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Figure 1: We propose a method called PATEX to explore design variations for pattern editing. In response to a user edit, PATEX can
generate several distinct and intuitive structure-preserving variations of the original pattern.

Abstract

Patterns play a central role in 2D graphic design. A critical step in
the design of patterns is evaluating multiple design alternatives. Ex-
ploring these alternatives with existing tools is challenging because
most tools force users to work with a single fixed representation
of the pattern that encodes a specific set of geometric relationships
between pattern elements. However, for most patterns, there are
many different interpretations of its regularity that correspond to
different design variations. The exponential nature of this varia-
tion space makes the problem of finding all variations intractable.
We present a method called PATEX to characterize and efficiently
identify distinct and valid pattern variations, allowing users to di-
rectly navigate the variation space. Technically, we propose a novel
linear approximation to handle the complexity of the problem and
efficiently enumerate suitable pattern variations under proposed el-
ement movements. We also present two pattern editing interfaces
that expose the detected pattern variations as suggested edits to the
user. We show a diverse collection of pattern edits and variations
created with PATEX. The results from our user study indicate that
our suggested variations can be useful and inspirational for typical
pattern editing tasks.

Keywords: patterns, arrangements, design tools, vector graphics,
design space exploration, variations

Concepts: •Computing methodologies→ Shape analysis;

1 Introduction

Patterns are an important component of many 2D graphic designs.
In many cases, patterns play a supporting role, providing a back-
drop to the primary design elements or adding texture and visual
interest to filled regions. For some domains, like textile or pack-
aging design, the pattern itself is the focus. In this work, we focus
on the large class of patterns that consist of discrete elements or-
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ganized into geometric arrangements (e.g., Figures 1 and 2). While
such patterns can take many different forms, from highly symmetric
compositions to more organic arrangements, the one common char-
acteristic that defines all patterns is that they exhibit some amount
of spatial regularity, which we can often express in terms of the
geometric relationships between pattern elements. For example, in
Figure 2, the diamond- and arrow-shaped elements are arranged ra-
dially around the clovers, and there are strong horizontal and verti-
cal alignments between the four repeated motifs. Such relationships
define the characteristic structure of a pattern.

A critical step in almost every design workflow is creating and eval-
uating multiple design alternatives. Pattern design is no exception.
For example, consider the problem of decreasing the visual weight
of the pattern in Figure 2a. There are many different ways to ac-
complish this goal, each of which may preserve, modify, or violate
different sets of inter-element relationships. By creating variations
of the pattern that modify the size, position, and orientation of ele-
ments in various ways, a designer can explore the space of possible
solutions and only refine those that seem most promising.

However, exploring pattern variations with existing tools is chal-
lenging. On a practical level, most edits require users to manipulate
many individual elements to ensure that the desired inter-element
relationships are preserved. For example, depending on how the el-
ements are grouped, the edit in Figure 2b requires 24 separate edit-
ing operations. Of course, one could argue that there is a parametric
representation of the pattern that would be much more convenient
for this particular edit, but this argument raises the main conceptual
problem with existing tools. While any given representation of a

(a) (b)

Figure 2: Re-targeting a pattern is not well supported by current drawing
tools. Even this simple re-targeting of the pattern to have less visual weight
requires 24 separate editing operations. In Figure 9, we show that our
method only requires four operations.
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Figure 3: A typical edit in a small pattern. The orange element is rotated
by the user. Our goal is to find several variations for the arrangement of the
remaining elements. See Figure 4 for variations proposed by PATEX.

pattern may encode aspects of its regularity (e.g., repetitions of a
symbol, reflective symmetry, etc.) in a way that facilitates the cre-
ation of some edits, different variations are often defined by differ-
ent interpretations of the pattern regularity that are hard to encode
in a single, fixed representation. For example, the four variations in
Figure 6 correspond to two different interpretations of the relevant
geometric relationships in the pattern.

We propose a different approach to exploring pattern variations that
does not impose or assume any one given representation of the reg-
ularity that defines a pattern. Rather than explicitly encoding and
modifying relationships to create variations, the user starts by di-
rectly manipulating individual elements. In response, the system
automatically generates suggested variations of the pattern that are
consistent with the user edits but also distinct from one another.
The variations correspond to different interpretations of the pattern,
each producing a different modification of the pattern elements in
response to the user edits. At any point, the user can jump to a
suggested variation and continue editing. Our approach does not
force users to work with a fixed representation of the pattern struc-
ture that may constrain edits in undesirable (and frustrating!) ways.
At the same time, our suggestions allow users to efficiently propa-
gate individual edits to other elements when appropriate. Moreover,
suggested variations may inspire users to consider different design
directions that are still consistent with their manual edits.

There are two core challenges to realizing this approach. First,
given all the geometric relationships that define different, poten-
tially relevant types of regularity in a pattern, there are an exponen-
tial number of possible variations to consider. Thus, it is very diffi-
cult to efficiently compute a suitable subset of suggestions that are
both intuitive and distinct based on the user edits. Take for exam-
ple the pattern edit in Figure 3. Even for this very simple pattern,
there are several distinct variations, some of which are shown in
Figure 4. The second challenge is how to present suggested varia-
tions to users in a way that does not impede their editing interactions
while also facilitating browsing and comparison of the suggestions.

Our work addresses both these challenges. We define a pattern
graph representation that encodes the regular structure of a pattern.
In contrast to traditional pattern representations, the pattern graph
is overcomplete; that is, rather than relying on a single interpreta-
tion of which relationships define the characteristic structure of the
pattern, the pattern graph encodes a large set of relationships that
correspond to many different interpretations of the pattern. Given
this pattern graph, we can identify different possible interpretations
for any given edit and compute a corresponding variation via a non-
linear optimization. We also introduce a method to efficiently find a
subset of intuitive and distinct variations. Our technique combines
random sampling of the variation space favoring well-determined
variations with a fast, linear approximation of the variation opti-
mization. Finally, we propose two user interfaces for presenting
suggestions: one that shows variations on canvas as potential ‘Auto-
complete’ targets for a given edit; and another that shows variations
as small multiples in an explorer interface next to the canvas. We
demonstrate how our approach facilitates editing of a wide range of
patterns. The results from our exploratory user study indicate that
our automated suggestions are generally seen as useful and inspira-
tional, although the perceived value of the suggestions is somewhat
task-dependent.

