
Learning Semantic Deformation Flows
with 3D Convolutional Networks

M. Ersin Yumer, Niloy J. Mitra

Adobe Research, University College London
yumer@adobe.com, n.mitra@cs.ucl.ac.uk

Abstract. Shape deformation requires expert user manipulation even
when the object under consideration is in a high fidelity format such as
a 3D mesh. It becomes even more complicated if the data is represented
as a point set or a depth scan with significant self occlusions. We intro-
duce an end-to-end solution to this tedious process using a volumetric
Convolutional Neural Network (CNN) that learns deformation flows in
3D. Our network architectures take the voxelized representation of the
shape and a semantic deformation intention (e.g., make more sporty) as
input and generate a deformation flow at the output. We show that such
deformation flows can be trivially applied to the input shape, resulting in
a novel deformed version of the input without losing detail information.
Our experiments show that the CNN approach achieves comparable re-
sults with state of the art methods when applied to CAD models. When
applied to single frame depth scans, and partial/noisy CAD models we
achieve ∼60% less error compared to the state-of-the-art.

1 Introduction

Shape deformation is a core component in 3D content synthesis. This problem
has been well studied in graphics where low level, expert user manipulation is
required [36, 2]. It is acknowledged that this is an open and difficult problem,
especially for deformations that follow semantic meaning, where very sparse high
level information (e.g., make this shoe more durable) need to be extrapolated to
a complex deformation. One way to solve this problem using traditional editing
paradigms is through highly customized template matching [44], which does not
scale. In this paper, we introduce a novel volumetric CNN, end-to-end trained
for learning deformation flows on 3D data, which generalizes well to low fidelity
models as well.

CNNs have been shown to outperform hand-crafted features and domain
knowledge engineered methods in many fields of computer vision. Promising ap-
plications to classification [23], dense segmentation [26], and more recently direct
synthesis [8] and transformation [43, 39] have been demonstrated. Encouraged
by these advances, we propose using the reference shape’s volumetric represen-
tation, and high-level deformation intentions (e.g., make the shape more sporty)
as input to our 3D convolutional neural network, where both channels get mixed



2 M. Ersin Yumer, Niloy J. Mitra

Fig. 1. Our 3D convolutional network (c) takes a volumetric representation (b) of an
object (a) and high-level deformation intentions as input and predicts a deformation
flow (d) at the output. Applying the predicted deformation flow to the original object
yields a high quality novel deformed version (e) that displays the high-level transfor-
mation intentions (In this illustration, the car is deformed to be more compact).

through fully connected layers and is consequently ‘upconvolved’1 into a volu-
metric deformation flow at the output. When such a deformation flow is applied
to the original reference shape, it yields a deformed version of the shape that
displays the high-level deformation intentions (Figure 1).

We train and test end-to-end networks for four different object categories:
cars, shoes, chairs, and airplanes with five high-level relative attribute based
deformation controls for each category. In addition to Yumer et al. [44]’s dataset
(referred to as the SemEd dataset), we also use additional data for the same
categories from ShapeNet [3, 35]. We use more than 2500 unique shapes for each
category, which yields in ∼2.5M training pairs with additional data types (point
set and depth scan), as well as data augmentation.

We introduce two novel deformation flow CNN architectures. We compare
with state of the art semantic deformation methods, as well as a data-driven base-
line and two direct shape synthesis CNN baselines where the output is replaced
with volumetric representation of the deformed shape instead of the deformation
flow in our architectures. Even though the ultimate goal is generating a deformed
version of the shape, we opt to learn a deformation flow instead of directly learn-
ing to generate the shape in volumetric format. We show that our deformation
flow approach results in ∼70% less error compared to such direct synthesis ap-
proaches using the same CNN architectures. Moreover, we quantitatively and
qualitatively show that deformation flow based CNN perform significantly bet-
ter than the state-of-the-art semantic deformation[44]: we achieve ∼60% less
error on depth scans and noisy/partial CAD models.

Our main contributions are:

– Introducing the first 3D volumetric generative network that learns to predict
per-voxel dense 3D deformation flows using explicit high level deformation
intentions.

– Demonstrating semantic 3D content deformation exploiting structural com-
patibility between volumetric network grids and free-form shape deformation
lattices.

1 Upconvolution in our context is unpooling followed by convolution. Refer to Sec-
tion 3.1 for more details.



Learning Semantic Deformation Flows with 3D Convolutional Networks 3

2 Background

3D Deep Learning. 3D ShapeNets [40] introduced 3D deep learning for mod-
eling shapes as volumetrically discretized (i.e., in voxel form) data, and showed
that intuitive 3D features can be learned directly in 3D. Song et al. [37] intro-
duced an amodal 3D object detector method for RGB-D images using a two 3D
convolutional networks both for region proposal and object recognition. Matu-
rana and Scherer demonstrated the use of 3D convolutional networks in object
classification of point clouds [30] and landing zone detection [29], specifically from
range sensor data. 3D feature extraction using fully connected autoencoders [10,
41] and multi-view based CNNs [38] are also actively studied for classification
and retrieval. Although volumetric convolution is promising for feature learn-
ing, due to the practically achievable resolution of the voxel space prevents high
quality object synthesis [40]. We circumvent this by learning a deformation flow
instead of learning to generate the transformed object directly. Such deformation
flows exhibit considerably less high frequency details compared to the shape it-
self, and therefore are more suitable to be generated by consecutive convolution
and upsampling layers.

