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Figure 1: Starting from an input video of a collision sequence behind a curtain (top), SMASH reconstructs an accurate physically valid
collision (bottom) using laws of rigid body physics for regularization. Note the reconstructed spin (i.e., angular velocity) of the objects.

Abstract

Collision sequences are commonly used in games and entertainment
to add drama and excitement. Authoring even two body collisions
in the real world can be difficult, as one has to get timing and
the object trajectories to be correctly synchronized. After tedious
trial-and-error iterations, when objects can actually be made to
collide, then they are difficult to capture in 3D. In contrast,
synthetically generating plausible collisions is difficult as it requires
adjusting different collision parameters (e.g., object mass ratio,
coefficient of restitution, etc.) and appropriate initial parameters. We
present SMASH to directly read off appropriate collision parameters
directly from raw input video recordings. Technically we enable this
by utilizing laws of rigid body collision to regularize the problem
of lifting 2D trajectories to a physically valid 3D reconstruction of
the collision. The reconstructed sequences can then be modified
and combined to easily author novel and plausible collisions. We
evaluate our system on a range of synthetic scenes and demonstrate
the effectiveness of our method by accurately reconstructing several
complex real world collision events.
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1 Introduction

Collisions capture suspense, build anticipation, and pack drama.
Naturally, they remain an integral part of movies, games, and
entertainment. Creating a good real-world collision sequence
involving multiple objects, however, is difficult. While the act of
smashing two objects into each other so that they collide in a certain
way is already non-trivial, the setup quickly becomes unmanageable
when additional colliding objects are to be collided, or adjustments
are required to the object trajectories. Such changes can easily
require many further iterations and recordings, and become a tedious
trial-and-error process. Moreover, trying out multiple collision
iterations with expensive or fragile objects may not even be a realistic
option.

Accurately capturing real-world collision sequences poses further
challenges. On one hand, such sequences necessitate high to very
high framerate capture, thus making state-of-the-art methods like
Kinect Fusion, etc., unsuitable candidates for 3D acquisition. On
the other hand, even high-framerate video data only provides partial
2D information, both in space and in time (see Figure 2). A
fundamental problem arises due to unavoidable occlusions near
collision instances, which prevents direct observation of the actual
collision processes in any acquisition setup.

While the physics of object collisions is a challenging problem
in itself, well-developed high-level models exist to reduce its
complexity. One widely used assumption is that of infinite object
stiffness, i.e., ideally rigid motions. Whereas such rigid body
simulations are widely used in games and movies, the task of
setting up a collision with the right initial conditions remains tough:
many parameters, such as velocities, mass ratios, and coefficient of
restitution, have to be correctly guessed and adjusted. Given the
nonlinear nature of the underlying physics, such a rigging up of a
desirable sequence is problematic and typically requires extensive
prior experience. Further, physical parameters (e.g., coefficient of
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Figure 2: Accurate acquisition of collision sequences is difficult as
objects move fast and are typically occluded around collision time:
a video captured by a smartphone (left) showing motion blur, and
an RGBD scan using Kinect (right) that is noisy and partial.

restitution) may not be readily available for the object pair at hand.
Finally, such an approach only enables forward simulations.

In this work, we propose to marry the benefits of the above setups.
The user records collisions between pairs of objects simply using
a high framerate video (a smartphone in our setup). The video
data, however, lacks depth information and is noisy. We first
automatically extract a set of candidate 3D positions from the video,
and semi-automatically initialize a sparse set of orientations. We
then formulate an optimization using regularization derived from
conservation laws of rigid body collisions to reconstruct space-time
trajectories of the participating objects. This step utilizes the
original 3D models of the colliding objects, assumed to be captured
beforehand. As output, we can directly read off physical collision
parameters from the reconstruction that can readily be incorporated
into existing physics engines to recreate and reauthor modifications
of the recorded collisions. For example, in Figure 1, we show the
replay of the reconstructed collision sequence happening behind the
curtain. Note that we obtain high-quality reconstruction results even
when the most relevant section (in time) of the original collision
remains fully occluded in the input video.

We evaluate our method both on a range of synthetic evaluation
setups and complex real-world collision examples, and generate new
collision sequences using an easy authoring workflow. In summary,
we propose an algorithm to reconstruct physically valid collisions
from an input video, and perform collision analysis without access
to exact object geometry. The estimated collision parameters can
then be used to author new collisions sequences.

2 Related work

Rigid body simulation has a long and successful history
within Computer Graphics. Starting with the early works in
animation [Armstrong and Green 1985; Baraff 1990], they are
now widely used in all forms of computer animation. A good
overview can be found in the book by Eberly [2010]. While the
forward simulation problem is far from trivial, it is well studied. We
are targeting an inverse problem, and in the following we restrict
discussion to the relevant works.

The first methods to edit or modify simulations proposed spacetime
methods to compute optimal motions in constrained systems [Witkin
and Kass 1988; Liu et al. 1994]. Variants with neural networks
[Grzeszczuk et al. 1998] and genetic algorithms were proposed
[Tang et al. 1995] to reduce the complexity or synthesize directable
motions. A randomized approach to re-construct motions for target
configurations of rigid bodies was proposed by Chenney et al.
[2000], while an interactive variant was developed by Popović et al.
[2000]. While these algorithms offer varying levels of control and
parameter estimation for rigid bodies, they focus on virtual situations
in a simulator. In contrast, we propose a method that works robustly
with only sparse, unreliable data from a real world source.

Areas that would be highly interesting, but which we have currently
not taken into account are deformable objects [Terzopoulos et al.
1987; Martin et al. 2011] and fracture [Müller et al. 2001; Su et al.
2009]. In the following, we assume that the observed objects do not
deform or change topology.

Others have used the complexity of collision events to randomize
the solution space, in this way giving control over the outcome of a
simulation [Twigg and James 2007]. Recently, Smith et al. [2012]
investigated the even tougher case of multiple, simultaneous
collisions. While we focus on the two body case, these papers
highlight the complexities of collisions, which are amplified for
imperfect real-world objects. A good general survey of collision
modeling is the report by Gilardi and Sharf [2002].

An interesting general direction of research investigates the retrieval
of modeling equations from data by employing learning techniques
[Bongard and Lipson 2007]. While our method is not directly
using machine learning, it represents a data-driven approach to
recover complex real-world phenomena. In this context, we
demonstrate that suitable physical models are powerful regularizers
for underdetermined problems.

Conotter et al. [2012] analyze the kinematics of the ballistic
motion of a single object in videos in the digital forensics context.
Salzmann and Urtasun [2011] explain the change in the linear
motion of objects by solving for a sparse set of forces, applying
their dynamics motivated regularization in video based tracking. We
focus on acquiring the intrinsic physical properties of the objects to
guide our motion estimates taking both linear and angular motion
into account.

Geometry acquisition has been simplified with affordable and
portable scanning options. Hence, in recent years, significant efforts
have gone towards capturing and parsing 3D scenes. Approaches
include using classifiers on scene objects [Schlecht and Barnard
2009; Xiong and Huber 2010; Anand et al. 2013; Koppula et al.
2011; Silberman et al. 2012], interactive 3D modeling from raw
RGBD scans [Shao et al. 2012], interleaving segmentation and
classification [Nan et al. 2012], unsupervised algorithms to identify
and consolidate scans [Kim et al. 2012; Mattausch et al. 2014],
dynamic reconstruction [Mitra et al. 2007], proxy geometry based
scene understanding [Lafarge and Alliez 2013; Monszpart et al.
2015], or studying the spatial layout of scenes [Gupta et al. 2010;
Lee et al. 2010; Hartley et al. 2012].