2 Related Work

Pattern creation and editing. Existing methods largely sup-
port element level manipulations, or different snapping strategies
to align groups of elements into grid-like arrangements. Tools like
Illustrator, InDesign, Inkscape, Visio, etc. are commonly used for
creating vector drawings. While they implement a mix of modes
to create individual elements, support for authoring layout arrange-
ments remains limited. These tools are largely based on earlier ef-
forts in element-level manipulation [Nelson 1985; Gleicher 1992;
Ryall et al. 1997]. Users can either manually place individual el-
ements, supported by various snapping modalities [Bier and Stone
1986; Baudisch et al. 2005], or order groups of elements as grid-
based arrangements using ‘distribute equally’ or ‘align to elements’
options. More advanced methods use smarter local edits [Igarashi
et al. 1997; Tsandilas et al. 2015], or more global variants [Pavlidis
and Van Wyk 1985] that support snapping to regular arrangements
(e.g., 1D or 2D grids). Nan et al. [2011] develop a computational
model to encode and abstract shape arrangements in architectural
drawings based on Gestalt rules. Recently, a group-aware layout
arrangement has been proposed by Xu et al. [2015] by automat-
ically decomposing a 2D layout into multiple 1D groups. Since
automatically snapping to regular arrangements can be error prone,
Xu et al. [2014] developed a global beautification interface that al-
lows users to incrementally correct proposed snapping by deleting
or accepting proposed alignments. In contrast, we focus on more
general regular arrangements, and describe how to efficiently iden-
tify and present richer pattern variations.

In the context of document layout, grids have also been proposed
for more flexible layouts [Jacobs et al. 2003]. Alternately, data-
driven layouts have been utilized for graphics designs [O’Donovan
et al. 2014] or to create artistic packings [Reinert et al. 2013]. These
methods algorithmically propose a single final layout, rather than
allowing the user to explore a space of possible layout variations.

Constrained modeling. There exists a large body of work on
constraint-based modeling, particularly in the CAD community
(cf., [Chen and Hoffmann 1995]) that treats edits in a constrained
manipulation setting. These methods explore different alternatives
to perform shape or pattern edits while conforming to specified (or
inferred) relations. Gleicher and Witkin [1991] interpreted graphi-
cal elements as physical objects to propose a unified editing inter-
face based on physics-inspired constraints. Physically-based ma-
nipulation was also proposed for discrete and continuous mod-
els [Harada et al. 1995]. Efforts in mechanical engineering [Daniel
and Lucas 1997; Yvars 2008] resulted in declarative methods to
specify geometric constraints for a given mechanical design. Huang
et al. [2009] propose structure preserving optimization for resizing
images and vector art. In the context of shape editing, several meth-
ods have been proposed to automatically determine relevant geo-
metric relationships between parts of 3D models [Gal et al. 2009;
Xu et al. 2009; Bokeloh et al. 2012; Zheng et al. 2012]. These rela-
tionships enable high-level editing and synthesis of 3D models. The
Lillicon system [Bernstein and Li 2015] proposes transient widgets
to support scale variations in icon designs.

PATEX takes a different avenue. Instead of conforming to a given
set of constraints, it directly seeks out variations with different sets
of constraints to expose a richer set of pattern variations. For ex-
ample, in Figure 3, a fully constrained edit would lead to a ‘triv-
ial’ rigid rotation of the original pattern. By allowing some of the
original constraints to break, PATEX exposes a much larger set of
non-trivial patterns as shown in Figure 4.

Design space exploration. In the context of novel synthesis, al-
gorithms exist that support synthesis with topological variations.
However, they either do not support direct user edits, or are domain-
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Figure 4: Variations of element arrangements for the edit shown in Figure 3. Even in this very simple pattern, several alternatives are possible.

specific, are sampling based, or need to be based on a large dataset
of pre-existing shapes. Talton et al. [2009] propose a method for
estimating and sampling from high dimensional parametric design
spaces to support exploratory design. There has been interest-
ing work on sampling pattern designs from a distribution of op-
tions [Yeh and Mech 2009; Yeh et al. 2012; Yeh et al. 2013]. Al-
hashim et al. [2014] propose an interactive exploratory tool for part-
based 3D modeling based on a spatio-structural graph composed of
medial curves and sheets of model parts. They demonstrate how
such a representation can be used to explore different split and
merge options for shape synthesis with topology variations. This
allows interpolating between shapes with different topologies by
establishing part level shape correspondence. Fish et al. [2014]
learn distributions of attribute values from shape collections that
can be used to efficiently explore these collections and create novel
designs. Instead, we directly characterize the set of valid pattern
variations based on an initial pattern and a user edit to efficiently
identify different yet valid patterns.

3 Overview

Each pattern is made up of a set of two-dimensional polygonal
shapes, arranged in some way. We call the assignment of position
and rotation to each of these elements an arrangement. Looking at
an arrangement of the elements, we can observe different relation-
ships (i.e., distance, rotation, scale) first between pairs of elements,
and then recursively between the relationships themselves. This
hierarchy of observed relationships forms a pattern graph, which
encodes the regularity and structure of the pattern (§4). Since our
focus lies on finding variations, rather than constructing pattern
graphs, we assume this pattern graph to be available, see §8.

Given this setup, we want our system to respond to a user edit (mod-
ification of a small number of individual elements) by suggesting
various possible modifications of the rest of the pattern, consistent
both with the user edit and part of the structure of the pattern. That
is, given an arrangement, its derived pattern graph, and a set of
edited elements, our algorithm should output a set of new, candi-
date arrangements.

If we insist that all of the relationships in the pattern graph are pre-
cisely maintained by our algorithm, then the only possible response
to a user edit will be rigid transformations of the whole pattern.
This is because the relationships, when interpreted as constraints,
are overcomplete. Therefore, we must relax some of these relation-
ships. Every relationship is either preserved, updated (to the value
suggested by the edit), or allowed to change freely; A complete as-
signment of each relationship to one of these 3 options defines a
variation (§5). Given a such a variation, we can solve an optimiza-
tion problem to find a new arrangement of the elements (§5.1). In
this way, we reduce the problem of finding a diverse set of structure-
preserving edits to the problem of finding a diverse set of variations.

