
BigSUR: Large-scale Structured Urban Reconstruction

TOM KELLY, University College London
JOHN FEMIANI, Miami University
PETER WONKA, KAUST
NILOY J. MITRA, University College London

Fig. 1. Structured Urban Reconstruction. Given street-level imagery, GIS footprints, and a coarse 3D mesh (left), we formulate a global optimization to
automatically fuse these noisy, incomplete, and conflicting data sources to create building footprints (middle: colored horizontal polygons) with profiles
(vertical ribbons shown for several footprints) and attached building façades (vertical rectangles). The output encodes a structured urban model (right)
including the walls, roof, and associated building elements (e.g., windows, balconies, roof, wall color, etc.). Inset below: A reference aerial image.

The creation of high-quality semantically parsed 3D models for dense met-

ropolitan areas is a fundamental urban modeling problem. Although recent

advances in acquisition techniques and processing algorithms have resulted

in large-scale imagery or 3D polygonal reconstructions, such data-sources

are typically noisy, and incomplete, with no semantic structure. In this paper,

we present an automatic data fusion technique that produces high-quality

structured models of city blocks. From coarse polygonal meshes, street-level

imagery, and GIS footprints, we formulate a binary integer program that

globally balances sources of error to produce semantically parsed mass mod-

els with associated façade elements. We demonstrate our system on four city

regions of varying complexity; our examples typically contain densely built

urban blocks spanning hundreds of buildings. In our largest example, we pro-

duce a structured model of 37 city blocks spanning a total of 1,011 buildings

at a scale and quality previously impossible to achieve automatically.

CCS Concepts: • Computing methodologies → Scene understanding;
Shape analysis;Meshmodels; •Applied computing→Architecture (build-
ings);

Additional Key Words and Phrases: urban modeling, structure, reconstruc-

tion, façade parsing and element classification, procedural modeling

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association

for Computing Machinery.

0730-0301/2017/11-ART204 $15.00

https://doi.org/10.1145/3130800.3130823

ACM Reference format:
Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra. 2017. BigSUR:

Large-scale Structured Urban Reconstruction. ACM Trans. Graph. 36, 6, Arti-
cle 204 (November 2017), 16 pages.

https://doi.org/10.1145/3130800.3130823

1 INTRODUCTION
Obtaining detailed 3D urban models is important for a variety

of applications ranging from urban planning and environmental

simulations to virtual reality and video game creation. Given the

importance of such mod-

els, extensive efforts have

been undertaken to cre-

ate polygonal meshes from

aerial images or light de-

tection and ranging (Li-

DAR) scans. Such datasets

are often very expensive

and tedious to create. They

are difficult to use because

they are typically heteroge-

neous with sparse or miss-

ing details. More importantly, they lack semantic structure, which

prevents easy use in subsequent applications.

In contrast, procedural pipelines (e.g., CityEngine) create homo-

geneous, semantically labelled urban models. One such procedural

pipeline uses horizontal (building) footprints and the corresponding

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130823
https://doi.org/10.1145/3130800.3130823

204:2 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

a b c d e f g

Fig. 2. Baseline methods. (a) GIS footprints represent plot ownership more accurately than building structure. (b) Image features, such as windows (cuboids)
extracted from street-level imagery, are available only near where the images have been taken (cubes), and lack information about the interior of the structure;
different images may give contradictory features for the same building. (c) Raw polygonal meshes tend to be more complete, but they contain noise and are
typically polygon soups. One reconstruction possibility is to fit horizontal “floors” to the mesh (d), while another is to extrude the GIS footprints to heights
available from a database (e). Both these approaches fail to convey the roof structures of the input. A popular GIS data visualization techniques is to create a
hip roof over all footprints (f), which leads to a monotonous structure. (g) Naively applying profiles from the input mesh to the GIS footprints leads to more
interesting roof shapes; but these are inaccurate because the GIS edges are frequently not representative of real-world building walls.

vertical profiles to create mass models by extruding the footprint

upwards along the profiles, which may then be ‘decorated’ with

building elements such as windows, doors, etc. Currently, this work-

flow is suitable for coarse approximation of larger areas, or for

detailed manual modeling of particular (iconic) buildings, but it

does not scale to accurate detailed modeling of wider urban areas.

