
set of 2D motion vectors derived from the projections of structure
points in two consecutive target views. Thus, given a point p in i-th
frame, we denote the corresponding pixel in j-th frame as fi, j(p).
With such temporal correspondence, we introduce extra data and
smoothness terms measured in temporal domain as follows:

Et
data(p,Lp,k) =

t

Â
i

d(Lp,L fk,k�i(p)), and

Et
smooth(p,q,Lp,Lq,k) =

t

Â
i

d(Lp,L fk,k�i(p))+

d(Lq,L fk,k�i(q))+d(L fk,k�i(p),L fk,k�i(q))+d(Lp,Lq),

(15)

where k is the index of current frame, t is temporal window of size
2, and d(i, j) is a delta function, which returns 1 if two parameters
(frames) are equal and 0 otherwise. The Equation 12 is revised as:

arg min
Lp

[Â
p

Edata +ltEt
data + Â

p,q2N(p)

Esmooth +ltEt
smooth]. (16)

The four weighting coefficients {li|i 2 {c,g,e, t}} control the rela-
tive influence of each energy term, and we solve stitching problem
in a greedy fashion by successively optimizing the Equation 16 for
each target frame using multi-label graph cut algorithm [BVZ01]

5.5. Layer Composition

Shadow map synthesis. Shadows are important cues for creating
realistic compositions. However, without the access to the 3D mod-
els of scene and objects, it is difficult to cast realistic shadows
respecting the geometry of scene and objects. Moreover, the dif-
ference of camera motion as well as the lighting direction in the
target and object videos render the conventional approaches that
extract and transfer shadows from object video to target view in-
feasible [XCF06]. Instead, we exploit the SSPs and the estimated
ground plane to synthesize plausible planar shadows using the pro-
posed image-based rendering. First, the user places and manipu-
lates a point light source in 3D, while the system computes so-
called shadow points as the intersections of plane and rays casting
from light source to every visible structure point (see Figure 6(a)).
The projections of shadow points in target view are used to guide
the image-based rendering that warps and stitches several alpha
mattes of objects retrieved from the point of view of light source
in the target view to obtain a shape mask (see Figure 6(b)). Then
we unproject in target view every pixel of shadow mask to the
plane, followed by modulating the pixel’s intensity with a value

again · exp(�d), where d is the distance between unprojected point
and bottom center of object, and again controls the overall inten-
sity of shadow. This mimics the shadow attenuation effect (see Fig-
ure 6(c)). Lastly, we apply Gaussian blur on the mask boundary to
obtain the final shadow map (see Figure 6(d)).

Illumination adjustment. Since the lighting condition in the ob-
ject video is generally different from the target video (e.g., indoor
versus outdoor), this may introduce illumination changes between
object image and background within and across frames. We pro-
pose a simple approach to alleviate such artifact. Specifically, we
first utilize the point normal, viewing directions from camera and
light source to compute an intensity for each structure point based
on the Gouraud shading model. Then the object image is modu-
lated with a shading map generated by interpolating the sampled
intensity values at object’s structure points.

Depth map estimation. Since our system naturally supports mix-
ing of multiple objects across videos, the inter-object occlusions
needs to be handled properly to generate plausible results. For this
purpose, we follow the same approach in [KCS14] to generate a
dense depth map for each object. In brief, we first obtain a sparse
samples of depth values based on the projection of structure points
in target view, and a dense depth map is obtained by solving an op-
timization problem with objectives of preferring the smoothness of
pixel values while approximating the depth values at samples.

The final composition of each target frame is then rendered in two
steps. First, we directly blend all the shadow maps with target im-
age. Then, we superimpose all the object images onto the target im-
age while blend the pixels of object images using the corresponding
alpha values in an order of descending depth.

6. Results and Evaluation

We have tested our system on a number of input videos captured
from a wide variety of contents, ranging from nature outdoor scenes
to man-made objects of different scales (e.g., real vehicles, toy
models). All the videos were with resolution of 640⇥ 360 pixels
and captured either using a freely moving hand-held camera or in
a set up environment where the object is rest on a rotary platform
and recorded by a static camera. For evaluation, we mixed arbitrary
video footage by transferring objects across videos, and performed
various 3D manipulations on objects to generate 17 plausible video
sequences mimicking real-world interactions. Some input videos
along with reconstructed SSPs and 8 edited video sequences can
be found in Figure 7. We show four output frames in each result to
show the capability of our system to recover perspective distortions
and plausibly handle shadows as well as inter-object occlusions.
We refer the reader to supplementary video for complete video se-
quence and other editing results.