The problem of finding a good candidate set of variations is chal-
lenging because (i) it requires searching an exponentially large
space of possibilities, (ii) not all such variations are compatible with
user edits (i.e., valid), and (iii) different variations do not necessar-
ily produce different final arrangements. By linearly approximating

the optimization problem, our algorithm is able to efficiently reason
about the final arrangement, both its validity and diversity (§5.2).

Finally, we explore different interfaces for exposing the results of
this algorithm to users (§6).

4 The Pattern Graph

Elements of a pattern are given as a set of simple polygons
E = {E1, . . . , En} and the structure of the pattern is repre-
sented by a set of geometric relationships between elements RE =
{RE1 , . . . , REk }, where

RE : E×E→ R.

These functions quantify the geometric relationship between two
elements of the pattern. For example, the distance between their
centroids, or the angular difference between their orientations. Note
that multiple relationships use the same type of function. A com-
plete list is given in Appendix A.

Relationships on element pairs can express simple geomet-
ric relationships. More complex relationships, like equidis-
tance, or in-betweenness involve more than two elements.
Rather than using n-ary relationships, we introduce relationships
RM = {RM1 , . . . , RMl } between relationship values, called meta-
relationships, to handle these cases:

RM : R× R→ R,

where the inputs are two relationships values. Meta-relationships
can also take values of other meta-relationships as input, allow-
ing for a more complex pattern structure. This approach allows
our graph to model any scalar-valued function that is decompos-
able into a tree of differentiable functions that take two inputs (like
many common binary operators). This tree would have elements at
the leafs, connected by relationships and meta-relationships. This
type of functions includes many n-ary relationships like equidistant
and collinear. We denote the full set of relationships of a pattern as
R = RE ∪RM , examples are shown in Figure 5b.

The structure of a pattern can then be represented as a directed
graph G = (N,A), where the nodes N = E∪R are elements and
relationships. Edges A = {(Ni1, Ri), (Ni2, Ri)}i=1...k+l connect
relationshipsRi to their two input nodesNi1 andNi2, which might
either be elements or relationships. We call this DAG the pattern
graph, an example is shown in Figure 5a.

Relationship groups for repeated structures. Repeated struc-
tures in a pattern are exhibited in the pattern graph as groups of
relationships with similar values (see Figure 5c). They may indi-
cate symmetries or regularity in the pattern. To explicitly model
these repetitions, we define (possibly overlapping) groups G =
{G1, . . . , Gh} of relationships Gi = {Ri1, . . . , Rin}. Relation-
ships in a group always maintain the similarity of their values and
breaking a group can mean breaking part of the pattern’s symmetry
or regularity. For convenience of notation, relationships that are not
member of a group are assumed to form a group of size 1.
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Figure 5: The pattern graph describes the element arrangement of a pattern. (b) Pairs of elements are related by geometric relationships. Relationship values
can in turn be related by meta-relationships. (a) These relationships form a directed graph. (c) Relationship groups describe repeating structures in the graph.

5 Pattern Variations

The user starts a pattern edit by modifying one or more elements
indicated by E∆. Our goal is to create several pattern variations
based on this edit that each maintain part of the pattern structure,
while allowing a different part of the structure to change. In the
pattern graph, this means that some relationship values remain con-
stant while others change.

In its initial state, the pattern fulfills all relationships of the pattern
graph (see Figure 6b). A user edit introduces changes to the re-
lationships, indicating which parts of the structure the user is po-
tentially interested in changing, as illustrated in Figure 6c. Let
R∆ ∈ R be the changed relationships. We decide for each re-
lationship in R∆, whether to constrain it to its new value, to its
original value, or leave it unconstrained. For all unmodified re-
lationships, R − R∆ we can only decide between the latter two
options. This gives us three sets: Ro, Rc, and Ru, corresponding
to relationships constrained to their original value, constrained to
their changed value, and relationships that are unconstrained. We
generate variations by assigning each relationship to one of these
three sets. Each assignment will give us a pattern variation, a few
examples are shown in Figure 6d. A specific assignment can be
described by an indicator vector:

Ii =


0 if Ri ∈ Ru

1 if Ri ∈ Ro

2 if Ri ∈ Rc

All possible combinations of assignments give us the exponential
number of variations we can potentially generate.

5.1 Computing a Pattern Variation

Given a pattern defined by G, a variation of this pattern is fully
defined by the user edit E∆ and an assignment I . Computing the
actual element arrangement corresponding to this variation can be
framed as an optimization problem, where we modify the pattern
elements and relationship values to satisfy the constrained relation-
ships Ro and Rc, while including the proposed modification of the
elements E∆ as closely as possible.

The degrees of freedom of a pattern modification are given by the
element poses: position, orientation, and uniform scale of each pat-
tern element1, while possible changes to the pattern structure are
defined by the relationship values. The state of a pattern can then

1Note that relationships may also use other properties of elements such
as the element boundary as input, but these properties can only be modified
indirectly through the element poses.

be encoded in a vector of dimension 4n+m where n is the number
of elements and m the number of relationships:

µ = (x1, y1, θ1, s1, . . . , xn, yn, θn, sn, r1, . . . , rm),

(x, y) being the centroid position, θ the orientation and s the scale
of an element, and r the value of a relationship. Note that the rela-
tionship values are fully determined by the state of the pattern ele-
ments, so they do not introduce new degrees of freedom. However,
explicitly including them in the state reduces the direct interaction
between variables and simplifies the optimization. For clarity, we
will denote all entries of the state corresponding to the set of nodes
N as µ{N}, for example, µ{Ni} = (xj , yj , θj , sj) ifNi = Ej ∈ E
and µ{Ni} = rj if Ni = Rj ∈ R .

Having both element poses and relationship values in the state al-
lows configurations where the relationship values do not correspond
to element positions. We say that a state is only valid if element
poses fulfill the relationship values of the state. Let σ(µ) be the
state obtained by evaluating all relationships from their input nodes
in the state µ:

σi(µ) =


Ni
(
T (Ni1, µ{Ni1}), T (Ni2, µ{Ni2})

)
if Ni ∈ RE

Ni(µ{Ni1}, µ{Ni2}) if Ni ∈ RM ,

µi if Ni ∈ E

where Ni1 and Ni2 are the input nodes of node Ni and T (E, p)
transforms the input element E to have pose p. A state is invalid
if µ 6= σ(µ). Some sets of relationship values might not have a
valid state, if there is no set of element poses that fulfill the rela-
tionships. We relax this requirement by searching for states that
minimize ‖µ− σ(µ)‖.