In this paper, we focus on the problem of procedurally creating

structured models by leveraging data from multiple sources (see

Figure 1 and the inset aerial view for reference). Such raw informa-

tion has different strengths and weaknesses: for example, publicly

available Geographic Information System footprints (GIS footprints)
carry reliable records of plot ownership, but they often do not re-

flect built reality; polygonal meshes, often in the form of polygon

soups obtained by processing aerial images, provide coarse informa-

tion, but they lack semantic partitioning or fine details; street-level

imagery (e.g., façade photographs) provides detailed information,

but it lacks 3D information or semantic labels. Further, each data

source has its own coordinate system, suffers from distortion, and

frequently contains mutually conflicting or partial information.

Naively combining information across the above datasources

results in various types of artifacts (see Figure 2). For example,

extruding GIS footprints with profiles extracted from mesh data

creates misleading mass models, while transferring window loca-

tions regressed from images onto estimated façade planes results in

poorly positioned windows.

Instead of heuristically combining the above datasources, we

propose a unified fusion algorithm. We develop an optimization

formulation that analyzes the heterogeneous data sources (i.e., GIS

footprints, polygonalmeshes, and street-level imagery) and retargets

them to a single consistent representation. By balancing the various

retargeting costs, our algorithm reaches a consensual structured
model, the output of which is building-level footprints, associated

profiles along the footprint boundaries, and façade elements placed

appropriately over the mass models (see Figure 1). The raw input

data to our algorithm comes from various preferred layout directions

(extracted from GIS information), candidate building footprints and

profiles (extracted from the polygonal meshes), and façade parti-

tionswith associated elements (extracted by analyzing the individual

façade images). Our system automatically decides which of these

elements to retain and how to adapt the selected elements to create

consistent output. Figure 15 shows the input GIS footprints and

the extracted building footprints produced by our algorithm. We

note that the result is semantically structured in the sense that the

output has labels associated with the different sections of the output

model (e.g., windows, balconies, shops, walls, roofs, etc.). Further,

our algorithm does not make Manhattan-world assumptions, nor

does it restrict the roof angles (i.e., roofs can be flat or sloped), nor

number of pitches (i.e., façades can alternate an arbitrary number

of times between wall and roof).

We demonstrate the effectiveness of our system by evaluating four

differing urban settings: Detroit as a suburban US city with simple

detached houses, New York with blocks of near-regular high-rise

buildings arranged on a (literal) Manhattan-grid, Oviedo as a typical
historic European city with non-axis aligned buildings surrounding

inner courtyards, and London with dense urban architecture with

many annexes and complex roof shapes. Finally, we semantically

reconstruct a very large area of central London covering 37 blocks

around Oxford Circus and compare our method with state-of-the-art

urban reconstruction techniques.

In summary, we introduce a novel wide-area fusion algorithm

that semantically combines multi-channel, noisy, and conflicting in-

formation to produce structured models in the form of building mass

models with associated façade elements. We demonstrate the auto-

mated method on urban neighborhoods spanning several building

blocks at a scale that has not been previously demonstrated.

2 RELATED WORK
We review the relevant literature on the urban modeling and recon-

struction pipeline (see [Musialski et al. 2013] for a survey).

2.1 Reconstructing mass models
There are multiple possible inputs for large-scale urban mass mod-

eling. Mass models are often reconstructed from aerial images or

LiDAR [Brenner 2005]. Other modalities, such as synthetic aperture

radar (SAR), ground based photographs, or videos, are less common.

Furthermore, satellite data have lower resolution and drones can

capture only smaller areas. While LiDAR produces point clouds

directly, images must be processed to produce sparse [Snavely et al.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

BigSUR: Large-scale Structured Urban Reconstruction • 204:3

2006] or dense [Ceylan et al. 2013; Furukawa and Ponce 2010] point

clouds. Some integrated modeling pipelines extract mass models

from images directly [Dick et al. 2004; Garcia-Dorado et al. 2013;

Vanegas et al. 2010]. Surface models can be extracted from point

clouds, e.g., by resampling onto a grid [Poullis and You 2009], 2.5D

contouring [Zhou and Neumann 2010], relation-based primitive

fitting [Monszpart et al. 2015], or Poisson reconstruction [Kazhdan

and Hoppe 2013]. Another important component in urban model-

ing is segmentation [e.g., Golovinskiy et al. 2009; Matei et al. 2008;

Verdie et al. 2015] to separate buildings from other classes.

