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Abstract—In traditional design, shapes are first conceived, and then

fabricated. While this decoupling simplifies the design process, it can

result in unwanted material wastage, especially where off-cut pieces

are hard to reuse. In absence of explicit feedback on material usage,

the designer remains helpless to effectively adapt the design – even

when design variabilities exist. We investigate waste minimizing furniture

design wherein based on the current design, the user is presented with

design variations that result in less wastage of materials. Technically, we

dynamically analyze material space layout to determine which parts to

change and how, while maintaining original design intent specified in the

form of design constraints. We evaluate the approach on various design

scenarios, and demonstrate effective material usage that is difficult, if

not impossible, to achieve without computational support.

1 INTRODUCTION

Furniture design is an exercise in form-finding wherein
the designer arrives at a final form by balancing aesthet-
ics, object function, and cost. Typically, design variations
are manually explored by a mixture of guesswork, prior
experience, and domain knowledge. Without appropriate
computational support, such an exploration is often tedious,
time consuming, and can result in wasteful choices.

In furniture manufacturing, both for mass production
and for customized designs, material wastage plays a de-
terrent role. This not only leads to increased production cost
(typically 5-20% wastage due to off-cuts), but also hampers
ongoing efforts towards green manufacturing. Thus, there
has been a growing interest in zero-waste furniture in or-
der to reduce material wastage. A notable example being
Maynard’s ‘Zero-waste Table.’ Computational tools for such
waste-reducing furniture designing are largely lacking.

Typically, material considerations are appraised only
after a shape has been designed. While this simplifies de-
signing, it leads to unnecessary wastage: at design time, the
user can at best guess to account for how the shape will be
physically realized, and can easily fail to effectively adjust
the design to improve material utilization.

In the recent years, algorithms have been developed
to economically 3D print given designs. For example, ap-
proaches have been proposed to cleverly breakup a given
shape into parts that better pack together in print vol-
umes [1], [2], [3], adaptively hollow shape interiors to
save print materials [4], [5], [6], [7], explore parameter
space variations for manufacturable forms [8], or design
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connector geometry to remove the need for any secondary
connectors [9]. Improving material utilization by explicitly
enabling interactive design changes has been less studied.

In this work, we introduce the problem of waste-
minimizing furniture design, and investigate it in the context
of flatpack furniture design (cf., [10]) using laser cut wooden
parts. Specifically, we study the interplay between furniture
design exploration and cost-effective material usage. By
directly coupling the two, we empower the users to make
more informed design decisions.

For example, in Figure 1, the user starts with an initial
concept indicating design constraints (e.g., symmetry, desired
height, etc.). Our system analyzes material wastage by com-
puting a dynamic 2D layout of the parts and proposes
design modifications to reduce material wastage without vi-
olating specified design constraints (i.e., design intent). Note
that such adaptations often require synchronous adjustment
of multiple parts affected by both design and material layout
considerations, which are difficult to mentally imagine. The

Fig. 1. We introduce waste-minimizing furniture design to dynamically
analyze an input design (a) based on its 2D material wastage (shown
in the right column) and design specifications to assist the user through
(b) design suggestions to reduce material wastage. The final user de-
sign can directly be exported for laser cutting and be assembled (c). In
this case, wastage was reduced from 22% to 11%.
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user can select any of the suggestions, either in its entirety
or in part. She can further update the set of design con-
straints by locking parts of the current design, and continue
the process. Thus, the user scopes out a design space via
constraints, and our algorithm refines the design to reduce
material wastage while restricting changes to the implicitly
specified design space.

Technically, we achieve the above by using the current
material layout to dynamically discover a set of relevant
layout constraints. The algorithm has a discrete aspect in-
volving which part to change based on the current 2D layout,
and a continuous aspect involving how to adapt the part at-
tributes based on the current material space layout without
violating user-specified design constraints. Unfortunately,
even for a fixed design, exploring the space of all possible
packing is a combinatorial NP-hard problem. Instead, we
locally analyze a set of candidate packings to determine
which parts to modify and how to change them to reduce
material wastage. We demonstrate that dynamic analysis
of a set of current packings allows efficient and effective
coupling of the 2D layouts and the constrained 3D designs.
The user is then presented with different waste-reducing
design variations to select from.

We evaluated the system to create a variety of simple
and complex designs, and fabricated a selection of them.
We also performed a user study with both designers and
novices to evaluate the effectiveness of the system. The
performance benefits were particularly obvious in case of
complex designs involving different design constraints. In
summary, we introduce the problem of material waste min-
imizing furniture design; and propose an algorithm that
dynamically analyzes 2D material usage to suggest design
modifications to improve material usage without violating
user-specified constraints.

2 RELATED WORK

Material considerations. Physical materials play an impor-
tant role in 3D printing. Various approaches have been
developed to economically and efficiently produce a de-
signed object. For example, adaptively hollowing out inte-
riors and adding struts to create durable yet cost-effective
3D printouts [4], cleverly hollowing the shape interiors in
conjunction with shape deformation to ensure stability of
the final shape [5], or perform FEM analysis to decide
wall thickness and parameters to ensure model endurance
under known or unknown forces [11], [12]. Techniques for
designing scaffolds, both interior [6] and exterior [7], have
been developed. Hu et al. [13] propose to optimize the shape
of a 3D model to reduce support structures used during
3D printing. Alternatively, methods have been developed to
decompose and pack 3D models for reducing assembly cost,
support material, printing time or making big objects print-
able on small 3D printers [1]. Notably, Dapper [3] employs a
decompose-and-pack approach for minimum assembly cost,
support material and build time when using 3D printers. It
breaks 3D objects into pyramidal primitives, then finds good
packing configurations to achieve the goal.

In the context of laser cut fabrication, Hildebrand et
al. [14] and Schwartzburg and Pauly [15] explore how to
rationalize a given design for fabrication out of planar

sheets. More broadly, Wang et al. [16] investigate planar ma-
terial based fabrication for cloth industry, toy industry, etc.
Further, material wastage has been investigated by testing
various packing strategies from computational geometry
community (cf., [17]) to efficiently layout the parts in the
material space. More recently, Saakes et al. [18] proposed an
interactive system to allow the user to interactively layout
parts for more personalized usage. Such methods, however,
do not explicitly modify the original designs in order to
improve material usage.