Let τ be the initial unmodified state of the pattern and ν the mod-
ified state, including the edit E∆ proposed by the user, and the re-
sulting change in value of the relationships R∆:

ν = τ +
∑

{i|Ei∈E∆}

(0, . . . ,∆xi,∆yi,∆θi,∆si, . . . , 0)

+
∑

{j|Rj∈R∆}

(0, . . . ,∆rj , . . . , 0),

where R∆ are ancestors of E∆ in the pattern graph. The user edit
is preserved if elements E∆ take on values ν{E∆}, therefore, we
search for a state that minimizes ‖µ{E∆} − ν{E∆}‖.

The constrained relationships Ro and Rc are met if they take on
the values τ{Ro} and ν{Rc}, respectively. This effectively splits
the state into a free sub-state µfree = µ{E,Ru} and a fixed subs-
state µfixed = µ{Ro,Rc}. Putting all the terms together gives us the
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Figure 6: Generating pattern variations. The structure of the pattern in (a) is captured by the pattern graph in (b). For clarity, each blue relationship
represents one centroid distance and one centroid direction relationship. A user edit of the two central elements (c) causes some relationships change (red).
Variations can be generated by fixing relationships to their new or original values (red and blue, respectively), or leaving them unconstrained (grey).

following optimization problem to compute a pattern variation:

min
µ

‖αF∆(µ, ν)‖2 + ‖βFvalid(µ)‖2

s.t. µ{Ro} = τ{Ro} and µ{Rc} = ν{Rc},
(1)

with

F∆(µ, ν) = µ{E∆} − ν{E∆}

Fvalid(µ) = µ− σ(µ),

where α and β are weights for the two terms, which we set to 1 and
10, respectively. In practice, we can fix the constrained relation-
ship values and only optimize over the remaining state, resulting in
an unconstrained non-linear optimization problem, which we solve
using a 2D-subspace trust region method [Branch et al. 1999].

Regularization. While relationship values are fully determined by
the element poses, the reverse is generally not true. For example,
a rigid transformation of the pattern might not affect relationship
values, if the relationships are invariant to these transformations.
Additionally, variations that assign a large set of relationships to
Ru are usually under-determined. For these cases, we formulate a
global regularization based on two main principles:

First, repeated structures should be preserved as much as possible.
These structures may describe symmetries or regularities in the pat-
tern. Since repeated structures are described by relationship groups,
we add a penalty for breaking groups. Second, edits should remain
local, and modify the state as little as possible. Many moving parts
make it hard to understand and predict the result of an edit. Based
on these two principles, the regularization term is defined as:(

‖γFreg(µ)‖2 + ‖γFlocal(µ, τ)‖2
)

with Freg(µ) =

µ{G1} − µ̃{G1}
...

µ{Gh} − µ̃{Gh}

 and Flocal(µ, τ) = µ− τ,

where µ̃{Gi} denotes the average over all nodes in group Gi. We
add this term to the objective in Eq. 1 with a weight of γ = 0.01.

5.2 Choosing Pattern Variations

For each edit to the pattern, there are 3n possible variations, given n
initial relationships. Of this large set, only a small percentage will
yield useful element arrangements. This has three main causes:
several variations result in unintuitive element arrangements; many
variations do not have a valid element arrangement and large sub-
sets of variations result in the same element arrangement. In this
section, we present our approach to choosing a subset of variations
that is valid, distinct, and intuitive.

Our approach combines several strategies in a filtering pipeline.
The first step is to randomly sample the space of all possible vari-
ations with a sample set of fixed size (10000 samples in our exper-
iments). This is followed by a heuristic intuitiveness filter that can
be evaluated efficiently to filter out variations likely to result in un-
intuitive pattern variations. Next, we evaluate a random subset of
the remaining variations (150 variations in our experiments – this
number may be tuned to achieve optimal responsiveness) in a linear
approximation of our optimization problem described in §5.1. This
is the core enabling part of choosing among variations. The linear
approximation allows us to approximate properties of a variations
efficiently, without requiring an expensive non-linear solve. Based
on the results of this approximation, we remove invalid variations
and variations that are too similar using the valid and distinct filters.
Finally, we order variations by distinctness, i.e., we make sure that
the first few suggestions are as visually distinct as possible.

Intuitiveness. There is no clear definition of what an intuitive re-
sponse to an edit is. However, through experimentation, we have
identified one property that consistently causes unexpected varia-
tions. Variations that modify multiple relationship groups usually
introduce too much change at once for the user to understand or
predict the changes. We attempt to only retain variations where few
groups change. Since the user can modify elements only, changes
in meta-relationships are only possible by also changing their child
relationships. We therefore consider changes of relationships or
groups along a path in the pattern graph starting at the element
nodes as a single change and filter out variations where relation-
ship groups along more than one path have been changed.

This filtering is an optional step based on the observations we made
during our experiments and could be replaced by any other filter.
Our core strategy of linear approximation is independent of this
step, as described below.

Linear approximation. First, we split the objective into simpler
terms that are more amenable to linear approximation. Arranging
these terms into a vector-valued objective gives us the following
expression:

F(µ|τ, ν) = [αF∆(µ, ν), βFvalid(µ), γFreg(µ), γFlocal(µ, τ)]T

Note that taking the squared L2-norm of this expression gives us
the non-linear objective function. We linearize this objective with a
two-term Taylor expansion at the initial state ν. As in the non-linear
case, we split the state into µfree and µfixed and only optimize over
µfree to avoid using constraints:

F(µ) = F(ν) + Jfree (µfree − νfree) + Jfixed (µfixed − νfixed)

with Jfree =
∂

∂µfree
F(ν) and Jfixed =

∂

∂µfixed
F(ν).

For clarity, we have omitted the two parameters τ and ν from F
that remain constant during the optimization. Setting F(µ) to zero
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Figure 7: Qualitative comparison of linear versus non-linear solutions of pattern variations. We show a few variations for three edits on different patterns.
The linear solution is overlayed with black lines on top of the non-linear solution in blue and yellow. In most cases, the linear solution is close to the non-linear
solution (edit A). The largest errors occur due to strong rotations around a distant pivot (edit B). The examples shown here are the largest errors we have
observed. Usually the linear approximation is accurate even for more complex patterns (edit C).

and re-arranging gives us the following linear system:

Jfree (µfree − νfree) = −F(ν)− Jfixed (µfixed − νfixed).