Our work is mainly related to shape abstraction and simplifica-

tion; we aim to create simple and plausible mass models from noisy

input data. One simple model for shape abstraction is to regular-

ize the models using the Manhattan-world assumption [Li et al.

2016]. Alternately, very good results can be achieved by fitting

parametric building blocks to height fields [Lafarge et al. 2010] or

LiDAR input [Lin et al. 2013], exploiting non-local regularity re-

lations [Zheng et al. 2010], or obtaining depth-layer relations by

jointly analyzing images and LiDAR scans [Li et al. 2011b]. Fol-

lowing Verdie et at. [2015], we use a noisy building mesh as input.

They use a simplified version of Globfit [Li et al. 2011a] to detect

relationships between extracted planes to regularize the output. In

contrast to this method, we jointly analyze the different input data

modalities to produce a consistent structured model, in which, for

example, the footprints of the mass models are in agreement with

how the street-level imagery is partitioned into different buildings.

2.2 Façade parsing
The goal of façade parsing is to extract façade elements such as win-

dows, doors, and balconies. The input of façade parsing is typically a

single image or a point cloud. A typical initial step of façade parsing

is to compute local per-pixel information, such as segmentation

information [Martinović et al. 2012], edge detection, or symmetry

detection [Müller et al. 2007]. This input is then regularized to make

it more compliant with a given model of a façade structure [Cohen

et al. 2014]. One possible model is a grid with one spacing parameter

for each row and each column [Müller et al. 2007], which can also

be represented by a rank-one matrix [Yang et al. 2012]. A more

general model is a hierarchical splitting tree, in which each internal

node splits into multiple horizontal or vertical slices [Dai et al. 2012;

Kozinski et al. 2015; Riemenschneider et al. 2012; Shen et al. 2011;

Teboul et al. 2013]. These hierarchical approaches differ in how

they incorporate low-level features stemming from classifiers and in

how they use encoded architectural knowledge. Example solutions

include use of MRFs [Kozinski et al. 2015], extending the CYK algo-

rithm [Riemenschneider et al. 2012], application of reinforcement

learning [Teboul et al. 2013], post-processing by optimization [Jiang

et al. 2016; Martinović et al. 2012; Nan et al. 2015], or jointly opti-

mizing for template matching and deformation estimation [Ceylan

et al. 2016]. A significant simplification used by these systems is to

consider only façade images that have been rectified and cropped

for individual buildings.

Section 4

Mesh

Section 4.2 & 6Section 5.3

BImages

S & C

Section 5.1

GIS

Optimization

Fig. 3. Overview. Starting from GIS footprints, a coarse 3D mesh, and street-
level imagery, we extract a set of sweep-edges, S, a set of clean-profiles,
C, and a set of building-façades, B. These are then globally optimized to
produce a semantically parsed building block as output.

2.3 Interactive reconstruction
To achieve improved results, another line of work investigates in-

teractive techniques for mass modeling [Debevec et al. 1996], or

façade parsing. For example, Nan et al. present an interactive façade

modeling system for LiDAR data [2010] and Xiao et al. propose an

interactive system for images [2008]. Another recent concept is to

train multiple neural networks to interactively create procedural

models from input sketches [Nishida et al. 2016]. In contrast, we

aim to create an automatic system.

In this work, we build on the geometry of the straight skele-

ton [Aichholzer et al. 1996] to model architecture. Early work used

the unweighted straight skeleton to model roofs [Laycock and Day

2003; Müller et al. 2006] and walls [Fang et al. 2013]. The weighted
skeleton [Eppstein and Erickson 1999] offered enhanced expres-

siveness; in particular, the procedural extrusion system (PE) [Kelly

and Wonka 2011] consisted of stacked weighted skeletons. Recently,

Biedl et al. [2016] reinforced the theoretical underpinnings of the

weighted straight skeleton, renewing our interest in PEs. Essentially,

PEs are a parameterization of architecture into a horizontal 2D plan

with a set of vertical 2D profiles that are associated with the edges

of this plan. Such a parameterization can represent buildings with

arbitrarily angled walls and roofs to provide a strong architectural

prior. In this work, we develop a method to project real-world data

into the space of buildings represented by PEs.