Fabrication-aware design. Recently, the growing popularity
of personalized fabrication has motivated researchers to
develop algorithms to adapt existing shapes to make them
better suited for physical construction. Examples include
abstracting shapes as a collection of slices to be laser cut [14],
[15], [19], [20], as foldable popups [21], developing toolkit to
allow user to draft directly using a handheld laser pointer to
control high-powered laser cutters [22], computationally de-
signing gear trains to support part movement for converting
animated characters to working physical automata [23], in-
troducing necessary joint geometry to create non-assembly
articulated objects [24], [25], supporting an example-driven
fabrication paradigm [26], ergonomics-driven design [27],
or designing with standardized components in a discrete
optimization setting [28]. To simplify fabrication, Fu et al. [9]
suggest a method to generate a globally-interlocking fur-
niture assembly that enables easy disassembly/reassembly
of furniture, without using glue, screws, etc. Such methods,
however, are chiefly used to adapt existing shapes after they
have been designed, rather than to guide the user to refine
the designs.

Guided design. In the context of exploratory design, Xu et
al. [29] proposed a fit-and-diverse framework to allow users
to interactively guide model synthesis and exploration,
while Talton et al. [30] exposed a parameterized shape space
for model creation. These efforts, however, focus on aspects
of digital content creation without fabrication and material
considerations. Recently, Shugrina et al. [8] developed a
system that allows novices to easily customize parametric
models while maintaining 3D-printability of the models. In
a work closely related to our motivation, Umetani et al. [31]
use stability and durability of materials to propose design
modifications, thus computationally guiding the users. With
a similar motivation, we investigate the impact of material
usage in the context of guided design. We are unaware of
prior attempts investigating how material wastage can be
dynamically analyzed to refine the designs.

Constraint-based modeling. In the CAD community,
constrained-based modeling has long been demonstrated
as a powerful parametric way to design shapes and inter-
act with them. In the case of existing models, an inverse
analyze-and-edit paradigm was proposed to first discover
the constraints present in shapes, and then allow interactive
editing [32], [33], [34]. Such approaches differ on how model
parts are abstracted (e.g., feature curves, model parts, or
abstracted segments as primitives) and how the inter-part
constraints are conformed to. However, these methods have
primarily focused on designing shapes for the virtual world
where material and fabrication constraints are irrelevant,
and hence ignored.
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3D object space

suggestions 

shape space slider

Fig. 2. System Interface. The user can freely design in the 3D object
space pane by adding/deleting planks, or directly editing plank dimen-
sions. The user design is dynamically analyzed by laying it out in the
2D material space and design adaptations are proposed to improve
material usage (i.e., layout-based suggestions), or design effectiveness
(i.e., outer/inner volume). The user can select a suggestion, and use the
shape space slider to navigate along the proposed edit path. The user
can accept a suggestion (or part of) and continue to edit. Once satisfied,
the user can directly ask for cutting pattern to be generated along with
necessary finger/cross joint specifications.

3 DESIGN WORKFLOW

Our system (see Figure 2) exposes design variations that
minimize material wastage without violating original de-
sign intent. In this section, we present the proposed system
as experienced by the user, and describe the main algorith-
mic details in the subsequent sections.

The user starts by choosing the desired material (i.e.,
thickness of wooden planks) and the number and dimen-
sions of the master board(s). We support rectangular master
boards — in practice, these can represent new boards or left
over rectangular spaces in already used boards. The user
starts by loading an initial part-based 3D object design, ei-
ther created in a modeling system or as a parameteric model.
The parts can be rectangular or have curves boundaries.
The user also indicates a set of design constraints. In our
implementation, we support: equal length (e.g., li = lj),
sum of lengths (e.g., li + lj + · · · = lk + . . . ), fixed length
(e.g., li = c), equal position, symmetric parts, ground touch-
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Fig. 3. We show effects of designing with (middle column) or with-
out (right column) the respective constraints activated.

ing, and coplanarity among indicated planks. The user can
additionally specify that the object should fit an indicated
volume (e.g., in between two walls) and the internal space
in the form of inner volume indicating minimal shelf dimen-
sions (see Figure 3).

Based on the initial user-specified design, our system
automatically adjusts the planks based on the static de-
sign constraints and dynamically generated constraints aris-
ing from material wastage. If after repacking the updated
planks, all the constraints continue to be satisfied, the sys-
tem passes the control back to the user. At any time the
user can ask the system to analyze the current design and
to propose multiple suggestions to reduce material wastage.
This takes into account the design constraints, the material-
space constraints, and design effectiveness (if applicable).
We measure material wastage based on the unused fraction
of the master board(s).

The top 3 generated suggestions are presented to the
user as thumbnails. If the user mouse-overs any thumbnail,
the system animates the proposed design modifications.
The user can preview the object- and material-space views,
and select her preferred design suggestion. Note that each
thumbnail effectively represents a design exploration path
pursued by the algorithm. We provide a slider to move
along this path, which is particularly useful for making in-
cremental updates to the design (see Figure 4 and Section 4).

S1

S2

M1
M2

M3

M4

M5

M6

M7

Fig. 4. Our algorithm discovers design variations in shape space. The
user starts from a design M1 along with indicated design constraints,
and the algorithm seeks for wastage minimizing variations by inter-
leaving between topologically different material layouts (indicated by
changes in curved paths) or continuous changes to the layouts (indi-
cated by same colored curves). For example, paths (Mi,Mj) denote
continuous design changes, while points Mi denotes designs where
new layouts are explored (i.e., branch points). The user can switch to
another shape space by picking an updated set of design constraints
(shape M5 here). Note that by construction M5 belongs to both shape
spaces S1 and S2. See Algorithm 1.

The user either selects a suggested design variation, or
picks part configurations from a suggested shape as addi-
tional design constraints (e.g., user can lock the proposed
sizes of certain planks). Thus, effectively the user appends
or updates the current set of specified design. Note that the
new constraints are trivially satisfied by the current design,
which is critical for subsequent design space exploration
(e.g., M5 is in both shape spaces S1 and S2).