Generative Learning. There has been several recent methods introduced
to generate or alter objects in images using deep networks. Such methods gen-
erally utilize 3D CAD data by applying various transformations to objects in
images in order to synthesize controlled training data. Dosovitskiy et al. [8] in-
troduced a CNN to generate object images from a particular category (chairs in
their case) via controlling variation including 3D properties that affect appear-
ance such as shape and pose. Using a semi-supervised variational autoencoder
[20], Kingma et al. [19] utilized class labels associated to part of the training
data set to achieve visual analogies via controlling the utilized class labels. Sim-
ilar to the variational autoencoder [20], Kulkarni et al. [24] introduced the deep
convolutional inverse graphics network, which aims to disentangle the object in
the image from viewing transformations such as light variations and depth rota-
tions. Yang et al. [43] introduced a recurrent neural network to exploit the fact
that content identity and transformations can be separated more naturally by
keeping the identity constant across transformation steps. Note that the genera-
tive methods mentioned here tackle the problem of separating and/or imposing
transformations in the 2D image space. However, such transformations act on
the object in 3D, whose representation is naturally volumetric. As the applied
transformation gets more severe, the quality and sharpness of the generated 2D
image diminishes. On the other hand, our volumetric convolution based defor-
mation flow applies the transformation in 3D, therefore does not directly suffer
from the discrepancy between 2D and 3D data.

3D Deformation. 3D shape deformation is an actively studied research
area, where many energy formulations that promote smoothness and minimize
shear on manifolds have been widely used (see [2] for an extensive review). With
the increasing availability of 3D shape repositories, data-driven shape analysis
and synthesis methods have been recently receiving a great deal of attention.
Mitra et al. [31] and Xu et al. [42] provide extensive overviews of related tech-



4 M. Ersin Yumer, Niloy J. Mitra

niques. These methods aim to decipher the geometric principles that underlie a
product family in order to enable deformers that are customized for individual
models, thereby expanding data-driven techniques beyond compositional model-
ing [46, 12, 44]. Yumer et al. [46, 44] present such a method for learning statistical
shape deformation handles [45] that enable 3D shape deformation. The problem
with such custom deformation handles are two folds: (1) Limited generalization
due to dependency on correct registration of handles between template and the
model, (2) Being capable to only operate on fully observed data (e.g., complete
3D shapes) and not generalizing well for partially observed data (e.g., depth
scans, range sensor output). We circumvent the registration problem by training
an end-to-end volumetric convolutional network for learning a volumetric defor-
mation field. We show that our method outperforms the previous methods when
the input is partially observed by providing experiments on depth sensor data.

Relative Attributes. We incorporate explicit semantic control of the defor-
mation flow using relative attributes [44, 33, 32, 4]. Relative attributes have been
demonstrated useful for high level semantic image search [22], shape assembly [4],
and human body shape analysis [1]. Recently, Yumer et al. [44] showed that rela-
tive attributes can be directly used in a shape editing system to enable semantic
deformation (e.g., make this car sportier) using statistical shape deformation
handles. We use their system to generate training data with CAD models. We
show that our end-to-end method generalizes better compared to [44], especially
for low quality, higher variance, and incomplete data (e.g., partial shapes, depth
sensor output).

3 Approach

3.1 Network Architectures

Convolutional neural networks are known to perform well in learning input-
output relations given sufficient training data. Hence, we are motivated to intro-
duce an end-to-end approach for semantically deforming shapes in 3D (e.g., de-
form this shoe to be more comfortable). This is especially useful for raw and in-
complete data such as depth scans, which previous methods have not addressed.
One might think that a complete network to generate the deformed shape at the
output of the network is a better solution. While this is a reasonable thought,
the resulting shape will be missing high frequency details due to the highest
resolution that is achievable with a volumetric network. Results from such a
network fail to capture intricate shape details (see Section 5 for comparison).

Dense Prediction with CNNs. Krizhevsky et al. [23] showed that con-
volutional neural networks trained with backpropagation [25] perform well for
image classification in the wild. This paved the way to recent advancements in
computer vision where CNNs have been applied to computer vision problems
at large by enabling end-to-end solutions where feature engineering is bypassed.
Rather, features are learned implicitly by the network, optimizing for the task
and data at hand. Our volumetric convolution approach is similar to CNNs that
operate in 2D and generate dense prediction (i.e., per pixel in 2D). To date, such



Learning Semantic Deformation Flows with 3D Convolutional Networks 5

Fig. 2. Top: Volumetric convolutional encoder (red)’s third set of filter responses
(128∗4×4×4) are fully connected to a layer of 1536 neurons, which are concatenated
with the 512 codes of deformation indicator vector (green). After three fully connected
layer mixing, convolutional decoder part (blue) generates a volumetric deformation
flow (3∗32×32×32). Bottom: We add all filter responses from the encoder part to the
decoder part at corresponding levels. (Only the far faces of input - output volume dis-
cretization is shown. The deformation flow is computed in the entire volume, where
only two slices are shown for visual clarity. Arrows indicate fully connected layers,
whereas convolution and upconvolution layers are indicated with appropriate filters.)

CNNs have been mainly used in semantic segmentation [14, 11, 26], key point pre-
diction [16], edge detection [13], depth inference [9], optical flow prediction [7],
and content generation [39, 8, 34]. Below, we introduce our 3D convolutional net-
work architecture that derives inspiration from these recent advances in dense
prediction approaches.