3 PROBLEM SETUP
Our system takes input from three sources — publicly available

GIS footprints, a coarse 3D mesh, and street-level façade images —

with the goal of reconstructing a high-quality semantic model of

an urban area. Since the different input sources have complemen-

tary strengths and weaknesses, we first process them individually

to extract three types of entities: sweep-edges, clean-profiles, and
building-façades. In the following, we describe these entities, while

deferring the details of how they are computed to Section 5; the

global optimization, which fuses them to produce the structured

model, is discussed in Section 4. Figure 3 presents an overview of

our framework.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

204:4 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

Fig. 4. Terminology. Left: The data are used to create street-level imagery
with associated façade planes (orange), raw-profiles (blue) and sweep-edges
(pink). Center: These are processed to create the input to the optimization
— a smaller set of clean-profiles (blue), building-façades (orange lines), and
building-façade-points (orange points), and a ground plane tessellation
consisting of sweep-edges (pink) and soft-edges (black) enclosing faces.
Right: The output of the optimization is a collection of watertight footprint-
polygons (pink and purple), with a clean-profile assigned to every edge, and
positions for every building-façade (orange).

3.1 GIS footprints
Typically, an urban building block consists of several densely packed

buildings (up to 100 buildings in our examples). While GIS foot-

prints (see [Miller et al. 2017]) provide an accurate ownership record,

surprisingly they provide little usable information concerning a

building’s physical walls and partitions, making it challenging to

use these data directly for reconstruction. However, we found that

they carry a mixture of accurate and noisy orientation information,

which we utilize to regularize the processing of other data sources.

3.2 Coarse 3D mesh
A 3D mesh or polygon soup (e.g., obtained via multi-view stereo or

LiDAR scans) provides approximate, incomplete, noisy, but large-

scale geometric information. We process such meshes to produce

two entities: horizontal sweep-edges and vertical clean-profiles (see
Figure 4); such sweep-edges are extruded along clean-profiles to

create a mass model. Specifically, we extract a set of lines, referred

to as sweep-edges, S, on the ground-plane by identifying likely

façades over the mesh. Along these sweep-edges, we vertically slice

the mesh to create many raw-profiles; these are clustered, averaged,
and abstracted to create a set of clean-profiles, C (see Figure 4 and

Section 5.1). Direct reconstruction from these sweep-edges and

clean-profiles is challenging as PEs require watertight footprint-

polygons, with a clean-profile assigned to each edge. Specifically,

there are two sources of difficulty: the sweep-edges have gaps, may

self-intersect, or even be missing entirely in regions, while the clean-

profiles are the output of local analysis, thus lacking information

about building partitions and containing different sources of noise

(e.g., from initial reconstruction, trees, or vehicles).

3.3 Street-level façade images
Complementary to the above data sources, street-level imagery

provides information over portions of the urban blocks. Such im-

ages typically come with estimates of camera position and orienta-

tion. For each image, we use a convolutional neural network (CNN)

based supervised classifier (see Section 5.3) to detect the rectangular

bounds of a façade as well as elements such as windows, doors,

and balconies. We refer to this rectangular façade containing a col-

lection of extracted elements as a building-façade (see Figure 4).

Each side of a city block will typically consist of multiple overlap-

ping building-façades: one from each of the images. However, such

raw building-façades, B, may contain position and orientation er-

rors, have inconsistent scales, sometimes overlap, or be incomplete

(e.g., occluded by trees, vehicles, or scaffolding). The ground plane

location of the observed start or end of a building-façade in the

street-level imagery is referred to as a building-façade-point.
These three data sources are in three different coordinate systems,

and may introduce conflicting information, making their combina-

tion challenging. Further, each is subject to reprojection and inherent

noise, both within and between datasets. For example, we found

that the given location and orientation of building-façades varied

on different sides of a building due to GPS or GIS errors. Poor cor-

relation between the image and 3D mesh was sometimes observed

because of differing scale estimates or changes in the environment

(e.g., buildings had been constructed, modified, or demolished).