Physical constraints have also been used for scene understanding:
for example, [Jia et al. 2013; Jiang and Xiao 2013; Zheng et al. 2013;
Shao* and Monszpart* et al. 2014] consider local and global physical
stability to predict occluded geometry in scenes. These methods,
however, primarily focus on static scenes. In case of dynamic scenes,
even state-of-the-art RGBD based systems [Newcombe et al. 2015;
Dou et al. 2015] struggle with highly dynamic motion and occlusion.
Capturing 3D geometry of dynamic scenes remains very challenging.
For dynamic scenarios, inverse methods with physics priors have
also been used to capture other phenomena such as liquids [Wang
et al. 2009] or smokes [Gregson et al. 2014].

While impressive results have been demonstrated in case of
template-based solutions for human faces, hair, body, etc., they
focus on application specific contexts where object behavior and
dynamics can be captured and learned in a training phase. In contrast,
we focus on reconstructing 3D geometry of collisions directly from
raw videos. Note that due to the nature of the problem, collisions
happen prohibitively fast for accurate capture. Further, object parts
are severely occluded near the actual collision. We demonstrate, that
motion states of the objects as well as internal physical properties
can be estimated by analysing the objects’ pre- and post-collision
trajectories away from the time of collision.



3 Formulation

Our goal is to acquire pairwise relevant parameters of object
collisions simply based on an input video and reconstruct a
physically valid motion. As output we produce a space-time
recording of the collision event that can be re-used in a variety of
ways: to set up new collisions that behave faithfully to the original
recording, to introduce new objects, or even to author complex
interactions between objects by combining multiple recordings.

We first briefly review rigid body dynamics (Section 3.1) as the
governing equations provide important building blocks for our
optimization. We then formulate the problem (Section 3.2) and
identify the appropriate conservation laws to constrain solutions to
the space of physically-plausible ones (Section 3.3 - 3.6). We solve
the problem in an energy-minimization framework using the above
components. In the following, we use bold lower-case letters for
3D and 4D vectors (e.g., p), and reserve bold upper case letters for
matrices (e.g., R), see Table 1. All our measurements are in world
space units.

3.1 Rigid Bodies

By using a rigid body model we represent an object by its motion
around its center of mass p. In addition to p, each body has
an orientation, represented as a unit quaternion q (we denote the
equivalent rotation matrix by Rq). Due to rigidity, we only need
to consider linear and angular velocity (v and ω, respectively).
A body further has a mass and a moment of inertia (calculated
for a reference orientation), denoted by m and I0, respectively.
While p,q,v, and ω change over time, m and I0 are assumed to be
constant. For notational simplicity, we keep the time dependence,
e.g., p(t), as much as possible implicit and simply write p. The
instantaneous velocity of any point x on a rotating body is given by
v + ω × (x− p).

Frictionless collisions between two objects are typically modelled
with a scalar impulse j acting along a collision normal n. For
two bodies a and b, we denote their respective variables with a
superscript, e.g., pa is the center of mass of object a. We will use
c for variables related to the collision event. The impulse changes
pre-collision velocities into a set of post-collision velocities (denoted
with superscript pre and post, respectively) such that the scalar relative
velocity vr = vr ·n at the point of collision satisfies vpost

r /vpre
r = −c.

Here, c is the coefficient of restitution, which is related to the amount
of energy that is transferred into a reversal of the object’s motion.
The remainder is lost for the simulation and dissipated into heat,
sound, or work to deform the internal structure of the objects.

In rigid body solvers we typically use a chosen value for c to
compute j, and with it the post-collision velocities. The impulse
acts anti-symmetrically to conserve momentum, both linear:

vpost,a = vpre,a + jn/ma ,

vpost,b = vpre,b − jn/mb , (1)

and angular, where the instantaneous change of the angular
momentum k = Iω is

kpost,a = kpre,a + ((xc − pa)× jn) ,

kpost,b = kpre,b − ((xc − pb)× jn) . (2)

3.2 Problem Statement

In contrast to the typical forward simulation above, our goal is to
retrieve the physical parameters directly from a real collision of two

inputs for each . . .

g gravitational acceleration global
ffps video frame rate recording
P camera projection matrix recording
qobs,a,qobs,b orientation inputs annotation

derived quantities for each . . .
pa,pb object position cont. time t
qa,qb object orientation cont. time t
va,vb linear velocity cont. time t
ωa,ωb angular velocity (world) cont. time t
Ia
0, I

b
0 inertia tensor (local) object

p2d,a,p2d,a image-space position frame (discr. time)
s2d bounding circle diameter frame (discr. time)
da, db approximate depth frame (discr. time)

unknowns (number)
βx, βy1 gravity rotation angles recording (2)
ba

3,b
b
3 parabola translation (collision pos.) object (2×3)

qc,a,qc,b orientation at collision time object (2×4)
kpre,a,kpre,b,kpost,a,kpost,b angular momentum segment (4×3)
bpre,a
1 , bpre,b

1 , bpost,a
1 , bpost,b

1 parabola linear coefficients (x coord.) segment (4×1)
bpre,a
2 , bpre,b

2 , bpost,a
2 , bpost,b

2 parabola linear coefficients (y coord.) segment (4×1)
βpre,a
y0 , βpre,b

y0 , βpost,a
y0 , βpost,b

y0 parabola rotation angles segment (4×1)
xc collision point (world) collision (1x3)
jn impulse times collision normal collision (1x3)
tc collision time collision (1)
c coefficient of restitution collision (1)
mb,a mass ratio collision (1)

Table 1: Notation table.

objects. This would normally involve a large amount of tedious
manual work or complicated capturing setups. We now explain
our inverse approach to retrieve the physical parameters based on
observations of the objects’ trajectories. It should be pointed out
here that computing absolute quantities (e.g., mass) is not possible
without access to a reference measurement. We will not be able to
compute an absolute position of the objects on earth from a single
video input, and, correspondingly, we cannot compute their absolute
masses. However, we can retrieve relative quantities, i.e., the relative
positions, and the relative mass of the objects. We neglect all other
external effects (e.g., aerodynamic drag, friction) at work except for
a known gravitational acceleration with magnitude g = 9.81m/s2.

Interestingly, the actual shape of the objects does not play a direct
role. Only a related quantity, the distribution of mass is important
in the form of the moment of inertia. We diagonalize the moment
of inertia for all objects by pre-aligning the initial configuration
along their principal axes. Thus, we represent an object’s moment
of inertia with three degrees of freedom along the diagonal of I0,

I0 =
1

m
diag

(
i0,0 i1,1 i2,2

)
, (3)

I =RqI0R
−1
q . (4)

Starting from an input video, we first automatically extract a dense
set of image-space centroids with associated depth values and
semi-automatically generate a sparse set of orientations. While we
formulate the problem in 3D, we will later on minimize the projected
error in screen space.