3D Deformation Flow CNN Architecture. We propose two network
architectures for learning deformation flows (Figure 2). Our first network ar-
chitecture (Figure 2-top) integrates ideas from Tatarchenko et al. [39] where
explicit control over transformation parameters (deformation attributes in our
case) are fed into the network as a separate input channel. Each element of the
input channel demarcates the deformation indicator based on the semantic at-
tribute: 0: generate a deformation flow to decrease this attribute, 1.0: generate
a deformation flow to increase this attribute, and 0.5: keep this attribute same.
This simpler architecture is easier and faster to train, but fails to capture some
of the sharp details in the deformation flow when the structure is volumetrically
thin (Figure 3).



6 M. Ersin Yumer, Niloy J. Mitra

Fig. 3. Our 3D convolutional network takes a volumetric representation of an ob-
ject (‘the point set’ in this example) and high-level deformation intentions as input
(‘durable’ in this example) and predicts a deformation flow that can be used to deform
the underlying object. Note that the our F2-32 architecture gracefully deforms all parts
of the object, whereas the simpler F1-32 might miss the thin regions.

Our second network architecture introduces additional feature maps from the
encoder part of the network, as well as upconvolving coarse predictions added
to the corresponding resolution layers in the decoder part (analogous to Long
et al. [26] and Dosovitskiy et al. [7] but in 3D). This approach performs better
at reconstructing higher frequency details in the deformation flow due to the
low level features introduced at corresponding layers. As such, it enables us to
perform subtle deformations that are not possible with the first architecture.
Figure 3 shows that this architecture captures the shoe sole thickness transfor-
mation that corresponds to a ‘more durable’ deformation.

In the following parts of this paper, we denote the first and second architec-
ture with F1-32 and F2-32. Additionally, we compare with a lower resolution,
easier to train version of the networks denoted by F1-16 and F2-16, where 16
denotes the lower volumetric resolution at the input and output (16×16×16 in-
stead of 32×32×32). These low resolution variations are architecturally identical
to the ones in Figure 2 except the fact that the volumetric encoder and the de-
coder have one less number of layers but same number of convolution filters. For
comparison purposes, we also train direct volumetric content synthesis versions
of high resolution networks by replacing the deformation flow at the output with
the voxelized deformed target shape (1∗32×32×32) and denote these variations
as: S1-32 and S2-32.

We use leaky rectified nonlinearities [28] with negative slope of 0.2 after all
layers. For both convolution and upconvolution layers, we use 5 × 5 × 5 filters.
After each convolution layer we use a 2×2×2 max pooling layer, whereas upcon-
volution layers use an unpooling layer preceding them. Following [8], we simply
replace each entry of a feature map with a 2×2×2 block with entry value at the
top left corner and zeros everywhere else. Hence, each upconvolution results in
doubled height, width and depth of the feature map. In our second architecture
(Figure 2-bottom), these upconvolved feature maps are concatenated with the
corresponding feature maps from the encoder part of the CNN, resulting in dou-
bled the number of feature maps compared to the simpler network illustrated in
Figure 2-top.



Learning Semantic Deformation Flows with 3D Convolutional Networks 7

3.2 Deformation Flow Computation.

Since the volumetric convolution is computed in a regular 3D grid, it conforms
naturally to free-form deformation (FFD) using lattices [36, 6]. FFD embeds a
shape in a lattice space and enables the embedded shape to be deformed using
the FFD lattice vertices, which act as control points in the local volumetric
deformation coordinate system. The FFD lattice vertices are defined at the voxel
centers of the last layer of the CNN (Figure 4), since the prediction is per voxel.

Formally, the local lattice space for each deformation volume is given by
64 control points, whose position are denoted with Pijk, are the vertices of 27
sub-deformation volumes. Deformed positions of arbitrary points in the center
sub-deformation lattice can be directly computed using control point positions:

P(u, v, w) =

3∑
i=0

3∑
j=0

3∑
k=0

PijkBi(u)Bj(v)Bk(w)
0<u<1
0<v<1
0<w<1

(1)

where Bn(x) is a Bernstein polynomial of degree n [21], that acts as a blending
function. For the sake of completeness, we include a detailed formulation of
Bernstein polynomials in our supplementary material.

Since our data is in the form of undeformed -deformed shape or point set pairs,
we first compute a binary voxel mask for the undeformed shape as network input,
and a deformation flow for each pair as network output for the training dataset.
To compute the deformation flow, we solve the following optimization problem
to compute the deformed lattice vertex positions for the input-output pairs:

arg min
d′∈D

∑
i

l(p′i − F(pi)). (2)

where p′i and pi are the deformed and undeformed positions of points in the
shape or point set data, d′ is the deformation lattice vertex position in the
deformed state, and D is the set of all deformation lattice vertices. F is the FFD
deformation flow operator applied on the undeformed positions using Equation 1.
The deformation lattice vertices are the voxel centers in the network output
(Figure 4). Hence, the deformation flow vector in R3 for each voxel is given by
v = d′ − d, where d is the undeformed lattice vertex position.