Once satisfied with the design, the user can request for
the cutting patterns. She can investigate the design, the
material space usage and the cutting patterns, and send
the patterns directly to the laser cutter (see supplementary
video).



4

Fig. 5. Evolution of shape variation across a run of our algorithm on the coffee-table (top) and low-chair (bottom) models, improving upon a naive
initial packing. In both cases our system discovers, through design changes, a configuration that can be packed more efficiently.

4 OVERVIEW

Our goal is to analyze aspects arising from material con-
siderations, and investigate how design changes affect such
considerations. Specifically, we ask how to adapt a furniture
design so that it makes better utilization of material in the
resultant design layout. Note that this is the inverse of
the design rationalization problem, i.e., instead of taking a
design as fixed and best fabricating it, we adapt the design
so that the resultant rationalization makes better utilization
of available material. First, we introduce some notations.

4.1 Parameterized designs

The design is considered as a function D(X) that produces
the geometry of a fixed number of parts, given a config-
uration vector X. The parts can be assembled into a final
furniture design.

We make no assumption as to how D is implemented
– we demonstrate in Section 6 applications using both
constrained based furniture design and parametric designs
modeled by CSG. We however expect a continuous behavior
from D(X), i.e., small changes in X result in small changes
in the part shapes. Parametric modelers generally offer such
continuity to smoothly navigate the space shape.

During wastage optimization, our algorithm will change
the value of X so as to explore whether changes in part
shapes reduce wastage. Since we focus on laser cut furniture
construction, we assume the parts to have the same thick-
ness τ . The parts are thus represented as planar polygonal
contours extruded orthogonally.

The geometry of a part pi lies within an axis aligned
bounding box, which we represent by a six dimensional
vector encoding the box center pi and the lengths of its
three sides lxi , l

y
i , τ with the Z axis being aligned with part

thickness by convention.

4.2 Material space

Since we focus on laser cut furniture, any 3D design given
by a configuration vector X is realized as a layout (i.e.,
cutting plan) in the material space. Material space is char-
acterized by the largest master board that the machine can
possibly cut, a rectangle of size W ×H . In this space, each
part i is associated with a position (ui, vi) and an orientation
oi ∈ {0, π/2, π, 3π/2}.

We use wi, hi as extent of a part bounding box in the
material space along the x- and y-axis, respectively. The
part box lengths in material space are given by the two

plank dimensions other than thickness. For a plank i, of
orientation oi, we get one of the two cases:

oi = 0, oi = π ⇒ wi = lxi hi = lyi
oi = π/2, oi = 3π/2 ⇒ wi = lyi hi = lxi

The material space positions and orientations are variables
in the layout optimization algorithm, alongside the design
parameters X (see Section 5).

When wastage is not a concern and a design easily fits
within material space, the variables (ui, vi, oi) are indepen-
dent of the design, i.e., they simply adapt to changes in
part sizes. However, as we seek to minimize the wastage
in the material space, the layout variables become tightly
coupled with the design parameters. Our layout optimizer
therefore jointly optimizes for material space variables and
design parameters to minimize wastage (see Section 5). We
next discuss what makes a desirable layout from the point
of view of furniture fabrication.

4.3 Properties of a good design layout

Our goal is to achieve a full utilization of rectangular spaces,
so that the user can use boards of exactly the right size and
minimize wastage. The machine dimensions determine the
maximum extent of a single board.

We measure wastage as the fraction of the space not
utilized by the design in its material space bounding rect-
angle. Ideally, we want to achieve full utilization, i.e., zero
wastage. An ideal packing is one that tightly packs all the
parts to perfectly fill up one or more rectangular master
boards (like a puzzle). Our system helps the user achieve
this by automatically exploring changes improving material
space usage (see Figure 6).

bad layout mediocre layout good layout

Fig. 6. Examples of stages of layout refinement, from bad to mediocre
to good. A good layout is characterized by less area of material wasted
(shown in green).
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5 DESIGN LAYOUT OPTIMIZATION

The wastage of a layout depends essentially on two factors.
First, the quality of the packing that can be achieved given
a fixed set of design parts. Second is the set of parts itself,
which can be changed through the design parameters X.
Our design optimization simultaneously improves both as
illustrated in Figure 5.

Algorithm 1: MINWASTAGE

Input: Design function D, starting design parameters Xs

Output: Set of best layouts found L
1 Os ← identity ordering ; // 1,2,3,...

2 X ← {(Xs, Os)};
3 for G iterations do
4 foreach (X, O) ∈ X do
5 O ← EXPLOREORDERINGS(X, O);
6 foreach O ∈ O do
7 X ← X∪ {(IMPROVEDESIGN(X, O),O)};

8 X ← KEEPBESTS(K,X );

9 L ← ∅;
10 foreach (X, O) ∈ X do
11 L ← L∪ DOCKING(D(X),O);

12 return (L);

We pack the parts using a deterministic docking algo-
rithm that always produces the same result for a same
ordering of the design parts. Therefore, a first optimization
variable is the order in which the parts are sent to the
docking algorithm. The second optimization variable is the
vector of design parameters X. These two variables have
different natures: finding an ordering is a combinatorial
problem, while the design parameters can be continuously
explored.

We proceed in two main steps, first determining a set
of good orderings that then serve as starting points for
continuously evolving the design, reducing wastage. The
overall approach is described in Algorithm 1. The sub-
routine IMPROVEDESIGN is described in Section 5.1 while
EXPLOREORDERINGS is described in Section 5.2. The process
restarts for a number of iterations (we use G = 3) to jump
out of local minima reached by the continuous design explo-
ration. This results in the shape space exploration illustrated
in Figure 4. The process returns the K best found layouts
and designs and presents them to the user in thumbnails.
She can then select her favorite design, and if desired update
the constraints and restart the exploration from this point by
simply calling MINWASTAGE again.