Parameters setting. Our image-based rendering algorithm runs in
several stages each of which defines a set of weighting coefficients
l in the objective function. The empirical values for these coef-
ficients are as follows: (i) ls = 0.1 in Equation 6; (ii) lsp = 4,
lpa = 1, lst = 4, and lep = 4 in Equation 11; and (iii) lc = 1,
lg = 1, le = 10, and lt = 20 in Equation 16. We used the same pa-
rameters setting for generating all the results. While in Section 5.3,
we used a grid mesh of resolution 50⇥50 for image warp.
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Figure 7: (Top row) 6 input videos and their SSPs. Below are eight video sequences generated by our system using mixed 3D manipulations,
e.g., shuffling, keyframe animation (4-9th rows), and duplicating (8-9th rows). In each result, we show four representative frames in which
shadows and inter-object occlusions are handled plausibly by our system. See supplementary video for complete sequences.
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(a) Global warp (b) Local warp (c) Local warp + edge preserve (d) Our result
Figure 8: Comparing results generated using different image warping strategies. Please refer to Section 6.1 for the detailed description.
We show a frame in the video sequence generated by different methods and compare the visual quality in terms of edge preservation within
object parts (top row) and structure preservation across object parts (bottom row).

6.1. Evaluation

We extensively evaluated the performance of our system using sev-
eral experiments including: (i) comparison with a baseline ap-
proach that globally warps the whole object frame retrieved via a
nearest neighbor search; (ii) validating the effectiveness of edge
and structure preservation terms in the image warping; (iii) com-
paring results with and without enabling the temporal-coherence in
the image stitching; (iv) performing a stress test on the image-based
rendering in terms of changing novel camera view; and (v) compar-
ison with the 3D reconstruction methods.

Comparison with baseline method. We implemented a baseline
approach that: (i) uses all structure points as a single SSP to drive
the image-based rendering; (ii) retrieves a single object frame us-
ing simple nearest neighbor search; and (iii) warps globally the re-
trieved object frame to target view. For the sake of simplicity, we
call such baseline approach the “global warp” method, while the
method that warps multiple frames to form a final image is called
the “local warp” method. The term ‘warp’ here stands for the im-
age warping technique proposed in [LGJA09]. An example of using
the baseline approach is shown in Figure 8(a). While such global
warp guarantees the smoothness of texture appearance, it can not
effectively recover the perspective distortion and produce visible
misalignment near the edge structures (see Figure 8(a,top)). In con-
trast, our result suffers none of above artifacts (see Figure 8(d)). See
the supplementary video for a clear presentation.

Performance of image warp. To validate the effectiveness of
structure-preserved image warp, we conducted an experiment that
compares the visual quality of video sequences generated using dif-
ferent settings as follows: (i) apply local warp to each object part
individually, (ii) enable the edge preservation term (i.e., Equation 9)
in local warp, and (iii) our approach. Experimental results show that
incremental improvements in the visual quality are noticeable as we
augmenting the conventional local warp (see Figure 8(b)) with edge
preservation to maintain the edge structures within object parts (see
Figure 8(c)). Our approach further considers preserving structures
across object parts produces even better result (see Figure 8(d)).

Performance of image stitch. To show the effectiveness of
temporal-coherent image stitch, we produced video sequences with

and without enabling temporal coherence term in Equation 16. We
can observe from Figure 9 that without accounting for temporal co-
herence, the image stitch will suffer from apparent changes of stitch
seams in consecutive frames (see supplementary video).

Stress test. Lastly, we evaluated how far the target camera view
can deviate from the input object video before artifacts are notice-
able. We setup different virtual camera motions by incrementally
increasing/decreasing the viewing angle of input camera and re-
render the video sequence. Experimental results indicate that our
approach can maintain the rendering quality within a range of ±10�

(see supplementary video).

Comparison with 3D reconstruction methods. We compared the
quality of our results with those generated by two commercial 3D
reconstruction tools, Vi3Dim [Vi311] and Autodesk 123D Catch
[Aut09]. Given an object video, the output of these tools is a tex-
tured 3D model reconstructed from video frames. However these
tools, even powerful, may still lead to strong artifacts such as gen-
erating blurred textures and inaccurate geometries when dealing
with complex objects. Moreover, the reconstructed 3D models may
contain redundant information from background and thus require
extra post-processing before further edits (see Figure 10(a)(b)). In

SCTC

Naive

Figure 9: Three consecutive frames (left to right) of a video se-
quence generated by our system without (top) and with (bottom)
considering the temporal coherence in image stitch. Note that in
the former case, the boundary of green patch in the rear of truck
changes dramatically when comparing to our result where the
shapes of stitch seams are stable in temporal frames.
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Vi3Dim [Vi311] 123D Catch [Aut09] Our Result
Figure 10: Comparing our result with those rendered with 3D
models reconstructed using commercial tools. Noticeable artifacts,
such as blurred texture and inaccurate geometry, are introduced in
conventional 3D reconstruction from video.

contrast, our system generates superior results (see Figure 10(c))
without requiring full 3D models.

