
Learning Semantic Deformation Flows
with 3D Convolutional Networks
SUPPLEMENTAL MATERIAL

M. Ersin Yumer, Niloy J. Mitra

Adobe Research, University College London
yumer@adobe.com, n.mitra@cs.ucl.ac.uk

1 Deformed Shape Sampling for Training

We utilize Yumer et al. ’s [1] method to score and subsequently sample deformed
shapes for training. Given a shape, the system first assigns a score per semantic
attribute (between 0 and 1). An example from this sampling process is illustrated
in Figure 1.

Fig. 1. We sample the original input at 5 steps using Yumer et al. ’s system [1] and
use the pairs for training.

2 Train on ShapeNet[2] – Test on SemEd[1]

Here, we present average deformation error test results where training for all
methods except for Yumer et al. [1] is done on the ShapeNet dataset [2] (using
all ShapeNet models in Table 1 of the paper) and testing on the SemEd dataset
[1] (using all SemEd models in Table 1 of the paper). Note that these results are
aggregate errors over the five different attributes for each shape category. This
is a strain experiment because the previous work we compare with, and use to
generate ground truth data for meshes [1], is trained on SemEd and utilizes a
mixture of experts approach. Tables 1, 2, and 3 show that the results of this

2 M. Ersin Yumer, Niloy J. Mitra

Table 1. Train on ShapeNet - Test on SemEd. Mesh deformation error [voxelized space
edge length ×10−2]. In each row: Lowest error - best performance. Highest error
- worst performance.

[1] kNN S1-32 S2-32 F1-16 F2-16 F1-32 F2-32 F2-32-fm

Cars 0.0 7.56 9.46 8.41 4.87 3.81 2.05 1.16 1.04
Shoes 0.0 9.94 15.86 14.53 7.49 7.22 4.76 3.50 3.41
Chairs 0.0 8.78 9.48 8.29 7.41 6.55 4.16 3.24 2.42
Airplanes 0.0 14.41 14.44 13.98 10.55 9.79 6.56 6.30 5.10

Table 2. Train on ShapeNet - Test on SemEd. Point set deformation test error [vox-
elized space edge length ×10−2]. In each row: Lowest error - best performance.
Highest error - worst performance.

[1] kNN S1-32 S2-32 F1-16 F2-16 F1-32 F2-32 F2-32-fp

Cars 1.46 6.48 11.18 9.24 6.07 4.34 2.51 1.58 0.81
Shoes 2.98 9.78 14.41 14.81 8.05 8.38 4.99 3.35 2.68
Chairs 3.02 8.58 9.99 8.79 7.62 6.51 4.63 3.54 2.43
Airplanes 5.08 14.51 13.88 13.65 11.75 10.00 6.45 5.96 4.37

Table 3. Train on ShapeNet - Test on SemEd. Depth scan deformation test error
[voxelized space edge length ×10−2]. In each row: Lowest error - best performance.
Highest error - worst performance.

[1] kNN S1-32 S2-32 F1-16 F2-16 F1-32 F2-32 F2-32-fs

Cars 12.55 11.45 10.47 10.09 5.44 4.65 2.57 1.65 1.58
Shoes 12.92 11.24 15.16 13.54 8.38 8.91 4.89 3.93 3.11
Chairs 10.02 10.10 10.91 9.64 9.46 6.98 4.94 4.38 3.26
Airplanes 16.99 13.90 14.34 12.86 12.84 10.59 6.95 5.73 5.49

experiment is in line with the experiments presented in the paper where training
and testing is performed on a mixed case with models both from ShapeNet and
SemEd datasets.

3 Additional Visual Results

Figure 2 shows progressive activation of different semantic attributes for defor-
mation, using the F2-32-fm presented in the paper. Additional representative
results corresponding to the tests with finetuned F2-32 networks for each data
type in the paper are given in Figure 3 and Figure 4.