Bitmaps. During optimization we regularly call the pa-
rameterized design function D(X) to obtain a new set of
parts after changing parameters. The layout optimization
represents parts internally as bitmaps: each part contour is
rasterized at a resolution τ , typically 0.5 mm per pixel. This
enables fast manipulation of the parts within the layout.
Each part thus becomes a bitmap having either 1 (inside)
or 0 (outside) in each pixel. The size of the bitmap matches
the part extents in material space wi and hi. Every time
the design is refreshed a new set of bitmaps is computed
for the parts. The master board is similarly discretized into
a regular grid of resolution τ . Note that this step of using
bitmap-based packing is reminiscent of packing for efficient
texture atlas generation [35].

5.1 Design optimization for wastage minimization

The design optimization improves the design parameters
X to minimize wastage in the layout, keeping the docking
ordering fixed (see subroutine IMPROVEDESIGN in Algo-
rithm 1). The pseudo-code for this step is given in Algo-
rithm 2. Our objective is to suggest design changes that
reduce wastage, progressively improving the initial layout.
The algorithm performs a guided local search by changing
the parts through the design parameters to reduce wastage.

Algorithm 2: IMPROVEDESIGN

Input: Starting design parameters X and ordering O
Output: Modified design parameters Xb with reduced wastage

1 L← DOCKING(D(X),O);
2 Xb ← X, Lb ← L ;
3 Xc ← X, Lc ← L ;
4 for N iterations do
5 Xb, Lb ←GROWPARTS(Xb, Lb,Xc, Lc, O);
6 Xc ←SHRINKPARTS(Xb, Lb);
7 Lc ← SLIDE(Lb,D(Xc));

// Check for improvement over current.

8 if W (Lc) < W (Lb) then
9 Xb = Xc, Lb = Lc;

10 return (Xb);

Prior to considering which parts to modify, we have
to answer two questions: First, how to drive the design
parameters X to change only a given part (Section 5.1.1).
This is achieved by relying on the gradients of the part size
with respect to X. Second, we have to decide on how to
evolve the layout when parts are changed (Section 5.1.2).
We rely on a sliding algorithm that avoids jumps in the
layout configuration, thus producing only small changes in
the wastage function when small changes are applied to the
part sizes.

Overall strategy. Our approach changes the size of parts
iteratively with two different steps in each iteration: grow
(line 5) and shrink (line 6). These steps progressively modify
the design and keep track of the design of smallest wastage
encountered so far.

The grow step (Section 5.1.3) attempts to enlarge the
parts so as to reduce wastage. Each part is considered and its
size is increased for as long as the growth further reduces
wastage. When no further improvement can be obtained,
we create further opportunities by shrinking a set of parts
(Section 5.1.4). However, randomly shrinking parts would
be inefficient, as most parts would grow back immediately
to their original sizes. Other parts are tightly coupled to
many others in the design D, and shrinking these would
impact the entire design. Therefore, we analyze the layout
to determine which parts have a higher probability to result
in wastage reduction.

5.1.1 Changing part sizes

During design space exploration the algorithm attempts to
vary the part bounding box sizes wi and hi individually.
These dimensions vary as a function of design parameters
X. Note in particular that with parametric models the
change in bounding box size of a part may result from arbi-
trary operations such as shearing or CSG (see Figure 9b,c).
In the remainder we use s(X) to designate the vector of all
part sizes assembled such that s2i = wi and s2i+1 = hi.
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Let us denote λ the change of size desired on si. Our
objective is to compute a design change ∆ such that si(X+
∆) = si(X) + λ. We denote the vector of changes as Λ =
s(X + ∆) − s(X). In this process only the size si should
change with others remain unchanged whenever possible,
that is Λsj ,j 6=i = 0 and Λsi = λ.

However, parts are not independent in the design and
therefore there is no trivial link between X and si(X).
We therefore analyze the relationship through the gradients
∂si(X)
∂xj

. These are computed by local finite differencing

(depending on the design analytical expressions may be
available). Each non-null gradient indicates that parameter
xj influences si. Multiple parameters may influence si and
parameters typically also influence other variables: there

exists k 6= i such that
∂sk(X)
∂xj

6= 0.

To compute ∆ we formulate the following problem. Let
us consider the components of ∆ = (δ0, ..., δ|X|−1). The
change in part sizes due to ∆ can be approximated in the

first order through the gradients as Λ =
∑

i δi ·
∂s(X)
∂xi

. We
solve for ∆ such that Λsi = λ and Λsj ,j 6=i = 0.

If there are less parameters than part sizes, the problem is
over-constrained and solved in the least-square sense, mini-
mizing ||Λ− (0, ..., λ, ..., 0)||2. If there are more parameters
than part sizes, the problem is under-constrained and solved
in the least-norm sense, minimizing ||∆||. We rely on a QR
decomposition of the system matrix to solve for both cases,
accounting for possible rank deficiencies due to overlapping
parameters in X.

We implement this process as a subroutine
CHANGEPARTSIZE(X,si ,λ), with X the current design
parameters, si the part size to change and λ the change
to apply. It returns the new design parameters X + ∆.
A second subroutine CHANGEPARTSIZES(X,Λ) allows to
change the size of multiple parts at once. These routines
automatically take into account constraints by returning
only valid designs: if a constraint is violated during the part
size change, the change is discarded (∆ = 0).

5.1.2 Updating layouts by sliding

As the shapes and sizes of the parts change the layout has
to be updated. One option would be to restart the docking
process after each change. However, for a small change
the docking process can produce large discontinuities in
the wastage function. This makes a local search difficult.
Instead, we propose a sliding operation that attempts to con-
tinuously update the position of the parts after each change.
Note that performing such an update while optimizing for
a given objective (i.e., wastage) is a very challenging combi-
natorial problem, as each part can move in four directions
(left, right, top, or bottom) and multiple cascading overlaps
have to be resolved. We propose a heuristic approach that
works well for small changes in the part shapes.