One can argue that instead of computing the deformation flow a priori and
using an Euclidean loss on the dense deformation flow as we do, an alternative is
to deform the input shape using the deformation flow at each forward pass, and
compute an Euclidean loss over points in the deformed positions of the shape or
point cloud. The problem with such an optimization is that only a sparse number
of voxels contribute to the deformation. In our approach, the non-contributing
voxel values are set to zero to enforces correct dense prediction. We experimented
with both, and observed that dense deformation flow Euclidean loss resulted in
∼5x faster convergence, without any performance difference on test sets.

Deformation of the Shape using the Predicted Flow. At test time, we
use the trained network to predict a volumetric deformation flow for the input
shape or point set. We apply the flow to the deformation lattice vertices where
the input is embedded, which results in the final deformed shape/range scan.



8 M. Ersin Yumer, Niloy J. Mitra

Fig. 4. CNN voxels to FFD lattice illustrated with a 2D example for clarity. The flow
values predicted for each voxel (left), correspond to the deformation lattice vertices
(middle), which result in the deformation vectors applied to the control points (right).

4 Implementation and Training Details

4.1 Training Data Generation

We build eight datasets (four object classes × two data types) from two sources:
(1) ShapeNet [3], (2) SemEd [44]. We train and test on three different data
types: 3D shapes in mesh representation, point sets sampled directly on the
shape, and simulated single frame depth scans from a kinect sensor [15] in point
cloud representation. The four object classes we include are: Cars, Shoes, Chairs,
Airplanes. Note that a network is trained per object class.

3D Shapes. We collect 2500 shapes from ShapeNet for each category2 in
addition to the data provided by Yumer et al. [44] for each category. We randomly
separate ∼20% from each group to be used as tests.

Point Sets and Simulated Depth Scans. One of the powerful aspects of
our method is that, it can gracefully handle low fidelity and incomplete data.
We achieve this by sampling points on the shape set and also simulating single
view depth scans for the shapes mentioned above from arbitrary viewpoints
and include these in the training set as well. Note that for the simulated scans,
only the input of the training pair changes such that the network is trained to
predict complete deformation flow from single viewpoint depth scans in order to
correctly deform the points.

Undeformed-Deformed Pairs. We generate deformed shapes using the
method introduced by Yumer et al. [44]. Their approach semantically deforms
shapes by first fitting a class dependent template to the shape, and subsequently
deforming the shape using the template whose degrees of freedom (DOF) are
linked to semantic attribute controllers. Semantic controller - template DOF
mapping is learned through user studies: they provide five different semantic
controllers for four shape categories, all of which are utilized in our networks.
Yumer et al. [44] deform shapes at a continuous scale. We opt to divide their
range into five severity steps, and use each successive step as a training pair.
In our experiments we observed that this yielded a better performance allowing
the network to learn a less severe deformation field. A shape can be passed

2 We collect additional data from 3D Warehouse where ShapeNet counts fall short.



Learning Semantic Deformation Flows with 3D Convolutional Networks 9

Table 1. Dataset statistics. Although the number of models in SemEd [44] is smaller,
we include them to compare with Yumer et al. [44] under more challenging conditions
as well (e.g., train on ShapeNet – test on SemEd).

Cars Shoes Chairs Airplanes

ShapeNet SemEd ShapeNet SemEd ShapeNet SemEd ShapeNet SemEd

All Shapes 2500 131 2500 127 2500 61 2500 53

Training 2000 100 2000 100 2000 45 2000 40

+ Depth Scan 14700 14700 14315 14280

× Attributes 73500 73500 71575 71400

× Def. Severity Steps ∼350 × 103 ∼350 × 103 ∼350 × 103 ∼350 × 103

× Data Augmentation ∼2.5 × 106 ∼2.5 × 106 ∼2.5 × 106 ∼2.5 × 106

through the network multiple times by using the output from the previous step
as the input, resulting in more severe deformation (Figure 5). Note that, their
dependency on customized deformation templates and correct registration of
template labels for successful deformation limits the variety of shapes they can
operate on. Their system will mostly fail to fit correct templates to depth scans
and point sets (refer to Section 5 for details of such experiments). We therefore
utilize the following strategy to generate the deformed counter part for point sets
and depth scans: (1) register the nearest point on the shape for each point in
the simulated depth scan, (2) deform the original shape with Yumer et al. [44],
(3) transform each point in the depth scan to a deformed position by using the
relative distance to the corresponding nearest point on the shape.

Data Augmentation. We utilize two data augmentations to increase the ro-
bustness of the network, and to provide additional training data: (1)part removal
from input, (2) translation and rotation transforms. Note that part removal only
applied to the input (i.e., the network is trained to predict the full deformation
flow), whereas transformations are applied to both the input and the output
(i.e., the network is expected to predict the flow both at globally and locally
correct positions relative to the shape data) We assume that the object up di-
rection is known, which is available in both data sources we utilize, and easy to
obtain for shapes where such information is not available a priori. Therefore, the
rotation transformation applies only to in-plane rotation on the ground.

Training Data Statistics. Table 1 show detailed statistics of the datasets
used both in training. Although the number of shapes in each category we use in
training is ∼2000, this quickly multiplies: each category has 5 different semantic
deformation modes, and 5 different severity steps, yielding 25 input-output pairs
for each shape. Moreover, we simulated depth scans from 6 arbitrary views for
each shape, and apply 7 random data augmentations. This results in ∼2.5 million
input-output training pairs per object category.