Our goal is to compute: a parametrization of the trajectories of the
two bodies a and b, their relative mass, their pre- and post-collision
velocities (linear as well as angular), the time of collision, the
collision impulse, and the coefficient of restitution. These quantities
should match the observed data from the input video as well as



possible. We will describe our approach to incorporate these
unknowns in our solution in this order. As the image data is
potentially unreliable and noisy, we do not rely purely on the
corresponding data-terms in our calculations, but use the physical
laws as regularizers. One of our central contributions is identifying
and incorporating the relevant physical constraints.

3.3 Center of Mass Trajectories

A well known fact is that the trajectory of the center of mass of an
object experiencing a constant acceleration is given by a parabola.
This description becomes invalid at the time of the collision tc, but it
is an excellent model for the trajectories before and after, as long as
effects such as aerodynamic drag are negligible. For the two objects,
with pre- and post-collision trajectories, we thus parametrize and
extract four 3D parabolas from the inputs. We parametrize each
parabola in 3D space with

p(t) = R

 b1(t− tc)
− g

2
(t− tc)2 + b2(t− tc)

0

+ b3, (5)

where b1, b2 parametrize the curve over time, the vector b3

determines its offset, and the rotation matrix R its orientation. We
shift the curve in time by the collision time tc, so that p(tc) = b3.

Moreover, the different parabolas can only rotate about the axis
of gravity, which, without loss of generality, we assume to be the
y-axis in our formulation. We encode this premise as a global
rotation with two degrees of freedom shared by all four parabolas and
individual rotations around the gravity direction. As a consequence,
we construct a rotation matrix R as a sequence of Euler angle
rotations. We chose the proper Euler angle representation Y,X,Y,
the angles of which we denote with βy0, βx, and βy1, respectively.
We denote the resulting rotation matrix by Rβy0,βx,βy1. Note that
βy0 is different for every parabola, while the other two are shared,
rotating the common gravity vector.

Further, the two parabolas for an object coincide in one point at the
time of collision, allowing us to express both parabolas uniquely
with a single b3 offset. In total, that leaves us with two global
angles, four individual angles, two offsets, and four times b1, b2 as
unknowns. The geometric setup of the four parabolas is illustrated
in Figure 3.

We directly estimate the linear velocity from these curves with the
temporal derivative of Eq. (5). The most important velocity in our
setting is the velocity at collision time tc:

v(tc) = R
(
b1 b2 − gtc 0

)T (6)

We now describe the angular aspects of our motion modeling.

3.4 Orientation and Angular Momentum

While the angular velocity of a rigid body can change without
external forces, its angular momentum remains constant (see
[Kleppner and Kolenkow 2013]). Thus, for each of the four
trajectories, we calculate an angular momentum k that best explains
the orientations observed over time. Angular momentum and
velocity relate to each other with:

ω(t) = I−1k(t) = Rq(t)I−1
0 R−1

q (t)k(t) (7)

Once we know the angular momentum at time t, we can compute
the corresponding angular velocity ω, and use it to integrate an

orientation forward in time. With ω as the imaginary part of a
quaternion, an Euler step is given by:

q(t+ ∆t) = q(t) +
∆t

2

(
0
ω

)
⊗ q(t) (8)

where ⊗ denotes the quaternion product, and we normalize
q(t+ ∆ t) after each step.

Similar to the shared offset of the parabolas, we introduce an
orientation qc for each body at collision time that is shared by
the two parabola segments. Our goal is not to use one of the input
orientations directly, due to their potential unreliability. Instead
we find an improved orientation that, together with an angular
momentum k, explains the observed orientations as well as possible.
Starting with qc at collision time tc we integrate this orientation
backward or forward to time t with explicit integration. We perform
a series of integration steps with Eq. (8) from tc to a given time t.
This yields the orientation of body a or b at any instance in time
based on the estimated orientation at collision time. We will later on
use this step to calculate the estimated orientation at different times,
based on our current estimate for the collision orientation and object
motion. Thus it will later on serve to guide the optimization towards
the input orientations.

3.5 Energy Limiting

When gravity is the only external force present, the sum of kinetic
and potential energy (for height h) remains constant as:

E = 1
2
m vTv + 1

2
ωT Iω +mgh. (9)

Upon collision, a portion of this energy dissipates. This is typically
modeled with the aforementioned coefficient of restitution. As
it is one of the central parameters that we want to retrieve, we
cannot directly impose constraints conserving the energy in our
system. However, assuming the collision is an instantaneous event,
we can ensure that the post-collision energy is less or equal to the
pre-collision energy. As position and orientation do not change at
the time of collision, the potential energy remains the same. Thus,
our formulation focuses on the kinetic energy, and we will later on
ensure that it does not increase after the collision.

3.6 Conservation of Momentum

Throughout the objects’ trajectories, angular momentum is
conserved in the absence of external torques. Linear momentum is
only conserved in the direction orthogonal to gravity. Instantaneous
rigid body collisions fully preserve both total linear and total angular
momentum of the objects involved. As such, the equations for
an impulse-based collision are ideal to couple the four separate
trajectories at the time of collision. We have already exploited the
fact that the two parabolas for each object have to connect in the
respective collision positions, additionally, the conservation laws for
momentum enable the coupling of the two objects’ trajectories.

Conservation of linear momentum means that the sum of linear
momenta before and after collision has to be equal. Since we cannot
recover the absolute mass, we set the mass of body a to 1.0, and
introduce a mass ratio mb,a = mb/ma, (we will revisit the case of a
potentially infinitely heavy object in Section 5.2). Formulating the
equations in terms of mb,a yields

vpre,a(tc) + vpre,b(tc)mb,a = vpost,a(tc) + vpost,b(tc)mb,a . (10)

As the velocities are determined from the parabolas, this equation
ensures that these curves do not create or lose linear momentum,
and effectively couple the planes of the four parabolas.
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Figure 3: Modeling two-body collisions: We extract dense position estimates from a video input and augment it with sparse semi-automatically
generated orientations. These observations are linked with laws of physics: the individual trajectories should be parabolas as we assume the
bodies to have ballistic motion, and they are coupled at the (unknown) collision point based on conservation laws.

We similarly ensure that the angular momentum we compute does
not violate conservation of angular momentum. For the angular
momenta, we have to consider their sum, and additionally the
instantaneous angular momentum around the origin:

pa×vpre,a + kpre,a+mb,apb×vpre,b + kpre,b =

pa×vpost,a + kpost,a+mb,apb×vpost,b + kpost,b (11)

Note, that we use mb,a to compute Ib
0 and kb using Eq. (3). All

quantities in Eq. (11) are evaluated at collision time tc. The two
equations (10) and (11) constrain our solution space to a physically
plausible one, and provide a first coupling between objects a and
b. We improve this coupling with the help of the impulse equations
from Section 3.1. The equations for linear impulse (Eq. (1)) express
the exchange of momentum between the two bodies relative to their
mass:

vpost,a(tc) = vpre,a(tc) +
jn

1
,

vpost,b(tc) = vpre,b(tc)− jn

mb,a . (12)

This equation turns out to be crucial for retrieving the mass ratio
mb,a during the combined optimization, which we will detail below.