The objective value at the initial state, F(ν), is usually dominated
by the distance to the user edit. Intuitively, we want to find a change
of the free sub-state that cancels out the increase in the objective
function introduced by the change of the fixed sub-state while also
reducing the distance to the user edit. Since J only depends on
the original state, we only need to compute it once. We find a
minimum-norm solution of this system by computing the pseudo-
inverse of Jfree using Singular Value Decomposition. For reason-
ably small changes, the linear approximation is accurate enough to
give good predictions for the properties of pattern variations. A
qualitative comparison of linear vs. non-linear solutions for a few
examples is shown in Figure 7. The largest errors we have observed
occur due to the non-linear nature of strong rotations around a dis-
tant pivot, especially if these errors accumulate, as edit B of Fig-
ure 7, shows the largest errors we have observed when doing typi-
cal edits. Large errors usually occur due to the non-linear nature of
strong rotations around a distant pivot. Usually the linear solution
is accurate even for complex patterns, and even in the worst case
we have observed, the user can get an impression of the element
arrangement from the linear solution.

Validity and distinctness. For both of these filters we make use of
the linear approximation. Solutions with high approximated objec-
tive value are likely to be invalid (i.e., no valid configuration of ele-
ments for the given fixed relationships exists) and can be removed.
Distinct solutions are found by applying agglomerative hierarchical
clustering to the solutions based on theL2 distance of their relation-
ship values. We use conservative threshold values and also rely on
the final sorting to move elements that may be too similar to the
end of the variations list. We preferred this option over having the
threshold as a free parameter that may need to be tuned.

Assigning groups. As stated above, one of our goals is to preserve
repeated structures in the pattern. When generating variations, we
can assign relationship groups to the three sets Ru, Ro, and Rc,
instead of individual relationships. The indicator vector I then has
one entry per group, not per relationship. This naturally preserves
repeated structures and significantly reduces the number of possi-
ble variations. When two or more members of the same group have
been changed to different values, we generate variations where the
entire group is set to each of these distinct changed values. The indi-
cator vector I for the group may then take on values up to 1 +Nc,

where Nc is the number of different values that members of the
group have been changed to. Breaking repetitions might be desir-
able in some cases and variations that break repetitions can still be
generated through groups that are assigned to Ru.

6 Exposing Variations to the User

We present two pattern editing interfaces that expose suggested
variations to the user. Please refer to the supplementary video to
see each interface in action.

Exploration. To encourage creating and evaluating multiple al-
ternatives, we developed an Exploration interface that allows users
to quickly generate and examine many suggested variations as they
directly edit a pattern. A screenshot is shown in Figure 8a. Our
interface has two main components. On the left is an editing can-
vas that provides standard direct manipulation tools. On the right
is the variations explorer, which shows a dynamically updated set
of suggested variations. Every time the user edits an element in the
canvas, the explorer generates a new set of variations as described
in §5 and arranges the variations in a row, sorted from most to least
intuitive. The user can choose a variation and continue editing in
the canvas to receive new rows of suggestions. By going back to
previous rows, users can revisit previous decisions and choose a
different suggestion to explore different design directions. To keep
the interface responsive, the explorer displays the linear approxi-
mations of variations, as described in §5.2. In most cases, we found
these approximate variations provided a reaonable preview of the
suggested edit. Once the user accepts a variation, we solve the cor-
responding full non-linear optimization to update the canvas.

Auto-complete. While the Explorer interface facilitates browsing
and navigation of different variations, one disadvantage is that the
editing canvas gets a limited amount of screen real estate, which
can hinder tasks that require detailed element manipulation. To ad-
dress such scenarios, we developed an Auto-complete interface that
allows users to preview and accept suggested variations directly on
the canvas as part of their direct manipulation interactions. After
the user edits an element, the system automatically generates pat-
tern variations based on this ‘reference’ edit. When the user starts
manipulating the next element, we compute the position of the ele-
ment in each of the variations and show them as dots on the canvas.
We call these dots Auto-complete targets. Dragging the element
close to the targets previews the variations as overlays on the can-
vas without interrupting the workflow. Dropping the element on a
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Figure 8: Two editing interfaces expose pattern variations to the user. In the exploration interface (a), the user can preview several suggestions for each
edit in the variations explorer (grey side-panel). In the Auto-complete interface (b), the user can choose suggestions by snapping a dragged element to one of
several drag targets shown as red points. Each such target reveals a different variation.

target accepts the suggestion and the elements are updated accord-
ingly. Subsequent edits generate new sets of variations. This inter-
face is similar in spirit to existing snap dragging functionality like
the Smart Guides in Adobe Illustrator. An important aspect of such
tools is that they allow the user to ignore or override the suggested
edits if they do not match the desired result. In such scenarios,
temporarily turning off all Auto-complete dots avoids accidentally
accepting a suggestion.

7 Extensions

Our core method can generate a set of valid, distinct, and intuitive
variations of a pattern given a user edit. The extensions described
below enable application of our method to specific user interac-
tion approaches and provide techniques to get large performance
improvements on some common types of patterns, allowing appli-
cation of our method to larger patterns.

Pattern hierarchy. Complex patterns often exhibit a hierarchical
structure, where sets of simple elements are arranged to form com-
posite elements. We say that elements are children of the composite
element they are forming. In these patterns only relationships be-
tween children that are in the same composite element are relevant,
or between elements that are not part of any composite element,
significantly reducing the number of possible relationships. We ex-
ploit this structure by modeling this hierarchy in our pattern graph
and only allowing relationships between children of the same par-
ent. The hierarchy acts similar to a scene graph for our pattern:
moving a parent element also moves all child elements.

Instance groups. Many of the more regular pattern make heavy
use of instancing: the same composite element is cloned multiple
times across the pattern. We model instancing as groups of compos-
ite elements. After the optimization, modifications to the children
of an instanced element are propagated to all other members of the
instance group. This allows us to update large patterns containing
many instances without having to optimize over all elements.