3.4 Notation
Before we formulate the main binary integer program (BIP) that

processes these inputs, we first introduce some notation. We use

sweep-edges, S, to oversegment the ground plane (y = 0) to form a

tessellation of faces, G, as described in Section 4.1. Our algorithm

determines whether or not each edge, ek ∈ G, should be selected,

thus implicitly encoding the final building footprint-polygons. We

represent this selection with a binary indicator variable, sk , such

that sk = 1 if the edge, ek , is selected and forms part of a footprint-

polygon, and sk = 0 otherwise. Note that in densely built urban

areas, even though adjacent buildings can share a common wall,

the structures often have different heights or roofs. We encode

such a situation by two, possibly different, profiles associated with

the two sides of each interior wall, ek . (For the remainder of the

paper, we discuss one such profile per edge, while the other one is

similarly treated.) We denote the length of any edge, ek , as ∥ek ∥
and the maximum mesh height above a point on the ground plane,

(x , z) ∈ R2, as h(x , z).
We use logic operators (such as ∧,∨, ⊕,¬) noting that each can

be expressed in BIP constraints with additional variables (detailed in

Appendix A). We will not explicitly introduce such extra variables

and constraints, but we use the logic operator directly.

Unlike sk , which is an individual binary variable, we will have

cause to represent categorical variables (such as color or profile

choice) using selection vectors. Note they are also called ‘one hot

vectors’ in the literature. We denote a selection vector of length n
as 𝜒 := (χ1, . . . , χn); each element (such as χ1) is a binary variable.

Selection vectors have exactly one element set to one, while the

others are all zero. We encode this condition with the constraint∑n
i=1 χi = 1. We will wish to compare two selection vectors. For

example, given 𝜒 := (χ1...χn) and𝜓 := (ψ1...ψn), we desire an out-

put of 0 if all elements are equal (i.e., χi = ψi , ∀i), and 1 otherwise.

To simplify notation in this situation, we write isDifferent(𝜒,𝜓)
to indicate

isDifferent(𝜒,𝜓) = (χ1 ⊕ψ1) ∨ · · · ∨ (χn ⊕ψn).

Note that the abovemacro describes a set of variables and constraints

to be added to the BIP.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

BigSUR: Large-scale Structured Urban Reconstruction • 204:5

a b c d

Fig. 5. Sweep-edges and soft-edges. A set of sweep-edges (a, pink) are ex-
tended to oversegment the ground plane (b) into faces. The sweep-edges are
inserted one at a time, in order of decreasing length. To complete the tes-
sellation, the sweep-edges are extended by soft-edges (black). The building-
façade-points (c) further subdivide the ground plane if there are no existing
similar edges. Finally, we remove faces that are mostly outside the GIS
footprint (d, green) to create the tessellation, G.

4 FUSION OPTIMIZATION
So far, we have introduced: (i) a set of sweep-edges,S (for extraction

details see Section 5.1); (ii) a set of clean-profiles, C (Section 5.1);

and (iii) a set of building-façades, B (Section 5.3). We continue to

formulate a global optimization that fuses these entities to out-

put a semantically parsed building block, simply referred to as the

structured model (see Figure 3).
To achieve this, we address three key challenges: (i) identifying

footprint-polygons for each building in the ground plane tessellation;

(ii) selecting a clean-profile from C for each edge of every footprint-

polygon; and (iii) retargeting building-façades from B to a subset of

the edges of the footprint-polygons. A good building-façade location

matches the mass models that are implicitly obtained by extruding

the footprint-polygons along the selected clean-profiles.

Note that the above problems are tightly linked and must be

solved together. For example, the boundary of a footprint-polygon

depends on which profiles are selected, which in turn depends on

how the building-façades are retargeted to match 3D mass model

boundaries.

4.1 Formulation
We simultaneously address the above challenges by formulating a

BIP; we next describe the optimization variables, constraints, and

objective terms associated with each challenge.

4.1.1 Identifying footprint-polygons. The input GIS footprints,
street-level imagery, and 3D mesh carry noisy and incomplete infor-

mation about individual buildings. This is particularly pronounced

in densely built urban areas where adjacent buildings often share

walls, contain courtyards, and regularly break the Manhattan-world

assumption. Using the available information, we first oversegment

the ground plane into faces using the sweep-edges, then merge the

oversegmented regions, and finally extract the footprint-polygons.