The angular impulse equations allow us to enforce a shared collision
point xc. Eq. (2) connects the angular momenta of the two bodies
via the relative offset of the collision point:

kpost,a = kpre,a + ((xc − ba
3)× jn)

kpost,b = kpre,b − ((xc − bb
3)× jn) . (13)

We complete the set of necessary equations by computing the
relative velocities at the collision point to compute the coefficient of
restitution. We only need to consider the velocity components along
the collision normal direction:

c = −
(
v̂post,a − v̂post,b) · n
(v̂pre,a − v̂pre,b) · n , (14)

with v̂ = v(tc) +ω(tc)× (xc−p(tc)) and ω(tc) = I−1(tc)k(tc).
With these equations at hand we now formulate an optimization
problem to compute the unknown quantities as described next.

4 Method

Our method proceeds in three stages: First, we estimate center of
mass positions based on the input video. Second, we initialize
orientations using a differential raytracer, with user input for
ambiguous situations. Third, in the main step, we take these position
and orientation estimates to retrieve the physical parameters of the
rigid body motion and collision. For the initialization, we use a
stripped-down version of our main optimization step. We first
explain the main step of the algorithm, before detailing the two
initialization stages.

4.1 Parameter Estimation

The quantities described in Section 3 can be divided into those
related to the input data and those related to the underlying physics.
In terms of unknowns, we distinguish between the parameters of
the four trajectory segments of the two objects, which determine
position and velocities, and the unknowns of the collision event.
We will use a superscript ∗ to refer to the four trajectories, i.e.,
∗ ∈ {pre-a, pre-b, post-a, post-b} and � for objects, i.e., � ∈ {a, b}.

For each trajectory, we have the unknowns of each parabola. They
are b∗1, b∗2, β∗y0, while b�3 exist once for each body. Also, we have
the global angles βx, βy1, and unknowns for angular momentum
exist for each trajectory segment, k∗. Additionally, the unknowns
for the collision are: orientation for both objects at collision time
qc,�, location xc, impulse jn, and the mass ratio mb,a, as well as the
coefficient of restitution c and the time of the collision tc.

Our optimization uses a dense set of 2D object centroids {p2d
i }Ni=1

with depth values {di}Ni=1 at times {tobs
i }Ni=1, and a sparse set of

orientations for both bodies {qobs
j }Mj=1 at times {tobs

j }Mj=1 from the
input video. Later, in Section 4.2, we describe how to extract this
data from the video. We use between 200 and 350 video frames
with position information, and two semi-automatically annotated
orientations per parabola segment, thus eight orientations in total.
Additionally, we require a bounding box estimate for each body: s�.
Finally, we have a set of additional equations from the conservation
laws, namely Equations (10-14) to tie the observations together
according to the physical model. They represent our physics-based



regularization encoded as additional equations.

As the number of equations from input data and physics is
significantly larger than the number of unknowns, we have an
over-determined problem. As the equations are non-linear, we
compute a solution using non-linear least-squares. We summarize
the unknowns in the vector θ for this least-squares optimization, and
reformulate the equations to take the form

argmin
θ

∑
τ∈Terms

wτfτ (θ) , (15)

where wτ is weighting the corresponding energy term fτ , and
Terms = {mom,imp,g,ke,CoR,pxy,pz,ori}. We now
describe these individual energy terms.

Respecting physics. We directly turn the physics constraints in
Equations (10-14) into energy terms by defining the least squares
energy to be their residual. We combine the equations for momentum
conservation (10,11) into fmom:

fmom =
1

2
‖vpre,a + vpre,bmb,a − vpost,a − vpost,bmb,a‖2 (16)

+
1

2
‖pa × vpre,a + kpre,a +mb,apb × vpre,b + kpre,b−

pa × vpost,a − kpost,a −mb,apb × vpost,b − kpost,b‖2 ,

and the impulse equations (12,13) into fimp:

fimp =
1

4

(
‖vpre,a +

jn

1
− vpost,a‖2 + ‖vpre,b − jn

mb,a − vpost,b‖2

+ ‖kpre,a + ((xc − ba3)× jn)− kpost,a‖2

+ ‖kpre,b − ((xc − bb3)× jn)− kpost,b‖2
)
. (17)

Both terms are evaluated at collision time tc, omitted for brevity. As
our inputs are typically hand-held videos, we do not fully constrain
gravity to act along the y-axis, but allow the optimization to slightly
deviate, if necessary. For this we define the energy term

fg =
(
g −

(
0 1 0

)
R0,βx,βy1

(
0 g 0

)T)2
. (18)

Note that βy0 is zero here, as this value represents rotation around
the axis of gravity.

We formulate the kinetic energy limiting term from Eq. (9) as:

fke =

{
(Epost

k − Epre
k )2 for Epost

k > Epre
k

0 otherwise,
(19)

where pre- and post-collision kinetic energies are evaluated in terms
of velocities at the time of collision (× ∈ {pre, post}):

E×k = v×,a(tc)2 + ω×,a(tc)T Ia(tc) ω×,a(tc)

+ mb,a v×,b(tc)2 + ω×,b(tc)T Ib(tc) ω×,b(tc) . (20)

Finally, to disallow energy creation, we directly constrain the c
estimate to physical range of zero to one. For this we include a term

fCoR =


c2 for c < 0

(c− 1)2 for c > 1

0 otherwise ,
(21)

with c calculated using Equation (14).

Aligning to data. Next, we formulate the data terms. Based
on Eq. (5) we add terms for position fidelity. The notation is

(a)

(b)

Figure 4: In order to automatically retrieve measurements of the
object centroids, we first post-process the input video (a) to subtract
the background. This step yields approximate, and noisy image
regions for the objects (b).

slightly complicated by the fact that we do not directly compute
the difference of two 3D positions, but instead separately consider
screen space and depth, each of which we will detail below.

For the screen space positions p2d,∗
i (each at time tobs

i ) that
were extracted from the video, we add an energy term penalizing
screen-space deviations of the corresponding parabola with

p∗i (t
obs
i ) =

 b∗1(tobs
i − tc)

− g
2
(tobs
i − tc)2 + b∗2(tobs

i − tc)
0

+ b�3

fpxy =
1

N

N∑
i=1

‖P p∗i (t
obs
i )− p2d,∗

i ‖
2 , (22)

where P is the camera projection matrix, N = |{p2d,∗
i }| and ∗ is

again one of {pre-a, pre-b, post-a, post-b} depending on the input
i, and � ∈ {a, b}. Note that bpre,�

3 ≡ bpost,�
3 is shared among pre-

and post-collision parabolas of the same object.

For the depth, we compute the energy terms with

fpz =
1

N

N∑
i=1

‖
(
0 0 1

)
p∗i (t

obs
i )− di‖ε , (23)

where ‖·‖ε denotes a robust Huber [1964] loss function to allow for
well-supported changes in depth. Specifically,

‖x‖ε =

{
x2/(2ε) if x2 ≤ ε
|x| − ε/2 otherwise.

(24)

The energy terms for the orientations are straight-forward to add
based on Eq. (8):

forij =
1

M

M∑
j=1

‖q∗(tobs
j )− qobs,∗

j ‖2 , (25)

where M = |{qobs,∗
j }|, and q∗(tobs

j ) is expressed as a series of
explicit integration steps starting from qc,�, � ∈ {a, b}. We use the
analytic equations for cuboids to calculate the moment of inertia for
our bodies. We pre-align their principal moments with the coordinate
axes using SVD on the scanned models during a pre-computation



(a) (b)

(c) (d)

Figure 5: The steps of our position initialization: (a) object region
centroids; (b) initial labeling: pre-collision in blue, post-collision in
red, and discarded points in gray; (c) re-assignment, and (d) final
parabolas: object A in blue, object B in purple.

step. We then scale it with the masses of the objects, i.e., 1.0 and
mb,a. For a specific instance in time, I0 is transformed with the
orientation at this time according to Equation (4).