8 Results

To evaluate our method, we performed several quantitative and
qualitative experiments, and performed a user study. We start by
showing results of the qualitative evaluations, followed by quanti-
tative evaluations, and the user study.

Recall the proposed re-targeting of a pattern shown in Figure 2,
where the goal is to decrease the visual weight of a pattern. Manu-

ally editing the pattern (making good use of selections and element
movement) requires 24 edit operations. In Figure 9, we show the
same re-targeting performed with our method. After each edit, vari-
ations can be selected using one of our interfaces. Our method only
requires two edits and two variation selections to reach the desired
re-target. For the operations performed to reach some of the other
results shown in this section, we refer to the accompanying video.

One key feature of our method is the ability to generate useful pat-
tern variations for a wide range of edits. In Figure 10, we show
the first 5–6 variations generated by our method for different edits,
which involve rotating, scaling, or moving elements in the pattern.
One of our goals is to provide inspiration to the designer working
with our method. The variations found by our method are distinct
and intuitive, but additionally, they may not be immediately obvi-
ous from looking at the original pattern, which may bring variations
to the attention of the designer she did not think of before.

Figure 11 shows the results of several editing sessions we per-
formed on seven different patterns. The original patterns are shown
in blue and the results after editing in orange. For some of the
patterns, we show the results of several different editing sessions.
Note how we can create several distinct patterns using few opera-
tions compared to traditional manual editing, where elements would
need to be translated, rotated, and scaled individually. These types
of edits may be useful in several real-world scenarios; for example,
to efficiently re-arrange larger structures (Pattern 1), make a pattern
less or more visually dense (Pattern 2), reduce a pattern’s regular-
ity (Pattern 3), giving the pattern a more interesting global shape
(Pattern 4), re-targeting a pattern to remove an axis-symmetry (Pat-
tern 5), re-arranging elements to fill in holes that may have resulted
from removing other elements (Pattern 6), or re-size some elements
while retaining the pattern’s structure (Pattern 7).

Pattern graph construction. All pattern graphs used in this paper
are created manually by selecting pairs of elements or relationships
and choosing a set of connecting relationships from the list in Ap-
pendix A. Similarly, the pattern hierarchy and repeated structures
are defined manually by selecting elements that form composite
elements and by marking groups of repeated composite elements.
The center, orientation and size of elements are computed auto-
matically using the polygon centroid, PCA, and bounding sphere,
respectively, and are adjusted manually only if needed (e.g., the
orientation of circles). Correspondences between elements of re-
peated structures are found automatically by first aligning their par-
ent composite elements using the known centroid, orientation and
size, and then assigning elements in this aligned coordinate frame
based on their centroid distances. For very complex patterns with
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Figure 9: Operations required to perform the re-targeting described in Figure 2. To decrease the visual weight of the pattern shown on the left, we perform
two edits, each followed by the selection of a suggested variation. Manually re-targeting the patten would require 24 operations.
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Figure 10: The first 5–6 variations generated for each of the four pattern edits shown on the left. Note how the variations are distinct and intuitive for the
given edit, but could also give inspiration to the designer, since coming up with all these variations and previewing them without assistance may not be trivial.

repeated structures, we can save time by defining relationships in
one of the structures only and propagating to the repetitions. As
discussed above, the number of relationships that need to be de-
fined typically depends on the branching factor of the hierarchy, as
opposed to the number of element pairs. Creating the full pattern
graph typically takes under 5 minutes of manual work for most of
the pattern graphs, slightly longer for Pattern 6 shown in Figure 11.
Pattern graphs used in the results, including the pattern hierarchy,
are shown in the supplementary material. For real editing work-
flows, automatic or assisted pattern graph extraction would be more
suitable; a few ideas are discussed in §9. One consideration when
constructing pattern graphs is that additional relationships often re-
sult in additional valid and distinct variations. If a designer wants
to focus on a specific subset of variations, e.g., variations that do
not alter element scale, adding size-based relationships would un-
necessarily clutter the list of suggestions. In this case, improving
variation ranking, for example, by adding a term that weighs rela-
tionship types, would improve exploration.

8.1 Quantitative Experiments

In this section we provide quantitative evaluation of our method.
Our evaluation is based on 8 typical edits, shown in Figure 12. The
table in the same figure gives several statistics for each edit. The
first two rows show the number of pattern graph nodes in each of
the scenes, as well as the number of nodes in the composite element
that was changed by the edit (see §7 for details). The average time
for a linear and a non-linear solution are shown below. Rows 5–8 of
the table show the number of generated variations, and how many
variations remain after each filtering step. The random selection
discussed in §5.2 is split into two parts, the first random selection is
performed before the filter that removes unintuitive variations, since
this filter does not require the linear approximation, the second ran-
dom selection is done before computing the linear approximation,
which is needed to determine if variations are valid and distinct.
On average. The ‘intuitive’-filter retains 56% of the variations, the
‘valid’-filter retains 66%, and the ‘distinct’-filter retains 13%.
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Figure 11: Results of several pattern editing sessions performed with PATEX. The number of operations (including choosing suggestions) and the number
of chosen suggestions are shown below each result pattern. Note how new, often visually quite distinct patterns can be created from the original in just a few
operations. Manual editing would require a much larger number of operations.

The sensitivity of our method to the number of linearly approxi-
mated variations is shown in Figure 13. The topmost plot relates the
total number of distinct, valid and intuitive variations found by our
method to the number of linear approximations computed. Num-
bers show a clear tendency for convergence to a stable number of
variations at around 2000 linear approximations. On average, we
get diminished returns after approximately 150 linear evaluations,
which is the value we used for our user study and our experiments.

Scalability. Two main factors contribute to the scalability of our
approach. First, we sample the space of possible variations before
filtering. Thus, even for patterns with many possible variations, the
computation time is bounded by how many samples we generate.
The relation between sampling density and the number of missed
valid and distinct variations is shown in Figure 13. Note that the
set of variations need not be complete; in our experience, showing
5-10 different suggestions is often enough to facilitate exploration.
Additionally, using groups versus relationships in the assignments

(§5) means the variations grow in the number of groups, not rela-
tionships. Second, the pattern hierarchy bounds the complexity of
each optimization, as only the relationships and elements that are
children of the same composite element need to be considered in
practice. Most patterns can be grouped hierarchically and in such
patterns, the optimization can be split up into several smaller inde-
pendent optimizations, one per composite element that was directly
modified by the user. For each of these optimizations, the number
of relevant relationships and elements only depends on the branch-
ing factor of the hierarchy (which remains relatively constant as the
size of the pattern increases) rather than all possible relationships
between individual elements.