4.2 Network Training

Training Procedure. We train the networks using the Torch7 framework [5].
We initialize the weights from a normal distribution: N (µ = 0, σ2 = 0.015). We
utilize Adam [18] optimizer using a mini-batch stochastic gradient descent (with
a mini-batch size of 128). Kingma et al. [18] proposed momentum parameters



10 M. Ersin Yumer, Niloy J. Mitra

β1 = 0.9 and β2 = 0.999, and a learning rate of 0.001. However, we found
out that the learning rate was too high and used 0.0002 instead. Together with
reducing the first momentum term β1 to 0.5 as suggested by [34] resulted in a
more stable and repeatable training procedure. We also used batch normalization
[17], which proved to be very useful in training the deeper versions of the network
(32× 32× 32 resolution at input and output). We use 10% of the training data
for validation, to monitor and prevent overfitting.

Finetuning. Note that the target input data types we want to the method
to handle are significantly different: (1) complete 3D mesh models, (2) point sets,
(3) depth scans. We therefore finetune the networks on these three data types
separately. We use corresponding subset of the training data for each data type
within our training set (Table 1), with a low learning rate (1×10−6). We denote
the finetuned networks with ‘-fm’, ‘-fp’, and ‘-fs’, which correspond to finetuned
on mesh data, point set data, and scan data, respectively.

5 Results

5.1 Experiments

Each shape category (Cars, Shoes, Chairs and Airplanes) database have five
different associated attributes given in Table 2. We choose these four object
types, and corresponding attributes due to the fact that we can generate ground
truth data for comparison and training using Yumer et al. ’s method [44]. We
train the multiple network architectures as introduced in Section 3.1 for these
four shape categories: two low resolution deformation flow networks (F1-16, F2-
16), two deformation flow networks (F1-32, F2-32), and an additional data type
specific finetuned version (F2-32{-fm, -fp, -fs}).

Baselines. In addition to comparing our method with Yumer et al. [44], we
also introduce three baseline methods which we compare with our deformation
flow based approach: two direct synthesis network baselines (S1-32, S2-32), and
a nearest neighbor baseline (demarcated as kNN in results tables 2, 3, and
4). The synthesis baselines replace the last layer of the networks with voxelized
representation of the deformed model instead of the deformation flows. We then
use marching cubes [27] for reconstructing a surface mesh representation for
the deformed shape. For the kNN baseline, we build three databases each reg-
istering training inputs for one data type (mesh, point set, depth scan) to the
corresponding deformation flows. We include all rotation and translation aug-
mentations introduced in Section 4. At test time, we find the k nearest neighbors
to the input using average nearest point Euclidean distance (for meshes we use
randomly sampled points on the shape), blend the corresponding deformation
flows of the k neighbors proportionally weighted by their inverse distance to the
input. We experimented with various k between 3 and 25, however we report
our results using k = 15 which performed best. More details on the kNN and
synthesis CNN baselines can be found in our supplementary material.

Ground Truth. As mentioned in Section 4, Yumer et al. [44] cannot deform
the shape when their deformation template does not register correctly. This is a



Learning Semantic Deformation Flows with 3D Convolutional Networks 11

major problem for point sets and depth scans. hence we generate the deformed
counter part for these input types by using the underlying 3D shape mesh: (1)
register the nearest point on the shape for each point in the simulated depth
scan, (2) deform the original shape with Yumer et al. [44], (3) transform each
point in the depth scan to a deformed position by using the relative distance
to the corresponding nearest point on the shape. The point sets are sampled
directly on the shape, whereas depth scans are simulated by using a virtual
kinect sensor [15].

Deformation Test Error. We compute the test error relative to the net-
work input 3D volume edge length. We report average Euclidean error comparing
point positions with respect to the ground truth (for the mesh representation
we compute the error using randomly sampled points on the mesh since mesh
vertices might be sparse and inconsistently distributed). Tables 2, 3, and 4
show all results for the mesh, point set, and depth scan data, respectively.

5.2 Discussions

We present average deformation error results on all test datasets in Tables 2,
3, and 4 for mesh, point set, and depth scan data separately. Note that these
tables show aggregated error from both ShapeNet and SemEd (Table 1 (shapes
that were not used for training)). Specifically, Cars: 500 ShapeNet + 31 SemEd,
Shoes: 500 ShapeNet + 27 SemEd, Chairs: 500 ShapeNet + 16 SemEd, and
Airplanes: 500 ShapeNet + 13 SemEd mesh models were used in the tests. Point
sets also used the same models resulting in the same number of test subjects,
whereas depth scans used twice the number of input by generating test date
from two randomly chosen sensor locations around each shape. We challenge
our method by training only on ShapeNet dataset and testing on SemEd (this
is more challenging because the previous work we compare with [44] is trained
on SemEd and utilizes a mixture of experts approach). We present detailed
comparison of this additional experiment in our supplementary material, where
our method outperformed the comparison similarly as in Tables 2, 3, and 4.

For the mesh representation deformation (Table 2), Yumer et al. ’s [44] results
are null, since their method is used to compute ground truth, and complete
shapes are the ideal case. Our finetuned network (F2-32-fm) performs best among
the convolutional network approaches, and outperforms the kNN baseline as well.
Note that, the synthesis network baselines (S1-32, S2-32) are not as good as the
kNN baseline in most cases. Note also that, kNN results for point sets are the
same with kNN for mesh data since kNN for mesh also uses the points sampled
on the shape as described in Section 5.1.