Collision point. As our optimization has to navigate a highly
non-linear energy landscape, a good initialization is crucial (see
Sections 4.2 and 4.3). Additionally, we found that our optimization
profits from constraining the collision point at first. We thus run
our full optimization twice: first (Alg. 1, line 30) with a collision
point xc = (ba

3 + bb
3)/2, i.e., constrained to lie at the midpoint of

the collision positions of both objects. Removing these degrees of
freedom at first increases robustness, especially for cases with lower
quality data.

For the second run, we release the collision point to compute the final
parameters of the collision (Alg. 1, line 31). While mass ratio, c, etc.,
have been computed during the solve, we evaluate the final positions
and orientations from our continuous, analytical parametrization.

In the following, we explain how to obtain measurements of screen
space object centroids and 3D object orientations from the video.

4.2 Initializing Positions

We simultaneously estimate screen space object centroid
measurements, assign them to trajectory segments, and initialize the
collision in 3D. We assume that both objects are roughly equidistant
to the camera at all times and that their 3D bounding box estimates
from the initial scans are available. Essentially, we use the known
gravitational acceleration and video frame rate to position the
collision in 3D.

Outline. First, we calculate image region candidates for the
reprojection of the objects in each frame. Then, we perform a
RANSAC labeling involving several, modified parabola fits to
compute temporally consistent assignments of the image region
centroids to the four trajectory segments (see line 10 in Alg. 1)
and to identify false-positive image regions. Finally, we iterate this
process in a loop to determine the approximate time of collision.

Image region calculation. We estimate candidate center of mass
positions in image space. We use a standard background subtraction
pipeline consisting of Gaussian mixture modeling [Zivkovic 2004]
and connected contour detection [Teh and Chin 1989]. Figure 4

Algorithm 1: SMASH

1 INITIALIZEPOSITIONS () /* Sec. 4.2 */
2 INITIALIZEORIENTATIONS () /* Sec. 4.3 */
3 RECONSTRUCTCOLLISION () /* Sec. 4.1 */

4 Function INITIALIZEPOSITIONS /* Sec. 4.2 */
5 Input :video, s�, P, ffps, g
6 Assumption: β∗y0 = 0, ba

3,z ≡ bb
3,z

7 t̃c ← N/2
8 do
9 tcinit ← t̃c

10 for e=1 to 25 do /* RANSAC loop */
11 {p2d,∗

k }
K=0.3N
k=1 ← ASSIGNRND(SAMPLE({p2d

i },0.3), tcinit)
12 θ ← SOLVE({pxy,siz,g}, {}, {p2d,∗

k }
K
k=1)

13 {p2d,∗
i }

N
i=1 ← ASSIGNGREEDY({p2d

i }, θ)
14 θ ← SOLVE({pxy,siz,g}, {}, {p2d,∗

i }
N
i=1)

15 θ̂ ← COMPARE(θ̂, SCORE(θ, {p2d,∗
i }

N
i=1))

16 while t̃c ≤ btcinitc or t̃c ≥ dtcinite
17 Output :{p2d,∗

i }
N
i 1, {d∗i }Ni 1, {tobs

i }Ni 1, t
c, b̃∗1, b̃

∗
2, b̃
�
3, β̃
∗
y0, β̃x, β̃y1

18 Function INITIALIZEORIENTATIONS /* Sec. 4.3 */

19 Input :video, {p2d,∗
j }

M
j=1, {d∗j}Mj=1, {tobs

j }Mj=1, scan�

20 Output :{qobs,∗
j }Mj=1 ← OPENDR(Input)

21 Function RECONSTRUCTCOLLISION /* Sec. 4.1 */

22 Input :{p2d,∗
i },{z

2d,∗
i }, {qobs,∗

j }, {tobs
i }, s�, P, ffps, g, tc,

b̃∗1, b̃∗2, b̃�3, β̃∗y0, β̃x, β̃y1
23 for � ∈ {a, b} do
24 {jpre,�, jpost,�} ← j | tobs,�

j closest before/after tc

25 qc,� ← SLERP(qobs,�
jpre,� ,q

obs,�
jpost,� , t

obs,�
jpre,� , t

c)
26 for j∗ ∈ {jpre,�, jpost,�} do
27

(
· ω̃∗

)T ← (
2(qobs,∗

j∗ − qc,�)/(tobs
j∗ − tc)

)
⊗ (qc,�)−1

28 k∗ ← Rqc,�I0R
−1
qc,� ω̃

∗

29 xc
init ← (b̃a

3 + b̃b
3)/2

30 θ ← SOLVE({mom,imp,g,ke,CoR,pxy,pz,ori}, {xc})
31 θ ← SOLVE({mom,imp,g,ke,CoR,pxy,pz,ori}, {})
32 Output :b∗1, b∗2,b�3, β∗y0, βx, βy1,qc,�,k∗

33 Function SOLVE (Terms, FixedVars, Data = All)
34 return θ = solve Eq. (15) | Terms, FixedVars, Data

shows the output of the background subtraction step for three frames
of a collision.

RANSAC labeling. We choose the middle of the video sequence as
initial guess for the collision time tc, more specifically, the midpoint
in time between the two consecutive images. We then assign a
randomly chosen centroid position from each video frame before
and after tc to the pre- and post-collision parabolas respectively
(line 11 in Alg. 1). We omit ffps/10 frames (24 at 240fps) around
collision time, as we found these to be particularly unreliable due to
the merged silhouettes.

We perform a modified non-linear least squares fit to calculate the
parabola parameters from Section 3.3 using the assigned screen
space centroids, only considering the 2D position fidelity term
(Equation (22)) and a new size penalty term:

fsiz=
1

N

N∑
i=1

(
‖P(p∗(ti)+

d

2
)−P(p∗(ti)−

d

2
)‖ − s2d

i

)2
, (26)

where p∗(t) is the position on a parabola at time t, d is the 3D



diagonal of the scanned object, s2d denotes the size of a circle fit
to the image region corresponding to the selected centroid for this
frame. This term pushes a parabola position towards a depth value
so that the projected object diagonals match the image region sizes.

For this optimization, we share the z-coordinate of b3 between the
two objects to ensure the objects meet in space. We also fix the
parabola rotations around y to 0 (β∗y0 = 0) to stabilize the non-linear
solve by constraining the space of solutions to be parallel to the
camera plane. The subsequent main optimization step will refine
these estimates.
The parabola fit allows us to greedily assign centroids to trajectory
segments or label them as outliers (line 13 in Alg. 1).

To evaluate the quality of the obtained fit, we compute a score
based on the residual of the parabola fit optimization, in conjunction
with a SIFT feature distance f Im to measure the similarity of the
selected image regions. For the former, we use the screen-space,
area-weighted centroid-to-parabola distances dpara from Eq. (22),
multiplied with f inlier, the ratio of centroids correctly explained (with
an inlier distance equal to the median size of the identified regions).
The image content score is calculated with a SIFT descriptor distance
of the object regions between consecutive frames. The final score
is weighted sum of these terms: dparaf

inlier + wImf Im, see line 15 in
Alg. 1. The fit with the lowest score is used to store the final set
of screen-space centroids {p2d,∗

i }
N
i=1, which are passed on to the

main optimization stage. In addition to the 2D positions, we store
the depth {d∗i }Ni=1 along each of the view rays for our depth terms
(Eq. (23)), and their assignments to the trajectory segments. Figure 5
visually illustrates the steps of a single RANSAC iteration, typically
converging in about 25 iterations.