The algorithm is based on the following principle. After
changing the part shapes, we reintroduce them in an empty
layout in order of docking. However, each time a part is rein-
troduced it may now have empty space to its left/bottom
or it may overlap with previously placed parts. Both cases
can be resolved by a single horizontal or vertical move.
However, a single move is generally not desirable as empty
space may remain along the other direction. We therefore

Algorithm 3: SLIDE

Input: current layout C = (u0, v0, ...) and set of changed parts
parts

Output: updated layout L
1 L← ∅
2 foreach part pi ∈ parts in docking order do
3 for N iterations do
4 ∆x ← −smallestLeftFreeInterval(L, pi);
5 if ∆x = ∅ then
6 ∆x ← smallestRightDecollision(L, pi);

7 posx ← (ui +∆x, vi) ;
8 ∆y ← −smallestBottomFreeInterval(L, pi) ;
9 if ∆y = ∅ then

10 ∆y ← smallestTopDecollision(L, pi) ;

11 posy ← (ui, vi +∆y) ;
12 if posx = ∅ and posy = ∅ then

; // cannot fit masterboard

13 return ∅ ; // W (∅) = 1

14 if posx = pos and posy = pos then
15 break;

16 if A(box(L ⊳posx pi) < A(box(L ⊳posy pi)) then
17 (ui, vi)← posx

18 else if A(box(L ⊳posx pi) > A(box(L ⊳posy pi) then
19 (ui, vi)← posy

20 else
21 if ∆x < ∆y and |∆x| > 0 then
22 (ui, vi)← posx

23 else
24 (ui, vi)← posy

25 L← L ⊳(ui,vi)
pi

26 return (L);

perform a limited sequence of horizontal/vertical moves.
At each iteration we select between vertical or horizontal by
favoring moves that result in the smallest layout bounding
box. In case of a tie, we favor moves to the left/bottom
versus displacements to the top/right (see Figure 7).

Fig. 7. Sliding a layout after a change of part sizes. Top: From left to
right, initial layout, same after change revealing overlaps, layout after
sliding. Bottom: Moves performed on the three first parts during sliding.

The pseudo-code is given in Algorithm 3. In the algo-
rithm we denote by L the layout and denote by L ⊳pos pi
the layout obtained when adding part pi at position pos in
the master board grid of L. Let A(.) measure the area, and
box(L) denote the bounding rectangle of the layout. The
algorithm iterates over all parts in docking order (line 2).
It then performs a fixed number of sliding operations on
each part (line 3) – we use N = 4 in our implementation.
Lines 4-7 compute a horizontal move, favoring moves to
the left that collapse newly created empty spaces. Lines 8-
11 similarly compute a vertical move. Lines 16-24 decide
whether to select a horizontal (posx) or vertical (posy) move.
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The process may fail if parts can no longer fit in the
masterboard. This can happen either because there is not
enough remaining area, or because sliding cascades in large
moves that prevent further insertion of parts. In such cases
we return an empty layout, which by convention has a
wastage of 1 (worst possible), line 13.

Algorithm 4: GROWPARTS

Input: Best design parameters Xb and layout Lb so far, current
design parameters Xc and current layout Lc being
explored, ordering O.

Output: New best design and packing.
1 improvement← true;
2 while improvement do
3 improvement← false;
4 foreach part size si in random order do
5 We ← 1 ; // max wastage

6 Xe ← Xc, Le ← Lc ;
// Grow a first time and then continue as

long as it improves.

7 while true do
8 Xe ← CHANGEPARTSIZE(Xe ,si ,1) ; // +1 pix.

9 Le ← SLIDE(Le,D(Xe));
10 if W (Le) > We then
11 Le ← DOCKING(D(Xe),O);

12 if W (Le) < We then
13 We = W (Le);

14 else
15 break;

// Check for improvement over current.

16 if We < W (Lc) then
17 Xc = Xe, Lc = Le;
18 improvement← true;

// Check for improvement over global best.

19 if W (Lc) < W (Lb) then
20 Xb = Xc, Lb = Lc;

21 return (Xb, Lb);

5.1.3 Grow step

The grow step is described in Algorithm 4. The algorithm
iterates over all parts in random order (line 4) and progres-
sively increases the size of a part in a loop (line 7). Note
that the first iteration of the loop determines the starting
wastage for growing this part (lines 5 and 12-13). The
process continues until the growth results in an increased
wastage (line 15).

After each change of parameters the design parts are
recomputed (line 9, D(Xe)) and sliding is called to adapt
the current layout to the change. If wastage decreases, we
continue the process (line 13). If not, we first attempt to dock
the parts again (line 11). This can help continue the growth
in cases were sliding fails to resolve overlaps by continuous
changes. If wastage still not decrease, we stop the growth of
this part size (line 15).

5.1.4 Shrink step

The goal of the shrink step is to create further opportunities
for design changes when no parts can further grow. The
typical situation is that a subset of parts are forming locking
chains between respectively the left/right and top/bottom
borders. The parts belonging to such chains prevent any
further growth. We therefore detect locking chains and

Algorithm 5: SHRINKPARTS

Input: Best design parameters Xb and layout Lb so far.
Output: Shrunk design parameters.

1 Xs ← X;
2 S ← SELECTPARTSIZESTOSHRINK(Lb);
3 Λ← (0, ..., 0);
4 foreach si ∈ S do
5 Λi ← −1 ; // -1 pixel

6 Xs ← CHANGEPARTSIZES(Xs ,Λ) ; // -1 pixel

7 return (Xs);

select the parts to shrink among these. This often results
in a change of aspect ratio of the masterboard, and new
opportunities for other parts to grow.

The overall approach is described in Algorithm 5. It first
determines which parts to shrink by calling SELECTPART-
STOSHRINK and then computes a change of parameters
using the approach described in Section 5.1.1.

Algorithm 6: SELECTPARTSIZESTOSHRINK

Input: A layout L.
Output: Set of part sizes to shrink.

1 K ← ∅;
2 foreach axis a ∈ {X,Y } do
3 C ←GATHERCONTACTSALONGAXIS(a) ;
4 K ← K ∪ FORMCONTACTCHAINS(C) ;

5 S ← ∅;
6 while K 6= ∅ do
7 si ← DRAWPARTSIZEWITHPROBABILITY(K);
8 S ← S ∪ {si};
9 K ← K \ KILLEDCHAINS(K,si);

10 return S;

The core component is the SELECTPARTSIZESTOSHRINK

subroutine (see Algorithm 6), which gathers all contacts
between parts in the layout – this is done efficiently in
the discretized layout grid. We first draw the part images
into the grid and then check pairs of neighbors belonging
to different parts. This produces the set of left/right and
bottom/left contacts between part sizes (the involved part
size is deduced from the part orientation and the considered
axis). The contacts are oriented from right to left (respec-
tively top to bottom). We similarly detect which parts touch
the borders (see GATHERCONTACTSALONGAXIS).