When there is a considerable amount of uncertainty is existent in the in-
put (such as point set or depth scan input type), our method outperforms the
results of [44] (Tables 3, and 4). Moreover, since depth scans incorporate a
significant amount of missing data (Figure 5), Yumer et al. [44] is not able to
generate plausible deformations due to their template matching step failing to
fit correspondences.



12 M. Ersin Yumer, Niloy J. Mitra

Table 2. Mesh deformation error [voxelized space edge length ×10−2]. In each row:
Lowest error - best performance. Highest error.

[44] kNN S1-32 S2-32 F1-16 F2-16 F1-32 F2-32 F2-32-fm

Car-luxurious 0.0 7.43 9.45 8.10 4.54 3.72 1.93 1.13 0.82
Car-sporty 0.0 10.4 15.8 12.0 7.02 5.45 3.76 2.65 1.83
Car-compact 0.0 11.6 13.7 11.6 6.52 5.82 3.54 2.49 1.79
Car-muscular 0.0 6.98 9.21 7.90 4.28 3.26 1.87 1.07 0.77
Car-modern 0.0 6.43 10.2 8.67 5.78 4.23 2.04 1.02 0.79

Shoe-fashionable 0.0 9.64 15.4 14.2 7.43 7.21 4.32 3.24 3.20
Shoe-durable 0.0 4.28 4.71 4.28 4.78 4.34 0.23 0.21 0.19
Shoe-comfy 0.0 7.45 13.5 12.5 6.93 6.87 3.97 3.10 2.45
Shoe-feminine 0.0 10.4 15.3 13.2 8.29 7.64 4.81 4.06 3.50
Shoe-active 0.0 7.43 14.2 13.8 7.26 7.12 4.20 3.57 3.07

Chair-comfy 0.0 8.43 9.12 8.10 7.05 6.18 4.15 3.20 2.01
Chair-ergonomic 0.0 8.02 10.6 9.12 7.43 6.01 3.28 3.01 1.98
Chair-elegant 0.0 9.11 9.10 8.52 6.18 5.43 3.05 2.29 2.00
Chair-antique 0.0 0.24 9.58 8.54 0.45 0.49 0.10 0.08 0.10
Chair-sturdy 0.0 4.10 4.51 4.24 4.80 3.34 2.30 2.20 1.49

Airplane-fighter 0.0 14.3 14.2 13.8 10.5 9.54 6.32 5.90 5.06
Airplane-fast 0.0 16.5 13.4 12.6 9.67 8.75 5.71 4.88 4.27
Airplane-stealth 0.0 7.84 10.6 9.47 8.43 7.86 5.61 4.83 3.30
Airplane-sleek 0.0 8.59 9.41 9.02 7.40 7.02 6.04 5.31 3.29
Airplane-civilian 0.0 12.7 15.3 11.6 6.73 6.12 5.23 5.47 4.01

Table 3. Point set deformation test error [voxelized space edge length ×10−2]. In each
row: Lowest error - best performance. Highest error.

[44] kNN S1-32 S2-32 F1-16 F2-16 F1-32 F2-32 F2-32-fp

Car-luxurious 2.12 7.43 9.88 8.27 4.50 3.70 1.86 1.17 0.76
Car-sporty 1.98 10.4 13.9 11.6 7.43 5.60 3.68 2.59 1.90
Car-compact 0.96 11.6 14.1 12.0 6.60 5.62 3.62 2.32 1.84
Car-muscular 1.24 6.98 9.76 7.63 4.74 3.31 1.97 1.11 0.72
Car-modern 1.57 6.43 10.9 8.75 5.75 4.10 2.43 1.18 0.75

Shoe-fashionable 2.23 9.64 14.3 14.8 7.81 7.93 4.51 2.99 2.60
Shoe-durable 0.31 4.28 4.40 4.44 4.76 4.55 0.22 0.25 0.21
Shoe-comfortable 2.76 7.45 13.1 12.2 6.63 6.25 4.24 3.42 2.33
Shoe-feminine 3.20 10.4 15.8 12.9 8.97 7.70 4.19 4.64 3.28
Shoe-active 3.25 7.43 13.1 13.0 7.76 7.25 4.01 3.70 3.36

Chair-comfortable 2.54 8.43 9.77 8.35 7.24 6.21 4.28 3.47 2.24
Chair-ergonomic 2.36 8.02 10.2 8.93 7.67 6.43 3.65 3.23 2.10
Chair-elegant 2.71 9.11 9.65 8.80 6.34 5.22 3.69 2.75 2.54
Chair-antique 0.06 0.24 9.90 8.71 0.66 0.60 0.12 0.09 0.12
Chair-sturdy 1.32 4.10 4.75 4.41 4.48 3.12 2.37 2.25 1.25

Airplane-fighter 5.67 14.3 13.4 13.2 11.4 9.70 6.20 5.64 4.96
Airplane-fast 5.21 16.5 15.7 12.4 9.07 8.72 5.67 4.70 4.41
Airplane-stealth 3.78 7.84 11.3 9.76 8.86 7.89 5.74 4.65 3.20
Airplane-sleek 4.02 8.59 9.73 9.47 7.61 6.90 6.23 5.10 3.68
Airplane-civilian 4.85 12.7 14.6 11.2 6.40 6.34 5.53 5.20 4.36

Table 4. Depth scan deformation test error [voxelized space edge length ×10−2]. In
each row: Lowest error - best performance. Highest error.