Collision time refinement. Note that the optimization above
computes an improved value for tc based on the intersection of
the parabolas in Eq. (22). Initially, tc is set to the midpoint of a pair
of video frames. If tc shifts before the first image of the pair, or to
a point in time after the second one, we restart the calculation after
selecting the previous, or next pair of frames, respectively. Their
midpoint is the new initial guess for tc, and we re-run the outlier
detection, as described above. As this optimization runs very fast,
we found that a sequential search for the correct collision time along
the video works very well. Alternatively, a bisection search could
be easily implemented.

4.3 Initializing Orientations

The previous initialization step yields a first set of 3D positions in
time. We can render the scanned objects over the video on these

(a) image region

(b) image region

openDR #1 openDR #2 openDR #3

openDR #1 openDR #2 openDR #3

Figure 6: Two examples of the image content (left) and the resulting
candidate orientations (right). Green check marks highlight the
selected orientations.

(b)

(c)

top view top view

(a)

Figure 7: a) the result of our initialization: labeled centroids and
approximate depth values (green dots) together with the initialized
orientations (green cuboids); b) 3D parabolas resulting from our
full optimization (red curves), and c) motion over time (colored
cuboids).

trajectories to initialize the orientations, assuming that 3D scans of
the filmed objects are available for this step. Using a differential
renderer [Loper and Black 2014] and the object scans, we perform a
first alignment of each object starting from 512 viewpoints uniformly
sampled on a sphere. However, due to illumination variations
we found the video information to be typically too ambiguous to
automatically retrieve the correct orientations for all cases. Hence,
we let a user check, and if necessary correct these alignments for
two points in time for each parabola segment. This step takes less
than a minute per collision sequence. An example of the generated
candidate orientations can be seen in Figure 6.
The labelled screen-space centroid positions {p2d,∗

i }
N
i=1 with depths

{d∗i }Ni=1, and the M = 8 input orientations {qobs,∗
j }Mj=1 are the

input data for our full parameter estimation step (Section 4.1).

4.4 Implementation

We use CERES [Agarwal et al. 2016] for solving our non-linear least
squares formulation, with sparse-Cholesky as linear solver type, and
energy derivatives from automatic differentiation. Figure 7 shows
an example result of the initialization, and the objects’ recovered 3D
positions and orientations.

Due to the non-linearity of the angular motion in Eq. (8) we
typically use four integration steps per frame. Note that the sequence
of integration steps is taken into account during the automatic
differentiation performed in the solver. While higher-order
integrators or even closed-form Poinsot solutions would be available
to express a rigid body orientation over time, we found that explicit
integration yields stable solutions in practice, and leave alternatives
for future work. We use ffps to convert time t to be measured in
frames.

In our formulation above, we took care to minimize the number of
free variables and energy terms. It turned out to be crucial for a
good solution to use a formulation with shared variables, instead
of enforcing equalities with highly weighted penalty terms. For
example, instead of adding a term to minimize bpre,a

3 − bpost,a
3 , we

formulate the parabolas with a shared variable, which inherently
enforces the equality of the offsets. Likewise, equivalent angles
and orientations are implemented with shared variables instead of



Scene (#frames) BgFg IniPos IniOri Solve 1 Solve 2
box-1 (217) 5.68s 2m 6s 18m 46s 0.55s 0.08s
box-2 (191) 4.51s 1m 51s 17m 47s 0.23s 0.03s
box-3 (236) 8.12s 2m 0s 19m 2s 0.36s 0.05s
helmet-duck (316) 8.63s 1m 40s 24m 41s 0.98s 0.12s
duck-eleph. (204) 5.53s 1m 57s 25m 55s 3.08s 0.18s
duck-rugby (316) 11.86s 1m 43s 25m 11s 0.65s 0.36s

Table 2: Timings on a system with Intel i7-4700MQ and Nvidia
Geforce GTX 770M. The second and third columns describe
Section 4.2, the fourth column Section 4.3. The rightmost two
columns reference lines 30 and 31 of Algorithm 1.

additional penalty terms. See Table 2 for runtimes. We have made
code and data available online1.

5 Evaluation

We tested the robustness of our method and quantitatively evaluated
the accuracy of the estimates. First, we report performance on
synthetic data to test the system under different perturbations
(Section 5.1) and then evaluate the system on a range of real-world
sequences of increasing complexity (Section 5.2).

Accuracy measures. We evaluated the results as: (i) in a synthetic
setup, we compare c and mb,a estimates against ground truth values
used to generate the test sequences; (ii) in real-world setups, we
either compare with estimates obtained via other means (e.g., using
potential energy), or by evaluating consistency of the estimates
across multiple collision sequences involving same object pairs. We
use x̃ to denote our estimated value for quantity x, thus an output
of the optimization. E.g., c̃ for our estimate of a coefficient of
restitution c. Where applicable, ground truth values measured by
other means will be denoted with an m subscript, e.g., cm.

Weights. In all the following tests we used a fixed set of weights:
wmom = wimp = 10, wg = wke = wCoR = wori =
wpxy = 1, wpz = 0.1, ε = 1, and for the initialization phase
wsiz = 0.1, wIm = 1/500.

5.1 Validation on Synthetic Data

We tested our system using synthetic data obtained from forward
simulations using the BULLET physics engine. We created a scene
with two colliding cuboids under gravity and rendered the simulation
as input video for our algorithm.

(i) Robustness to initialization errors. We separately tested the
effect of errors in 2D centroid and orientation estimation in the
initialization stage. We rendered the synthetic sequence at 60fps,
initialized position for each time frame (Section 4.2), and added
increasing amount of uniform noise to the retrieved 2D object
centroids before fitting the parabolas. The algorithm provided robust
estimates for both c and mb,a up to perturbation margins of 30%
(Figure 8(a)) with the noise margin being compared to the average
screen-space size of the larger object. We ran 63 experiments with
different noise margins (0−30%) and found that our parabola fitting
to be robust even under moderate errors on centroid estimates. For
perturbations involving orientation annotations (Section 4.3), we
added noise to each coordinate, and re-normalized the resultant
quaternions. We observed robustness in both c̃ and m̃b,a up to
perturbation of around 40◦ around actual orientation estimates
(Figure 8(b)).

1http://geometry.cs.ucl.ac.uk/projects/2016/smash/
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(a) Robustness to perturbations in positional estimates

(b) Robustness to perturbations in orientation estimates

Figure 8: Synthetic evaluation of robustness with increasing noise
in the position and orientation estimates. Green lines denote ground
truth, c = 0.49 and mb,a = 1.33.
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Figure 9: Evaluation of the role of different terms. Impulse-based
physics coupling is clearly the essential ingredient, while the other
terms act as secondary regularizer. Larger circles show experiments
with larger noise (positions and orientations). The input was a
noise-free run of our automatic parabola initialization and synthetic
orientations at least five timesteps away from collision time. Dashed
lines denote ground truth, c = 0.49 and mb,a = 1.33.