Having obtained the contacts, we start
from the left (respectively top) border and
form locking chains as illustrated in the inset.

0

1

2

3

4

0<1<2<4

0<1<3<4

Starting from the border,
we produce the set of
chains iteratively. Each
chain c is a sequence
(left, sfirst, ..., slast). At
each iteration the chain
spawns new chains for each
contact pair (slast, snext)
obtained by augmenting c
as (left, sfirst, ..., slast, snext). Potential cycles are easily
detected as repetition of a same part in the chain and are
ignored (see FORMCONTACTCHAINS subroutine).

Next, we randomly select part sizes to shrink until all
locking chains are removed. The selection probability of
each part is designed to avoid too large a jump in the
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design space. To achieve this we consider two factors. First,
we compute the number of occurrences of each part in the
locking chains, occ(pi). A part with many occurrences is a
good candidate as shrinking it will resolve multiple locking
chains at once. Second, we seek to avoid shrinking part
sizes that are tightly coupled with others in the design D.
We compute the dependence of a part size by counting
the number of non-zero entries in the Λ vector computed
internally by CHANGEPARTSIZE(Xe ,si ,−1).

We select part sizes as follows. First, we select a number

of occurrences o with probability P (o) =
∑

pi,occ(pi)=o occ(o)
∑

pi
occ(pi)

.

Then, among the parts such that occ(pi) = o we se-
lect a part size si with probability P (si|occ(si) = o) =

1 − dep(si)∑
pi,occ(pi)=o dep(pi)

. This process is implemented by the

DRAWPARTSIZEWITHPROBABILITY subroutine.
After each part size selection we update the set of locking

chain by removing all chains where the part size appears.

5.2 Exploring orderings

The subroutine EXPLOREORDERINGS in Algorithm 1 per-
forms a stochastic search of orderings resulting in low
wastage layouts. The process starts from a random order
and iteratively considers possible improvements by swap-
ping two parts. At each iteration, we perform a swap and
recompute a layout using the docking algorithm. If wastage
is reduced the swap is accepted, otherwise it is rejected. We
apply the process for a number of iterations and keep the
best ordering found as the starting point. We use |D(X)|2

iterations, where |D(X)| is the number of parts. For each
ordering, we use a fast docking algorithm to compute a
layout with low wastage.

In addition to the random orderings, we also consider
two standard heuristic orders: parts ordered by decreasing
area, and parts ordered by decreasing maximum extent.

Docking algorithm. The docking algorithm places each part
in order by ’dropping’ the next part on the current layout
either from the right, or from the top. It locally searches for
the best placement of each part, according to a criterion that
minimizes wastage. The result is a layout including all parts.

Given the layout so far our algorithm searches for the
best orientation and best position for the next part. We de-
note by Li−1 the layout obtained for the i−1 first parts, and
by Li ← Li−1⊳pospi the layout obtained by adding the next
part at position pos. The docking position pos is computed

Algorithm 7: DOCKING

Input: Set of parts P , order O, master board dimensions W ×H
Output: A layout L

1 foreach part pi ∈ P following order in O do
2 best← ∅ ;
3 bestscore← 1 ;
4 foreach drop location (s, x, o) do
5 pos← ComputeDockingPosition(pi, (s, x, o)) ;
6 score← D(Li−1, pi, pos) ;
7 if score < bestscore then
8 best← pos ;
9 bestscore← score ;

10 Li ← Li−1 ⊳pos pi ;

11 return Ln;

from a drop location (s, x, o), with s ∈ {top, right}, x a posi-
tion along the corresponding axis and o ∈ {0, π/2, π, 3π/2}
an orientation (more orientations could be used).

The pseudo code for the docking algorithm is given in
Algorithm 7. The drop locations are ranked according to a
docking criterion that we denote D(Li−1, pi, pos), explained
next. The docking positions are computed from the drop
locations by the ComputeDockingPosition subroutine.
It is efficiently implemented by maintaining the right/top
height-fields of the current layout as illustrated in Figure 8.
Whenever evaluating a drop location we use the height-
fields to quickly compute the docking positions that bring
the part in close contact with the current layout.

Fig. 8. Height-fields of the layout used to position the next part. Left:
Height-field for dropping parts from the right (red curve). Right: Height-
field for dropping parts from above (green curve). These height-fields
are maintained every time a new part is added to the layout, and used
for fast computation of the docking positions. Similar height-fields are
pre-computed for the left/bottom of the parts.

Docking criterion. The docking criterion considers wastage
as the primary objective, where wastage is defined by the
ratio of occupied area divided by the bounding rectangle
area of the layout. We denote W (Li) the wastage of a layout

including up to part i. It is obtained as W (Li) =
∑i

k=0 A(pk)
A(box(Li))

where A measures area and box(L) is the bounding rectan-
gle of the layout.

However, as the algorithm heuristically docks parts in
sequence it cannot foresee that some spaces will be def-
initely enclosed. In particular, for newly inserted concave
parts there are often multiple orientations of the part result-
ing in the same wastage: if the concavity remains empty
there is no preferred choice. However, some choices are
indeed better than others. If the concavity faces an already
placed object, then further docking within the concavity will
never be possible. This is illustrated in Figure 10, left.

We therefore propose a second criterion that discourages
such bad choices. The idea is to estimate the space that will
be definitely enclosed when a part is added to the current
layout. This is done efficiently by considering the enclosed
space between the height-field of the current layout and the
height-field of the added part, along both horizontal and
vertical directions.

Let Hr(L) (respectively Ht) be the right (respectively
top) height-field of layout L and A(Hr(L)) the area below it.
The enclosed area is then defined as:

E(Li−1, pi, pos) =
∑

s∈{r,t}

max (0, A(Hs(Li−1 ⊳pos pi))−A(Hs(Li−1))−A(pi))

with A(pi) the area of part pi. Note the max that clamps
negative values: this is due to cases where the part nests in
a concavity below the height-field of the other direction.
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Fig. 9. Designs created using our system. Each design is shown with initial shape, starting layout, optimized layout, and final design.