[44] kNN S1-32 S2-32 F1-16 F2-16 F1-32 F2-32 F2-32-fs

Car-luxurious 13.5 11.2 10.2 9.70 4.99 4.23 2.34 1.40 1.18
Car-sporty 15.4 14.5 14.2 12.7 7.86 6.25 4.02 2.66 2.04
Car-compact 19.6 15.3 14.6 13.1 7.21 6.09 3.94 2.89 2.01
Car-muscular 15.0 11.6 10.5 8.50 5.19 4.28 2.40 1.50 0.95
Car-modern 12.7 9.30 11.4 9.42 5.82 5.09 2.40 1.36 0.98

Shoe-fashionable 14.8 11.2 14.9 13.5 7.94 8.51 4.87 3.45 3.08
Shoe-durable 0.52 4.99 4.80 4.67 4.81 4.42 0.32 0.20 0.20
Shoe-comfortable 16.4 8.86 13.2 11.5 6.92 6.75 4.41 3.87 2.86
Shoe-feminine 11.9 12.8 15.6 12.7 9.44 7.98 4.53 4.84 3.70
Shoe-active 13.5 9.30 12.6 12.4 8.03 7.59 4.28 3.89 3.51

Chair-comfortable 11.5 9.97 10.8 9.51 9.30 6.70 4.60 4.06 3.07
Chair-ergonomic 10.6 9.75 11.6 9.03 8.57 6.87 3.41 3.74 2.74
Chair-elegant 9.05 10.2 12.0 8.75 7.36 5.98 3.87 3.12 3.18
Chair-antique 0.09 0.21 8.52 8.40 0.98 0.56 0.29 0.14 0.16
Chair-sturdy 10.8 5.40 6.10 5.69 5.33 4.10 3.03 2.89 1.90

Airplane-fighter 18.7 13.5 14.1 12.7 12.5 10.5 6.93 5.33 5.23
Airplane-fast 14.1 15.6 15.8 12.0 9.96 9.82 6.26 4.94 4.78
Airplane-stealth 15.2 9.78 12.0 10.6 9.50 8.90 5.91 4.47 3.45
Airplane-sleek 13.6 10.4 11.4 11.0 7.93 7.54 6.98 5.39 3.79
Airplane-civilian 12.4 14.1 12.5 12.5 8.05 7.02 6.68 5.61 4.52



Learning Semantic Deformation Flows with 3D Convolutional Networks 13

Fig. 5. Results using our finetuned networks (F2-32{-fm, -fp, -fs}) for 3D shapes in
mesh representation (grey), point sets (red), and depth scan data (blue). Note that the
shape is processed through the network a few number of times to achieve the desired
deformation effect. Comparisons with Yumer et al. [44] show that our method achieves
similar results for high quality mesh data. On the other hand, both for point sets and
depth scans, our method outperforms Yumer et al. [44] significantly. For additional
visual comparisons, please refer to our supplementary material.



14 M. Ersin Yumer, Niloy J. Mitra

Fig. 6. Right: Example augmentation on test data: (a) original shape, (b) noise, (c)
missing parts. (d) Noise vs. Average test error, (e) Missing data vs. Average test error.
Both noise and missing data percentages are measured with respect to the original
input’s voxelized representation number of filled voxels.

Figure 5 shows visual results for all three data types. Our method achieves
similar results to that of Yumer et al. [44] with respect to the ground truth
for the mesh data type. Note the significant loss of deformation quality with the
previous work for point set and depth scan data. Our method gracefully generates
deformation flows that meaningfully deform such low fidelity data. Table 4 shows
that deformation using our best performing network (F2-32-fs) achieves ∼5× less
error compared to the four benchmark methods (Yumer et al. [44], kNN, S1-32,
S2-32). Refer to our supplemental material for visual comparisons with kNN and
synthesis network baselines.

Robustness to Noise and Partial Data. We further test our method by
introducing noise and partially missing parts to the input (Figure 6 (a-c)). To
add noise, we randomly select a point on the surface from a uniform distribution
and generate a sphere that has a radius drawn from N (d/20, d/100), where d is
the diagonal of the shape bounding box. The number of spheres added affects the
amount of noise, which is measured in added voxel percentage in the voxelized
representation of the shape. For introducing missing parts (Figure 6 (b)), we
randomly select a point on the surface from a uniform distribution and remove
polygons from the shape to match the percentage of missing voxels required.
Figure 6(d-e) show the results of this experiment on 1000 randomly selected
shapes from our test data, with 1000 randomly selected deformation indications
from a uniform distribution. Figure 6 shows that the CNN methods are more
robust to noise in general, with our flow based networks outperforming other
methods including the synthesis networks.

Limitations. Our deformation flow is continuous in the voxel grid, and this
introduces some limitations when the optimal deformation can only be achieved
with a discontinuous flow. An example of this can be observed in the airplanes
dataset with the ‘fighter’ deformation indicator. The airplane wings stretch sig-
nificantly whereas the sides of the fuselage where the wings attach does not
stretch with it in the original deformation. Our deformation for such extreme
discontinuity requirements is not as good as globally continuous cases as seen in
Table 2.