(ii) Effect of physics prior. Next, in an important test, we assessed
the contribution of the different physics-based priors in regularizing
the optimization. We experimented by activating a selection of
the optimization terms and evaluating estimation accuracy (see
Figure 9). The impulse term has the single most important effect:
while just based on the input video, the estimates for c and
mb,a deviate substantially, the impulse-based physics formulation
provides valuable regularization resulting in reliable estimates even
in the noisy setting. The secondary constraints in the form of bounds
on c and kinetic energy further improve the estimation accuracy.

(iii) Effect of annotation frequency. We measured the effect of
fewer number of orientation annotations across time on estimated
mb,a and c. Figure 11 shows the estimates for increasing annotation
intervals. Note that even for the extreme case with an interval of
around 20, i.e., with only 4 annotations for a 90 frame sequence our

http://geometry.cs.ucl.ac.uk/projects/2016/smash/


solver computes reliable estimates. In all the other experiments, we
used 2 orientation annotations for each of the 4 parabolas for a pair
of colliding objects.

(iv) Effect of friction. Recall that in our formulation, we ignored
the effect of friction. Hence, we evaluated the effect of ignoring
friction on our estimates. In the experiments, we changed the (static)
friction coefficient and coefficient of restitution of the simulator
and re-ran the simulation. We then estimated c and mb,a using our
algorithm on the simulation output. As shown in Figure 10, we
observed that while the relative mass estimates continued to be good,
the coefficient of restitution was underestimated. This is explained
by our model ignoring energy loss due to friction, especially when
the friction coefficient is (synthetically) increased.

5.2 Testing on Real Sequences

We captured the real-world sequences with 1280× 720 video with
120fps or 240fps using a regular iPhone6 with known camera
intrinsics. The colliding objects were scanned in static positions
using Kinect Fusion.

Potential energy comparison. One way to measure the coefficient
of restitution is based on the ratio of energy loss during a collision.
However, this requires a very controlled setting, where we can
measure the change of energy using only the objects’ potential
energy, i.e., when they have zero kinetic energy. We use different
balls dropped from a controlled height h, measuring the apex
of their trajectories after they bounce off the floor. When no
energy is transferred into an angular motion, we can compute
c =

√
hafter/hbefore. We experimented using four different balls

(ping-pong, tennis, football, and rugby) and computed the resulting
c values. We also used our algorithm to independently estimate
c. As this setup involves one static object (the floor), we remove
all unknowns of the second object from our solve. We took 3 sets
of measurements for each object. Our estimates c̃ and the values
measured with potential energy loss cm are listed in the table in
Figure 12. Note that for the examples without any spin, the algorithm
ran in an automatic mode as we do not require any orientation
annotation.

Our method continues to consistently estimate c even when some
energy is stored/converted to kinetic energy throughout the recording,
i.e., the ball is spinning, or it starts off spinning (Figure 13). The
simple estimation with potential energy is not valid for this case,
while our formulation is still able to compute an estimate very close
to the non-spinning case. Orientation annotations were provided for
the scenes rug-1 and rug-2. Please refer to the supplementary video
for comparison.
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BLENDER’s Coulomb friction coefficient

Figure 10: Evaluation of the role of friction. We changed the friction
coefficient and coefficient of restitution in the input simulation, and
ran our algorithm on the simulator’s output log (no noise). The c
value estimates decrease a bit, which is expected, since some energy
is lost to friction. Solid lines on left denote ground truth.

5.3 Real-world Cases

Collisions between box-like object pairs. We next focus on
collisions between pairs of freely moving objects. In contrast to the
potential energy cases, there is no way to measure a ground truth
value cm and we only present the value calculated with our method.
We can however measure ground truth for the objects’ mass ratio.

scene c̃ m̃b,a mb,a
m

box-1 0.28 0.91 1.0
box-2 0.39 1.21 1.0
box-3 0.20 1.0 1.0

Table 3: Results of different collisions of cardboard boxes.

Table 3 lists our estimates across three captured videos of the
boxes colliding in different situations. Note that in all these
examples, the video sequences around (estimated) collision times are
ignored by our method as those frames did not provide any reliable
position/orientation estimates due to overlapping objects. While the
mass ratios are stable, and especially close to the ground truth for the
last run, the c̃ vary more strongly. We attribute this partially to the
fact that the cardboard boxes exhibit different stiffnesses depending
on where they collide (based on the internal structure of the glued
paper), in addition to the noise of the centroids estimated from the
video. Figure 14(a)-(c) shows some frames from the box sequences.

Effect of direct keyframe-interpolation. We evaluate the effect of
position and orientation interpolation while ignoring the underlying
physics of collision. For this test, we used the initial position and
orientation estimates obtained in our initialization stage as keyframes.
As shown in Figure 15-middle, such a direct interpolation without
access to physics-based constraints resulted in ‘missing’ the actual
collision, i.e., the duck and elephant ‘separated’ without actually
colliding. In comparison, Figure 15-bottom shows that our method
accurately reconstructs the collision.

Collisions between non-box objects. We next evaluate how our
algorithm performs on collision videos involving non-box objects.
We present three sequences of varying complexity: helmet-duck,
duck-elephant, and duck-rugby. Table 4 lists estimation results.

Figure 14(d)-(e) show the first two results. As the frame-level
comparison shows the reconstructed motion, both in terms of
position and orientation, is visually very accurate. Although we
validated the estimated mass ratios, we could not validate the
accuracy of the estimated c̃ values. Qualitatively the c̃ estimates
seem plausible: for example, the bike helmet gives a low estimate as
it acts as a shock absorber; in contrast, the elephant and the rugby are
bouncy and give high c̃ estimates, with the rugby giving the highest
value.

scene c̃ m̃b,a mb,a
m

helmet-duck 0.17 0.81 1.0
duck-elephant 0.46 2.33 2.0
duck-rugby (Fig. 1) 0.72 1.43 1.65

Table 4: Estimates of internal physics properties (c̃ and m̃b,a) of
complex objects. The helmet clearly dissipates the most energy,
whilst a sports ball is the most elastic by design.

The duck-rugby sequence as shown in Figure 1 is the most
challenging example as the objects remain hidden behind the curtain
in the video for a large time interval. Still the reconstruction
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(mean and +/- std over 10 samples each, 2100 experiments overall)

uniform noise added to orientation quaternions uniform noise added to orientation quaternions

Figure 11: Synthetic evaluation of robustness towards noise in the orientations. Gap (2, 4, 6, 8, 10) denotes the distance in time to the closest
orientation around collision time. Dashed lines denote ground truth, c = 0.49 and mb,a = 1.33.

results closely follow the recorded video. Note that this example is
particularly challenging since the duck is comparatively small and
featureless, making the initial orientation estimates noisy.