8.2 User Evaluation

To evaluate the utility of our approach and gain insight about how
designers might use automated suggestions in the context of con-
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Figure 12: Our quantitative experiments are based on the eight typical edits shown on the right. Modified elements are shown in orange. In the table on the
left, we show several statistics for each edit that exemplify the time required for generating variations, as well as the effect of filters on the final set of variations.
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Figure 13: Sensitivity of our method to the number of linear approxima-
tions. We show the normalized number of distinct variations found for each
edit versus the the number of linear evaluations. Note that there is a clear
tendency for convergence at around 2000 evaluations. On average, there
are diminished returns above 150 variations.

crete design tasks, we conducted an exploratory user study with
our two proposed editing interfaces. We recruited six participants
with moderate to extensive experience using existing drawing soft-
ware who create vector graphics (in the form of graphic designs,
infographics, layouts) at least once a month as part of their profes-
sion/studies. One participant designed textile patterns in a previous
job. We asked each participant to perform two design tasks with
one interface and then two different tasks with the other interface.
We kept the sequence of tasks constant but randomized the order
in which the interfaces were presented. Figure 14 shows the input
patterns and prompts for all tasks. We encouraged participants to
think aloud as they worked, and after the tasks, we asked them ad-
ditional questions about their experience. Our questions focused on
the usefulness of the suggestions and things that worked well or not
in the two interfaces. A demo of our method with both interfaces is
available on the project website [pat 2016].

Findings

Usefulness of suggestions. In general, participants described the
suggestions as useful, and there was consensus that automatically
generated variations would be helpful in the context of their current
tools and workflows. That said, the perceived level of usefulness
seemed somewhat task-dependent. For tasks 1 and 2, participants
tried to preserve much of the regular structure in the input pattern,
and the suggested variations seemed to retain many of the expected
relationships between elements. For example, a common strategy
for task 1 was to either scale down an element or move it farther
away from nearby elements. Such edits tended to produce varia-
tions that propagated the smaller scale and increased inter-element

distance to other parts of the pattern. However, for task 3 (reduc-
ing the regularity of the input pattern), participants often found the
suggested variations to be a bit too regular and, as one participant
remarked, ‘computer-like’. In task 4, linearization artifacts (dis-
cussed in more detail below) sometimes produced unexpected re-
sults that lowered the perceived usefulness of the suggestions for
this task.

Behavior. The way in which participants used the two interfaces
was consistent with their comments about the usefulness of the sug-
gestions. With the Auto-complete interface, participants almost al-
ways previewed suggestions when they were available, and for most
tasks, they accepted one or more variations during the editing ses-
sion. With the Exploration interface, participants generally spent
more time browsing (and accepting) suggestions in the explorer
view than they did editing elements on the canvas. With both in-
terfaces, the first few sets of suggested variations seemed to have
a considerable impact on how participants interacted with sugges-
tions for the rest of the task. When the initial suggestions were
deemed expected or useful, participants expressed their pleasure
and seemed more willing to generate and browse through subse-
quent suggestions. Otherwise, participants often focused more on
manual edits. One participant explicitly expressed apprehension
about using the Auto-complete targets after she previewed some
surprising suggestions earlier in the task.

Preferences. Across participants, there was no clear preference
between the two interfaces. Some liked that the Auto-complete
suggestions were displayed on-canvas and accessible during direct
manipulation of the elements. In addition, one participant pointed
out that mousing back and forth over Auto-complete targets was a
convenient way to see the differences between the current pattern
and the suggested variation. Others preferred the Explorer inter-
face because it facilitated browsing and previewing many alterna-
tives. Three participants noted that they liked the ability to go back
through their history of accepted suggestions to see how their ed-
its evolved. Overall, participants felt that one key strength of both
interfaces was the ability to quickly preview and evaluate many al-
ternative variations. For example, the former textile designer de-
scribed her experience with the Auto-complete interface as similar
to playing with different arrangements of physical paper cutouts,
which was one of her methods for seeking inspiration early in the
desing process. Another participant felt that the variations explorer
was more inspring because it gave her time to contemplate many
alternative designs while the Auto-complete interface forced her to
make choices immediately.

Usability. A few usability issues arose during the study. In some
cases, the difference between the variation previews and the ac-
tual refined variation used to update the canvas was noticeable. As



Task 1: This pattern is to be placed on a coloured 
background for a poster design. Increase the spacing 
so that more of the background shows through while 
retaining the structure of the pattern.

Task 3: This is a popular gift-wrapping pattern, but 
market research suggests that customers prefer less 
regular patterns. Make the design slightly less regular 
while preserving its basic structure.

Task 2: This is a company’s trademark pattern. In an 
advert, the company wants to put content into the 
three central circles. Make the circles 1.5x bigger 
(relative to the rest of the pattern) while keeping the 
pattern recognizable.

Task 4: Take the input pattern (top) and make it look 
like the target pattern (bottom). You do not have to 
reproduce the target exactly, but try to match the 
overall characteristics of the pattern.

Figure 14: Input patterns and prompts for user study tasks.

mentioned in §5.2, this is mainly due to large rotations around a
distant pivot point. In such cases, participants expressed surprise
and typically displeasure at the discrepancy. In addition, a few par-
ticipants commented on the responsiveness of the interfaces. The
latency of our current implementation makes multiple edits to the
same element a bit cumbersome, since there is a brief pause af-
ter each edit as the system generates suggested variations. There
were also situations where participants had trouble distinguishing
between similar variations, especially in the Exploration interface.
Finally, some participants mentioned that the lack of standard fea-
tures like multi-select and grouping operations made some of the
tasks less convenient than they might otherwise have been.

Design Implications

Our findings suggest several potential ways to improve the design
of our system.

Unobtrusive suggestions. The fact that our suggestions are more
useful for some tasks and less so for others highlights the impor-
tance of presenting automated variations in an unobtrusive way. In
cases where the suggestions are less helpful (e.g., tasks that mainly
involve breaking rather than preserving relationships), the interface
should not encumber standard editing operations like freeform ma-
nipulation of elements. To this end, one obvious opportunity for
improvement is to prevent the interface from freezing the editing
canvas while generating variations by executing the computations
in a separate thread.