First, we extend the sweep-edges in S to initiate the ground

plane oversegmentation (see Figure 5a). Note that only the edges

created by sweep-edges have profiles, while others, called soft-edges,
complete the tessellation (see Figure 5b). Next, we use the estimated

building-façade-points (shown as blue dots in Figure 5c) from the

Fig. 6. Oversegmenting the ground plane. We use sweep-edges and GIS foot-
prints to overpartition the ground plane. Left: The sweep-edges (pink) along
with their soft-edge extensions (black) partition the plane. Center: Further
oversegmentation based on the building-façades extracted from street-level
imagery (blue). Right: using height and GIS information (green) we identify
the interior faces to produce the oversegmentation, G.

street-level imagery to further oversegment the ground plane by

adding soft-edges that are perpendicular to the building-façade into

the tessellation. All these edges indicate potential separating walls

between adjacent buildings. Finally, we discard faces that are either

mostly outside the GIS footprints, or have a mean mesh height

below a threshold (3m in our data). We useG to denote the resulting

tessellation (see Figure 5d).

Extracting footprint-polygons amounts to setting the BIP vari-

ables, sk , for each of the edges, ek , surrounding every face, fi ∈ G.
However, setting up such an optimization is cumbersome, as not

all values for {sk } result in valid partitions of the ground plane (see

Figure 7). Hence, we indirectly formulate the problem by deciding

which neighboring faces in the tessellation G should be merged

to produce the final building footprint-polygons. For example, the

resulting tessellation for Figure 1 is shown in Figure 6.

The footprint-polygons should ideally follow the sweep-edges,

while making them watertight, and should use as few soft-edges as

possible to fill in sections of missing data. Further, we encourage

selection of edges where there is a large height difference on either

side of a sweep-edge (e.g., between adjacent buildings). For each

such face fi ∈ G, we sample h(x , z) using the mesh data to find the

mean height over the face, h(fi). This averaging adds robustness

over problematic mesh features such as holes. The height difference

across an edge is thus heightDiff (ek) = |h(fi)−h(fj) | where fi and
fj are the faces incident to ek .

a

b

c

Fig. 7. Valid footprint-polygons. Left: A set of edges, {s }. Center: Two geomet-
rically invalid partitions using those edges caused by self-grazing polygons
(a), dangling edges (b), and holes in the boundary (c). Right: Valid footprint-
polygons are map-coloring solutions.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

204:6 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

Selection variables: The face-merging problem can be reduced to a

region- (or map-) coloring problem with adjacent faces of the same

color indicating that the faces are implicitly merged. Thus, for each

fi , we assign a selection variable, 𝛾i , with length 5. Although four

colors are sufficient for map-coloring, we found experimentally that

our BIP converges faster with an extra color.

Constraints: The edge-selection variable, sk , defines if an edge, ek ,
lies on a footprint-polygon; usually this is because it lies between

faces of different colors. Thus, for all edges, ek , between two faces

fi and fj , we require

sk = isDifferent(𝛾i ,𝛾 j),

which amounts to a set of variables and constraints as introduced in

Section 3.4. Since all other edges, ek , are at the boundary and must

be part of a footprint-polygon, we set their sk to 1.

Objective terms: In formulating the selection of edges from the tes-

sellation, G, we add penalties for the following conditions: (O1) if a

sweep-edge is not selected or a soft-edge is selected; and (O2) if an

edge with high height differential is not selected

O1 ({s
k }) :=

∑
ek ∈G

2∥ek ∥ (¬s
k ∧ isSweepEdge(ek))

+
∑
ek ∈G

∥ek ∥ (s
k ∧ ¬isSweepEdge(ek))

O2 ({s
k }) :=

∑
ek ∈G

∥ek ∥ heightDiff (ek)¬s
k ,

where isSweepEdge(ek) returns 1 if the edge, ek , is a sweep-edge,
or 0 if it is a soft-edge.

4.1.2 Selecting clean-profiles. The input mesh data are noisy,

incomplete, and often contain spurious geometry (e.g., trees or cars).

Our goal is to abstract the raw input by assigning a clean-profile

from the set, C, to every e ∈ G. These assigned profiles guide

the footprint-polygon extrusion, implicitly producing a clean and

abstracted PE mass model.