5.4 Authoring

We developed a BLENDER plugin (see Figure 16) to help author
complex novel collision sequences using our parameter estimates
from real collisions. The plugin allows the user to combine several
observed collisions, time them to synchronize, or even stagger the
interactions (i.e., collisions). We used BULLET to obtain the object
trajectories as accurately as possible using our estimated collision
parameters. Note that the user does not have to guess physical
parameters for objects (i.e., c and mb,a values). In Figure 16 we
show the construction of a complex case of three pairs of rigid bodies
colliding in mid air and two of them colliding again afterwards on
their downward trajectories. Based on our reconstructed solutions,
the new simulations behave naturally, and the objects collide as we
would expect them to do from their real-world counterparts.

scene c̃ cm

pong-0 0.55
pong-1 0.57 0.54
pong-2 0.55
tennis-0 0.71
tennis-1 0.73 0.76
tennis-2 0.71
football-0 0.66
football-1 0.67 0.77
football-2 0.67
rug-0 0.80 0.82
rug-1 (spin) 0.80 -
rug-2 (spin) 0.78 -

Figure 12: Various c estimates obtained by our method as
compared against cm obtained using alternate potential energy-
based estimation, which is valid only when the object has no angular
momentum. All the examples are instances of collision of a single
object against an infinite mass object (i.e., carpeted ground).

Figure 13: Rotating rugby ball scene. Estimated c using our method
is c̃= 0.78, matching no-spin measurement 0.8 as detailed in Fig. 12.

5.5 Limitations and Discussion

A key limitation of our method is that it only applies to rigid
body collisions. In case of deformable bodies, the physical
models we employ can be unsuitable. Empirically, however, we
observed that our estimates are still reasonable for near rigid
collisions (see Figure 17). Our algorithm in its current form can
reconstruct real-world effects under the assumption of zero friction,
but including a friction model in our optimization could potentially
increase the accuracy of our reconstructions.

While our current pipeline still requires user input (2 orientations per
parabola segment), it is worth pointing out that the user-annotated
orientations represent only a small part of the overall input data. All
the 3D positions of the objects are reconstructed fully automatically.
The user input is typically only required to refine the orientations,
which are important for angular motions, and thus help to retrieve
the physical parameters.

Also, as we only rely on a single input video, we need enough visual
information about the collision event to be visible. For example, if a
collision is happening purely along a view direction ray, our method
will most likely underestimate the objects’ velocities. Likewise,
objects that move very quickly might not exhibit enough change of
direction from gravity. In such a case, our method requires more
accurate centroids to reliably recover a depth estimate from gravity.

Lastly, it is noticeable in some reconstructions (such as Figure 14a)
that the objects intersect each other at collision time. This can
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Figure 14: We tested our algorithm on multiple collision sequences. Here we show a selection of images of input frames and corresponding
reconstructed frames. Please refer to the supplementary video.

happen, as our optimization does not include any explicit collision
detection or resolution terms. While this might look like a limitation
at first, we believe the accurate contacts of the other scenes actually
point to a very high accuracy of the reconstructions, which was
achieved without taking the exact shapes of the objects into account.

6 Conclusion

We presented SMASH, a data-driven framework for capturing,
reconstructing, and authoring collision sequences. The key idea
is to regularize the problem of reconstructing collisions of object



BLENDER interpolated
position + orientation

SMASH 
reconstruction

input video

Figure 15: Direct keyframe interpolation (middle) versus our
reconstructed result (bottom). Note that the interpolated sequences
completely miss the collision (middle row, third from left) as it
remains oblivious to any physics considerations.

SMASH plugin

frame #20 frame #38 frame #43

Figure 16: Our SMASH plugin (top) can be used to author and
synchronize collisions using the recovered parameters from our
reconstruction. Trajectories, mass ratios and c values are read in
from the optimization automatically to produce a realistic collision
sequence (bottom). Please refer to the supplementary video.

pairs from videos using laws of rigid body physics. We demonstrate
how to reconstruct plausible collision sequences in 3D, by observing
objects in motion away from the collision instant. The method
outputs physical parameters that would otherwise be very difficult
to acquire, e.g., the coefficient of restitution and the mass ratio of
the participating objects. The information can then be readily used
to author new collision sequences.

While we presented a first workflow for reconstructing collision
sequences, many avenues for improvements remain. Our current
implementation still expects user guidance to disambiguate the
objects’ orientations. It will be an interesting avenue for future
work to iteratively apply our full pipeline to automate this step.
Potentially, this could also be used to approximate the shape of the
object, and thus make the initial scanning step unnecessary.

Finally, we believe our method only represents a small step towards a
tighter integration of video analysis, dynamic geometry acquisition,
and physics simulations. There are many other physical phenomena,
such as deformable objects or fluids, that could be included in order
to on one hand better understand what is happening in a recorded
event, and on the other hand reconstruct the underlying physics for
computer animation purposes.

frame 27

frame 44

frame 34

Figure 17: Although designed for rigid collisions, we observed that
our method still can produce reasonable estimates for near rigid
collisions as shown by the minion-rugby sequence. However, the
reconstruction is inaccurate around the collision time (frame #34).
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WITKIN, A. 2000. Interactive manipulation of rigid body
simulations. ACM SIGGRAPH, 209–217.

SALZMANN, M., AND URTASUN, R. 2011. Physically-based
motion models for 3D tracking: A convex formulation. IEEE
ICCV , 2064–2071.

SCHLECHT, J., AND BARNARD, K. 2009. Learning models of
object structure. NIPS.

SCHROEDER, W., MARTIN, K., AND LORENSEN, B. 2006. The
visualization toolkit (4th ed.).

SHAO, T., XU, W., ZHOU, K., WANG, J., LI, D., AND GUO, B.
2012. An interactive approach to semantic modeling of indoor
scenes with an RGBD camera. ACM SIGGRAPH Asia 31, 6.

SHAO*, T., MONSZPART*, A., ZHENG, Y., KOO, B., XU, W.,
ZHOU, K., AND MITRA, N. 2014. Imagining the unseen:
Stability-based cuboid arrangements for scene understanding.
ACM SIGGRAPH Asia. * Joint first authors.

SILBERMAN, N., HOIEM, D., KOHLI, P., AND FERGUS, R. 2012.
Indoor segmentation and support inference from RGBD images.
ECCV .

SMITH, B., KAUFMAN, D. M., VOUGA, E., TAMSTORF, R., AND
GRINSPUN, E. 2012. Reflections on simultaneous impact. ACM
TOG 31, 4, 106:1–106:12.

SU, J., SCHROEDER, C., AND FEDKIW, R. 2009. Energy stability
and fracture for frame rate rigid body simulations. SCA, 155–164.

TANG, D., NGO, J. T., AND MARKS, J. 1995. N-body spacetime
constraints. JVCA 6, 3, 143–154.

TEH, C.-H., AND CHIN, R. T. 1989. On the detection of dominant
points on digital curves. IEEE PAMI 11, 8, 859–872.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. ACM SIGGRAPH 21, 4.

TWIGG, C. D., AND JAMES, D. L. 2007. Many-worlds browsing
for control of multibody dynamics. ACM TOG 26, 3, 14.

WANG, H., LIAO, M., ZHANG, Q., YANG, R., AND TURK, G.
2009. Physically Guided Liquid Surface Modeling from Videos.
ACM SIGGRAPH 28, 3, article 90.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. ACM
SIGGRAPH 22, 4, 159–168.

XIONG, X., AND HUBER, D. 2010. Using context to create
semantic 3d models of indoor environments. BMVC, 1–11.

ZHENG, B., ZHAO, Y., YU, J. C., IKEUCHI, K., AND ZHU, S.-C.
2013. Beyond point clouds: Scene understanding by reasoning
geometry and physics. IEEE CVPR.

ZIVKOVIC, Z. 2004. Improved adaptive gaussian mixture model
for background subtraction. IEEE ICPR 2, 28–31.