Explaining variations. The impact of the initial suggestions
on subsequent editing behavior implies that participants quickly
formed some mental model for how variations were being gener-
ated. In some cases, this model (“It’s only giving me suggestions
where elements are in a straight line”) prevented the user from con-
sidering potentially useful variations generated later on in the ses-
sion. In part, this problem could diminish as users gain familiar-
ity with system and see a larger collection of automatic variations.
However, it may also be worth considering visualization techniques
that help explain what relationships are being preserved, changed,
or ignored in each variation.

Better filtering. The confusion around suggestions that are very
similar to each other indicates that our filtering of variations could
be better. In particular, the threshold that we use for identifying
‘identical’ variations could be tuned. Moreover, it may be worth
giving users interactive control over how many variations are dis-
played. With this strategy, the default set of variations could be
restricted to very distinct alternatives, and if the user asks for more,
the subsequent suggestions could vary in more subtle ways.

Quality of linear approximation. There are a few ways to prevent
large, misleading discrepancies between variation previews gener-
ated from poor linear approxiations and the final optimized pattern.
Putting variation computations on a separate thread, as discussed
above, would allow us to incrementally update linear approxima-
tion previews shown in the explorer view so that they gradually
become more accurate. We could also modify our pattern variation
computation to produce better (but more expensive) approximations
in cases where the linear approximation is unlikely to be sufficient.

8.3 Limitations

The main focus of our paper is exploring variations, therefore we
opted to generate our pattern graphs manually. Nevertheless, as we
will discuss in §9, our method would be well-suited for automatic
pattern generation approaches.

Currently, we do not support generating variations that change the
number of elements. Adding or removing elements might be useful
in some scenarios; for example, if a variation would result in over-
lapping elements. However, as we have shown in §8, our current
set of operations is already sufficient to create interesting pattern
variations and we would like to leave this feature to future work.

As shown in Figure 7, the linear approximation may be inaccu-
rate in some cases, mainly due to strong rotations around a distant
pivot. Although we encountered this problem only rarely, one pos-
sible option we would like to explore in future work is moving the
computations to a separate thread that updates the currently shown
linear approximations with the non-linear solver in the background.

9 Conclusions and Future Work

In this paper we try to answer an interesting question: how can
we explore variations of the complex structures that can be found
in patterns? Current options are to either to employ a fixed pa-
rameterization, thereby limiting the exploration to a narrow space,
or to re-arrange elements manually, which is infeasible for more
complex patterns and puts all the creative effort on the shoulders
of the designer. We introduce PATEX, a new technique for repre-
senting and generating pattern variations that preserve relationships
between elements while respecting user-specified edits. We incor-
porate this functionality in two pattern editing interfaces that expose
automated variations to users in the form of suggested edits.

The feedback from our user study along with our own experiences
using the editing interfaces suggests that automatic variations are
useful for a variety of pattern editing scenarios. In particular, our
variations help users explore the design space by showing how dif-
ferent interpretations of an edit can yield different results. In addi-
tion, for many tasks, automatic variations can reduce friction in the
editing process by enabling users to execute global edits without
manually editing many individual elements. Our study also rein-
forces the fundamental problem with a single, fixed representation
of a pattern. The fact that different participants wanted to preserve
or break different sets of relationships, even for the same pattern,
indicates that there is almost never a single ‘correct’ set of relation-
ships that characterize a pattern. This in turn highlights the impor-



tance of presenting multiple variations that correspond to different
interpretations.

In addition to the specific design improvements discussed at the end
of §8.2, we see several interesting directions for future work:

Higher-order relationships. Currently, all our relations take ex-
actly two inputs. While this is allows us to describe a wide range of
structures, some structures like axial symmetries could be modeled
more efficiently using relationships with more than two inputs. In
future work we plan to explore explicit representations for ternary
and higher-order relationships.

Automatic extraction of pattern graphs. As mentioned earlier,
our pattern graphs are specified manually. However, our method
seems to be well-suited to support automatically extracted patterns.
Since we assume overcomplete input graphs, we can accumulate
automatically detected relationships without worrying about con-
flicting or redundant constraints. Extraction would require finding
groups of repeated or symmetric structures to determine which el-
ements to connect with relationships. We could adapt several ex-
isting techniques, including symmetry detection [Yeh and Mech
2009], inverse parametric modeling [Št’ava et al. 2010; Wang et al.
2011], and edit history analysis in the spirit of Denning [2011] or
Doboš et al. [2014].

Data-driven evaluation of variations. In our work, we propose
simple heuristics for filtering and sorting variations in an effort to
identify intuitive and distinct sets of suggestions to present to users.
Future work could explore data-driven techniques for evaluating
variations based on human ratings of candidate variations.
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A Geometric Relationship Types

In our experiments, we use seven relationship types based on ele-
ment poses that are defined similar to Guerrero et al. [2014], and
three meta-relationship types that relate relationship values. This
list can be extended as needed and we plan to include relationships
based on additional properties of elements, like a distance between
element boundaries, in future work.

We use the following element relationships:

• The distance relationships is defined as the `2 distance be-
tween element centroids.

• The orientation difference relationship is the angular differ-
ence between element orientations in [−π, π).

• The size difference relationship is the difference between ele-
ment bounding sphere radii.

• The absolute direction relationship is the angle the direction
from the centroid of elementE1 to the centroid of elementE2

makes with the global x-axis. Angles are in [−π, π), clock-
wise rotations are negative angles.

• The relative direction relationship is the angle the direction
from the centroid of element E1 to the centroid of element
E2 makes with the orientation of E1. Angles are in [−π, π),
clockwise rotations are negative angles.

• The symmetric direction relationship is the angle the direction
from the centroid of elementE1 to the centroid of elementE2

makes with the orientation of E1. Angles are in [0, π), both
clockwise and counter-clockwise rotations are positive angles.

• The relative distance relationship is the distance between the
centroids of elements E1 and E2, relative to the size of E1.

Our three meta-relationships are defined as follows:

• The relationship difference is the difference between two re-
lationship values R1 −R2.

• The relationship angular difference is the difference between
two angular values constrained to [0, π).

• The relationship ratio is R1 divided by R2.