The enclosed space is used as a tie-breaker when dock-
ing positions produce the same wastage values; there-
fore D(Li−1, pi, pos) returns the vector (W (Li−1 ⊳pos

pi), E(Li−1, pi, pos)). The effect of the enclosed area crite-
rion is shown in Figure 10.
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Fig. 10. Layouts obtained with the same docking order. Left: Without
taking enclosed area into account, part #1 is placed with the concavity
against the bottom packing border. This prevents part #2 to nest within
and cascades into a series of poor placements. Right: Taking into
account enclosed areas results in a placement of the part #1 that allows
nesting of the part #2 and produces a layout with lower wastage.

6 RESULTS AND DISCUSSION

We used our system for various design explorations. As
the complexity of the designs grows beyond 4-6 planks,
the utility of the system quickly becomes apparent. Note
that the design constraints (see Figure 3), by coupling dif-
ferent object parts, make the optimization challenging by
preventing independent adaptation of part sizes. By off-
loading material usage considerations to the system, the
user can focus on the design. Note that even when changes
to the design are visually subtle, material utilization often
increases significantly.

Design examples. We used our system to design and fab-
ricate a range of examples comprising rectangular and/or
curved parts. We fabricated fullscale and miniature models
of designed furniture. Models were made from MDF of
3 mm thickness and MDF of 30 mm thickness. The designs
are easy to manufacture in batches since after design layout
optimization they typically fit master boards completely:
there is no need to attempt to reuse leftover pieces of wood,
and switching boards requires little clean up.

Fig. 11. Various material-driven design and fabrication examples. In
each row, we show initial design (with material space layout inset),
optimized design result (with material space layout inset), along with
final cutout assembled model. Note that the design changes are often
subtle, but still leads to significant improvement in material usage.

Fig. 12. Two different design suggestions (green has wastage ratio 0.14,
blue has wastage ratio 0.15) for the parrot-shelf. Original design with
another design suggestion is shown in Figure 9.

We directly output the cutting plan for the laser cutter
(or CNC machine) from the design layout, adding con-
nectors for planks sharing an edge, if needed. These are
conveniently detected since planks exactly overlap on edges
in the 3D design. The connectors are either finger joints,
which are both strong after gluing and easy to assemble;
cross connectors for interleaved planks, or dowel-jointed for
thicker materials (20 mm and 30 mm thickness).

Figures 9, 11, and 13 show various results. Table 1 gives
an overview of the complexity of each model, and the gains
obtained by our system. The system performs at interactive
rates on a laptop taking from a few seconds to 3-4 minutes
for the larger examples. Note that speed depends on how
many parallel exploration threads are pursued.

Figure 15 shows additional examples inspired by ex-
isting furniture, optimized for different masterboard sizes.
In all cases the system significantly reduces wastage. This

TABLE 1
Statistics for cut design showing the number of planks, number of

constraints, material wastage ratio before and after the design
suggestions/optimization.

#planks #constraints ratio before ratio after

Figure 1 4 21 0.22 0.11
Figure 9a 7 33 0.34 0.08
Figure 9b 9 NA 0.34 0.20
Figure 9c 8 NA 0.24 0.17
Figure 9d 16 NA 0.21 0.14
Figure 11a 6 22 0.15 0.04
Figure 11b 11 41 0.15 0.03
Figure 11c 8 13 0.26 0.03
Figure 11d 16 29 0.11 0.02
Figure 13a 12 42 0.4 0.03
Figure 13b 15 66 0.19 0
Figure 13c 8 41 0.13 0
Figure 16 11 57 0.11 0.04
Figure 15a 16 83 0.09 0
Figure 15b 16 83 0.08 0
Figure 15c 11 60 0.12 0.01
Figure 15d 11 60 0.06 0.02
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Fig. 13. Flat pack furniture optimized using our system. For each example, we show the initial layout and design, the final layout and design, and
the fabricated prototype. The final wastage ratios for the three examples are 0.03, 0, 0, respectively. (Please note that for visualization, slight gaps
are added between parts in the final layout figure.)

also reveals how different runs can find different designs,
in particular with the drawer example where the first run
produces undesirable changes rejected by the user.

Figures 1 and 9 show results for objects with curved
parts. Figure 5 shows some intermediate shapes as the
design evolves for the coffee-table (Figure 1) and the low-
chair (Figures 9-top) examples. Figure 12 shows alternate
designs discovered by the algorithm for the Parrot shelf.
While they have slightly higher wastage they offer interest-
ing variations that the user might prefer.

Figures 1 was fabricated using a CNC machine. The
optimized design achieved less than 0.1 material wastage,
although one can achieve zero wastage by deciding to pick
a rectangular top – a decision that can be made after layout
optimization as this opportunity is revealed. An allowable

range was specified for the height and the bases were
marked as symmetric as input design constraints. In the case
of the parrot-shelf (Figure 9a), the user indicated minimum
and maximum range for the horizontal shelves along with
desired range for the shelf heights.

As described, parameteric designs are easily supported
and optimized for in our framework. Figures 9b-d show
three such examples. In each case, additional constraints
were provided to keep the objects within a given volume.
The parts of the objects are all tightly coupled making these
challenging examples to optimize for. Figure 14 illustrates
optimization of two copies of a parametric design. In one
case (top row) the user decided to constrain the angles of
packed parts to 0 or π – this is for instance useful to align
with a pattern printed on the masterboard, or to align with
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Fig. 14. Top, from left to right: initial design, design optimized with 0-
180 degree constraint (middle row), design optimized freely (bottom
row). This case is challenging due to the inter-dependencies between
dimensions, and the presence of the dents. Middle: Optimized design
constraining the angle to 0-180 degree rotations only (note how the four
top dents on the side parts are either up or down). Wastage goes from
26.4% down to 12.1%. Bottom: Optimization using all angles. Wastage
goes from 22.2% down to 11.8%. (Wastage is computed using the
tightest bounding box around the parts, show in green. The black outline
is the maximum extent of the masterboard.)

wood fibers. Figure 18 shows how usage increases with
iterations during optimization, for both the 0 and π case and
when angles are free. For each case the Figure reports three
runs; while not all runs perform the same they all reduce
wastage significantly.