4 Baselines

4.1 Voxel Synthesis Baselines

Our direct synthesis baselines use the same network architectures presented in
the paper by replacing the deformation flow at the output with voxelized repre-
sentation of the deformed shape. We have two synthesis baselines corresponding
to the two architectures in the paper: S1-32 and S2-32 (Figure 2 and Section
3.1 in the paper). Note that the output of the synthesis networks are in voxel
format. We use marching cubes [3] for reconstructing a surface mesh represen-
tation for the deformed shape, in order to get a surface representation in 3D for
appropriate comparison with the other methods (Figure 5).

Learning Semantic Def. Flows with 3D Conv. Networks (SUPPLEMENTAL) 3

Fig. 2. Top: Activation of different semantic deformation indicators in successive order,
Bottom: Activation of different semantic deformation indicators together.

4.2 kNN Baseline

Our kNN baseline is a data-driven nearest neighbor method where we lever-
age the input shape-output ground truth deformation flow pairs synthesized for
training as a database. At test time query the nearest neighbor shapes to the
input shape and use the corresponding deformation flows to deform the input
shape. We use an Euclidean metric for nearest neighbor matching: the point set
and range scan data types use point data directly, whereas for the mesh repre-
sentation we use their corresponding point sets for nearest neighbor matching
(we build three different nearest neighbor databases for the three data types).
The nearest neighbor Euclidean metric, is computed as follows:

rij =
1

|Vi|
∑
v∈Vi

||v − vnn−j || (1)

where rij is the average distance of the points in the input shape i, to the jth

shape in the database. Vi is the set of all points in the input shape, |Vi| is the
number of all points in the input shape, and vnn−j is the nearest point in the
jth database shape to the point v in the input shape.

We blend the corresponding deformation flows of the k neighbors propor-
tionally weighted by their inverse distance to the input. We experimented with
various k between 3 and 25, however we report our results using k = 15 which
performed best. Specifically, we use the following blending function to compute
the deformation flow:

Fi =
∑
k∈K15

ωkFk (2)

where Fi is the deformation flow to be applied to the input, K15 is the set of
15 nearest neighbors to the input, ωk is the weight of kth neighbor’s weight. We
compute the weights as follows with a Gaussian decay:

ωk =
1

Z
e−

r2ij
2σ (3)

4 M. Ersin Yumer, Niloy J. Mitra

Fig. 3. Results from single frame depth scan (blue) and point set (red) data.

Learning Semantic Def. Flows with 3D Conv. Networks (SUPPLEMENTAL) 5

Fig. 4. Results from shape mesh representation data.

6 M. Ersin Yumer, Niloy J. Mitra

Fig. 5. Voxel and marching cubes surface representation examples. Note the low quality
of the marching cubes reconstruction due to the low voxel resolution.

where rij is computed via Equation 1, σ is the standard deviation of the distances
to the shapes in K15, and Z is a normalization factor such that

∑
k∈K15

ωk = 1.

5 Bernstein Polynomials

Here, we present a additional details regarding the Bernstein polynomials used
in our deformation method where voxel vertices are used as control points of an
FFD lattice.

An nth degree Bernstein polynomial is a linear combination of Bernstein basis
polynomials [4]. Bernstein polynomials are widely used in smooth interpolation
and have became practically relevant with Bézier curves [5].

A Bernstein polynomial Bn(x) is given by:

Bn(x) =

n∑
θ=0

βθ,nbθ,n(x) (4)

where the βθ,n is the Bernstein coefficient, which is unit in our case. bθ,n(x) is
the Bernstein basis function defined as:

bθ,n(x) =
(
n
θ

)
xθ(1− x)n−θ. (5)

where
(
n
θ

)
is a binomial coefficient.

References

1. Yumer, M.E., Chaudhuri, S., Hodgins, J.K., Kara, L.B.: Semantic shape editing
using deformation handles. ACM Transactions on Graphics (TOG) 34(4) (2015)
86

2. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 (2015)

Learning Semantic Def. Flows with 3D Conv. Networks (SUPPLEMENTAL) 7

3. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: ACM siggraph computer graphics. Volume 21., ACM (1987)
163–169

4. Korovkin, P.: Bernstein polynomials. Hazewinkel, Michiel, Encyclopedia of Math-
ematics, Springer, ISBN (2001) 979–1

5. Agoston, M.K.: Computer graphics and geometric modeling. Volume 1. Springer
(2005)