Learning Semantic Deformation Flows with 3D Convolutional Networks 15

References

1. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction
and parameterization from range scans. In: ACM Trans. Graph. vol. 22, pp. 587–
594 (2003)

2. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE
TVCG 14(1), 213–230 (2008)

3. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

4. Chaudhuri, S., Kalogerakis, E., Giguere, S., Funkhouser, T.: Attribit: content cre-
ation with semantic attributes. In: Proceedings of the 26th annual ACM sympo-
sium on User interface software and technology. pp. 193–202. ACM (2013)

5. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for
machine learning. In: BigLearn, NIPS Workshop. No. EPFL-CONF-192376 (2011)

6. Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric
modeling, vol. 24. ACM (1990)

7. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: Proceedings of the IEEE International Conference on Computer Vi-
sion. pp. 2758–2766 (2015)

8. Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate chairs
with convolutional neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1538–1546 (2015)

9. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. In: Advances in neural information processing systems.
pp. 2366–2374 (2014)

10. Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3d deep shape de-
scriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2319–2328 (2015)

11. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features
for scene labeling. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 35(8), 1915–1929 (2013)

12. Fish, N., Averkiou, M., Van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., Mitra,
N.J.: Meta-representation of shape families. ACM Trans. Graph. 33(4), 34–1 (2014)

13. Ganin, Y., Lempitsky, V.: Nˆ4-fields: Neural network nearest neighbor fields for
image transforms. In: Computer Vision–ACCV 2014, pp. 536–551. Springer (2014)

14. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 580–587 (2014)

15. Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W.: Blensor: blender sensor simulation
toolbox. In: Advances in Visual Computing, pp. 199–208. Springer (2011)

16. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object seg-
mentation and fine-grained localization. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 447–456 (2015)

17. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

18. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)



16 M. Ersin Yumer, Niloy J. Mitra

19. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learn-
ing with deep generative models. In: Advances in Neural Information Processing
Systems. pp. 3581–3589 (2014)

20. Kingma, D.P., Welling, M.: Stochastic gradient vb and the variational auto-
encoder. In: ICLR (2014)

21. Korovkin, P.: Bernstein polynomials. Hazewinkel, Michiel, Encyclopedia of Math-
ematics, Springer, ISBN pp. 979–1 (2001)

22. Kovashka, A., Parikh, D., Grauman, K.: Whittlesearch: Image search with relative
attribute feedback. In: IEEE CVPR. pp. 2973–2980 (2012)

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

24. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional in-
verse graphics network. In: Advances in Neural Information Processing Systems.
pp. 2530–2538 (2015)

25. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551 (1989)

26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 3431–3440 (2015)

27. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: ACM siggraph computer graphics. vol. 21, pp. 163–169.
ACM (1987)

28. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proc. ICML. vol. 30, p. 1 (2013)

29. Maturana, D., Scherer, S.: 3d convolutional neural networks for landing zone de-
tection from lidar. In: Robotics and Automation (ICRA), 2015 IEEE International
Conference on. pp. 3471–3478. IEEE (2015)

30. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on. pp. 922–928. IEEE (2015)

31. Mitra, N.J., Wand, M., Zhang, H., Cohen-Or, D., Bokeloh, M.: Structure-aware
shape processing. In: Eurographics STARs. pp. 175–197 (2013)

32. Parikh, D., Grauman, K.: Interactively building a discriminative vocabulary of
nameable attributes. In: IEEE CVPR. pp. 1681–1688. IEEE (2011)

33. Parikh, D., Grauman, K.: Relative attributes. In: IEEE Conference on Computer
Vision. pp. 503–510. IEEE (2011)

34. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

35. Savva, M., Chang, A., Hanrahan, P.: Semantically-enriched 3d models for common-
sense knowledge. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. pp. 24–31 (2015)

36. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models.
ACM SIGGRAPH computer graphics 20(4), 151–160 (1986)

37. Song, S., Xiao, J.: Deep sliding shapes for amodal 3d object detection in rgb-d
images. arXiv preprint arXiv:1511.02300 (2015)

38. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3d shape recognition. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 945–953 (2015)



Learning Semantic Deformation Flows with 3D Convolutional Networks 17

39. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Single-view to multi-view: Reconstruct-
ing unseen views with a convolutional network. arXiv preprint arXiv:1511.06702
(2015)

40. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1912–1920 (2015)

41. Xie, J., Fang, Y., Zhu, F., Wong, E.: Deepshape: Deep learned shape descriptor
for 3d shape matching and retrieval. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1275–1283 (2015)

42. Xu, K., Kim, V.G., Huang, Q., Kalogerakis, E.: Data-driven shape analysis and
processing. Computer Graphics Forum (to appear)

43. Yang, J., Reed, S.E., Yang, M.H., Lee, H.: Weakly-supervised disentangling with
recurrent transformations for 3d view synthesis. In: Advances in Neural Informa-
tion Processing Systems. pp. 1099–1107 (2015)

44. Yumer, M.E., Chaudhuri, S., Hodgins, J.K., Kara, L.B.: Semantic shape editing us-
ing deformation handles. ACM Transactions on Graphics (TOG) 34(4), 86 (2015)

45. Yumer, M.E., Kara, L.B.: Co-abstraction of shape collections. ACM Transactions
on Graphics (TOG) 31(6), 166 (2012)

46. Yumer, M.E., Kara, L.B.: Co-constrained handles for deformation in shape collec-
tions. ACM Transactions on Graphics (TOG) 33(6), 187 (2014)