Figure 11a shows a L-shaped work table. The user
specified a target height for the design and a maximum
work volume. Note that the legs of the table were also
constrained to not change more than 1/4 of original di-
mensions to prevent unwanted design changes. Figure 11b
shows a coupled shelf and table design where height of
shelves and tabletop were similarly constrained. Figure 11c
shows a stylized chair, where both the chair seat height
and chair width were constrained not to change beyond
a margin. Figure 11d shows multiple designs covering 2
master boards. The second master board is used as an
overflow when docking can no longer fit a part in the first.
The layouts are slid independently.

Figure 16 shows a design study involving a chair with
two chairs and a platform from a single master board. In
this example, wastage was reduced from 11% to 4%.

Comparison. We now evaluate the relative importance of
the key algorithm steps. Figure 17a shows the importance
of the docking criteria introduced in Section 5.2. We ran
500 random runs of our proposed packing algorithm with
(‘ours’) and without (‘baseline’) the docking criteria on the
coffee-table example. We sort the runs based on resultant us-
age (no shape optimization is performed here) and plot the
two conditions. The docking criteria consistently resulted in

Fig. 15. Ikea inspired designs. Two top rows: Drawer model. A first
optimization reaches zero-waste (down from 9.3% wastage). However
the solution changes the height of the drawers. The second result
(below) also reaches zero-waste (down from 8.2% wastage) with a
design closer to the original. Two bottom rows: A same shelf optimized
with two different master boards. In the first (top) case wastage goes
down from 12.1% to 0.9%, in the second case it goes down from 5.7%
to 1.9%.

Fig. 16. Designing a chair with two chairs and a platform from a single
master board. Top row shows the original design (11% wastage), while
the bottom row shows the final design (4% wastage).

10-15% less wastage.
Figure 17b shows usage improvement over one explo-
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Fig. 17. Comparison of our algorithm against baseline alternatives.
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ration run on the coffee-table sequence. The legend explains
which step (grow, shrink, etc.) is being performed. While
this is the result from a single thread, many similar threads
are simultaneously explored. The few best results are then
presented to the user as suggestions. Figure 17c-d com-
pare the importance of analyzing the material space layout
to decide which plank to change and how. As baseline,
we selected planks at random and perform either a grow
or shrink sequence with equal probability. Note that our
method consistently outperforms the alternative approach.

Design sessions. We asked second year art students (6 sub-
jects) from a design college to try our system. Figures 11b-d
show a selection of their designs. These particular students
had performed a very similar task as part of their first year
assignment – ‘design furniture of your choice making best
use of the provided piece of MDF board.’ Hence, they were
very aware of the implicit link between design and material
usage. Previously, they had used commercial 3D modeling
tool (Rhinoceros, Solidworks, Sketchup Pro) for designing
and mainly Illustrator for manually laying out the designs.
They recalled the frustration of having to switch between
the different 2D-3D design representations. First, the stu-
dents sketched design concepts before using our system.
Then, they used the exploration interface on their designs
to reduce wastage. Note that visually the initial sketch and
final design can look similar, despite the increase in material
utilization, which is desirable in terms of preserving the
original design.

Overall, the feedback was positive. They appreciated be-
ing able to easily move between 2D↔3D, and not having to
explicitly worry about material utilization. They appreciated
the suggestions, instead of previous attempts using trial-
and-error iterations between various softwares to reduce
material wastage.

Limitations. Currently, the algorithm can only make topo-
logical changes only for parameteric models. This will be
an interesting future direction to pursue for constrained
models. Our docking approach cannot nest parts into holes
of other parts, a more advanced algorithm would be re-
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Fig. 18. Decrease in wastage over time during optimization, using the
two flex-box models of Figure 14. All runs use the same master board
and initial design parameters. Left: Three runs with angles constrained
to 0-180 degrees. The run with the worst performance still reduces
wastage by 10.4% compared to the initial packing. Right: Three runs
with all angles. Average wastage reduction is 10%.

quired. A more material-induced restriction arises when the
starting layout does not leave much space to optimize over.
This effectively means that the degree of freedom for the
design is low. Adding more planks does reduce this problem
(by providing additional freedom). However, beyond 25-30
planks, the exploration of the shape space becomes slow as
there are too many paths to explore. One option is to limit
exploration to only a subset of planks at a time, but then
again, very desirable design configurations may be missed.

7 CONCLUSIONS AND FUTURE WORK

We investigated how design constraints and material usage
can be linked together towards form finding. Our system
dynamically discovers and adapts to constraints arising due
to current material usage, and computationally generates
design variations to reduce material wastage. By dynam-
ically analyzing 2D material space layouts, we determine
which and how to modify object parts, while using design
constraints to determine how the proposed changes can be
realized. This interplay results in a tight coupling between
3D design and 2D material usage and reveals information
that usually remains largely invisible to the designers, and
hence difficult to account for. We used our system to gener-
ate a variety of shapes and demonstrated different margins
of wastage reduction.

Currently, we do not consider the stability of the pro-
duced furniture nor the durability of the joints. This could be
integrated as dynamic constraints following previous work
on structural reinforcement [4] and shape balancing [5]. We
would like to generalize the framework to handle other
types of materials e.g., fabric, plastic, etc. that can be easily
cut and more interestingly bend to have freeform shapes for
manufacturing garments, toys, etc. Note that the packing
problem will still be in 2D for such developable pieces.
This can help produce interesting freeform shapes, while
still making efficient use of materials. In terms of allowed
part deformations, operations like stretching and sheering
can also be considered along with allowing discrete changes
in the form of splitting and merging of parts. Finally, in
the packing stage, we would like to evaluate the effect of
different strategies for selecting and swapping parts.

REFERENCES

[1] L. Luo, I. Baran, S. Rusinkiewicz, and W. Matusik, “Chopper:
Partitioning models into 3D-printable parts,” SIGGRAPH Asia,
vol. 31, no. 6, 2012.



14

[2] J. Vanek, J. A. G. Galicia, B. Benes, R. Měch, N. Carr, O. Stava,
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