6.2. Performance

Preprocessing. For a video footage with around 10 seconds in
length and 30 FPS in frame rate, it took ⇠ 1 hour on average to
prescribe the masks for 2 foreground objects using Adobe Roto-
brush tool, 2 minutes to compute the alpha mattes, and 20 min-
utes to run structure-from-motion algorithm using Voodoo Camera
Tracker. While the first and last operations are most computation-
ally intensive, they can be executed in parallel.

Timing performance. Since our system requires only a small
amount of edge primitives to produce plausible results, the man-
ual effort in scene modeling stage took in average less than 3 min-
utes for a model with complexity similar to the one shown in Fig-
ure 3. After that, the automatic algorithm took 1.5 seconds in av-
erage to synthesize a target frame per object with the unoptimized
codes. Table 1 reports the detailed running times at each stage in
our framework to generate the video sequences in Figure 7. The
major bottleneck lies in image warping and stitching in which the
time complexity is proportional to the complexity of object SSP.

row obj# frame# frame retrieval warping stitching composition total
2 3 153 0.03 0.55 1.85 0.14 2.57
3 2 168 0.03 1.22 1.39 0.13 2.77
4 2 96 0.05 0.52 1.30 0.23 2.1
5 2 250 0.02 2.21 1.28 0.09 3.6
6 2 217 0.02 0.47 1.13 0.1 1.72
7 2 148 0.04 1.08 1.33 0.15 2.6
8 3 121 0.04 0.88 2.21 0.18 3.31
9 4 169 0.03 0.9 2.34 0.13 3.39

Table 1: Timing (sec./frame) for generating results in Figure 7.

6.3. Limitations

Our approach has several limitations: (i) The plausibility of our
results is subject to the quality of structure-from-motion algorithm,
which may fail when the assumptions of input video are violated.
For instance, videos with severe temporal lighting changes (see
Figure 11(a)), textureless scene (see Figure 11(b)), transparent fore-
ground object (see Figure 11(c)), and parts of video object are in-
visible across all frames will all lead inaccurate 3D scene informa-
tion and misaligned/structureless object SSP. This will inevitably

(a) (b) (c)

(d) (e) (f)
Figure 11: Limitations. Structure-from-motion algorithm fails in
the videos with (a) severe temporal lighting changes, (b) texture-
less scene, and (c) transparent foreground object. (d) Noticeable
perspective distortion will appear as the novel camera view is de-
viated too much from original video. (e) Fake shadow artifacts are
visible as two objects are close to each other (e.g., truck and arch).
(f) Our system cannot properly handle object surfaces with strong
specular highlights, which results in inharmonious appearance.

cause perspective distortion in the image warp. (ii) The image-
based rendering fails to synthesize object from a novel view de-
viated too much from original video (see Figure 11(d)). (iii) The
system cannot produce complex inter-object shadows in our simple
planar shadow assumption (see Figure 11(e)). (iv) Our illumination
adjustment can not deal with strong specular highlight and reflec-
tion on the object surface (see Figure 11(f)).

7. Conclusion

We present a video editing system that enables object level edits
in a single video or across multiple videos, and produces plausible
video sequence without explicitly reconstructing the 3D geometries
of the scenes. We demonstrate that by utilizing a small amount of
user interaction to re-structure a set of sparse structure points re-
covered from input video, our system is able to achieve non-trivial
video edits mimicking real-world interactions, such as shadows and
inter-object occlusions. The technical contribution lies in a novel
image-based rendering algorithm using the sparse structure points
as proxy to guide a structure-preserving image warping on sev-
eral input frames selected from object video, followed by a spatio-
temporally coherent image stitching to synthesize the final object
image from novel view. The effectiveness of our system is evalu-
ated extensively on a variety of input videos.

In the future, we plan to explore the following directions: (i) ac-
celerate the image-based rendering process by exploiting its intrin-
sic nature of parallelization; improve the quality of composition by
incorporating sophisticated shadow creation, illumination adjust-
ment [FL11], and appearance harmonization [SJMP10]; adaptively
devote processing power based on model saliency [CMH⇤15]; and
finally, extend our system to handle videos with dynamic fore-
ground (e.g., human with articulated motions [NFS15], moving ob-
jects [WKM15]).
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