Ideally, above each edge, the selected profile closely approximates

the mesh geometry. Further, due to stability considerations when

modeling with PEs, it is important that edges from adjacent and

nearly parallel edges in the same footprint-polygon select the same

profile (see Figure 8). Note that this caveat does not require buildings

to conform to the Manhattan-world assumption.

Selection variables: For every edge, ek , we create a profile selection
vector, 𝜂k , to indicate which clean-profile is selected from the global

set, C. The length of this vector is the size of the profile set, C,

typically 4-80 profiles.

Constraints:We wish clean-profile selections to be equal for parallel

adjacent edges within the same footprint-polygon. In other words,

two adjacent edges that are nearly parallel can select different pro-

files only if the they belong to different footprint-polygons— i.e.,

there is at least one separating wall between them.

Thus, for all vertices of the tesselation, G, we create an auxiliary

variable for each pair of adjacent and approximately parallel (we

use a tolerance of 0.1 radians) edges, ej and ek , as

r (j,k) = isDifferent(𝜂j ,𝜂k).

𝜂j

el

𝜂k

Fig. 8. Undesirable façade splits. Left-center: PEs are unstable when different
profiles (blue) are selected on nearly parallel edges (green); moving a single
point (orange) a short distance creates a very different result. Right: To avoid
this situation, the clean-profiles of the adjacent parallel edges (given by the
selection vectors 𝜂j and 𝜂k) are constrained to be equal, if the dividing
edge is selected (s l = 1).

Because we allow only parallel and adjacent edges to have different

profiles (r (j,k) = 1) when there is at least one selected edge (sl =
1 for edge el) between them at their shared vertex (Figure 8), we

require

r (j,k) ≤
∑

el ∈between(j,k)

sl ,

where between(j,k) denotes the set of edges lying between ej and ek
and sharing a common vertex. We implement G as a half-edge data

structure, which permits direct implementation of the between()
operator.

Objective term: For each edge, ek , let the corresponding set of raw-
profiles obtained by vertically slicing the input mesh be R (ek). Let
the vector Fk list the error in fitting each clean-profile, pc ∈ C,
to all the raw-profiles, q ∈ R (ek), along the edge, ek . This error
is measured by the function d (), which measures the difference

between two profiles (see Section 5.1 for details). Specifically, each

element of the vector, Fck , is computed for a single clean-profile,

pc ∈ C, over all the edge’s raw-profiles as

Fck =
∑

q∈R (ek)

d (pc ,q,minY (q),maxY (q)).

Note that for the above computation, pc is moved to align with

q at height y = 0 (i.e., on the sweep-edge). Further, the function

d () is evaluated over the raw-profile’s height, [minY (q),maxY (q)],
to match raw-profiles with ends at varying heights to the more

complete clean-profile. If there is no raw-profile associated with

an edge, we set the assignment cost vector, Fk to [−1, 0, . . . 0], i.e.,

we give a small bonus to selecting the vertical clean-profile. (Note

that the -1 favors the default vertical profile in the absence other

information.) We can now define an objective term for each edge,

ek , measuring the fit of the selected clean-profile to the supporting

edge’s raw-profiles,

O3 ({𝜂
k }) :=

∑
ek ∈G

∥ek ∥Fk · 𝜂
k .

We recall that each internal sweep-edge potentially has two sets (for

a shared wall) of raw-profiles associated with it, corresponding to

the two adjacent buildings. The above cost is adapted accordingly

when a pair of edges is present.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

BigSUR: Large-scale Structured Urban Reconstruction • 204:7

4.1.3 Retargeting building-façades. Street-level imagery of façades

contains valuable information about building placement. For exam-

ple, neighboring buildings may have different materials which pro-

vides evidence about their widths, or a change in façade height may

advocate splitting a footprint-polygon. However, street-level im-

agery often does not align with the 3D mesh (or even other images)

— both in position and scale. We extend our formulation to include

such street-level imagery by observing that solving for alignment

and scaling is equivalent to establishing correspondence between

the start and end building-façade-points, and the vertices on the

boundary of the tessellation.

Specifically, let the set of vertices on the outer boundary of G be

V. We aim to assign every building-façade-point to a vertex, v ∈ V.
Because the error in the building-façade location is of a known

maximum distance (approximately 3m in our datasets), we can

enumerate the nearby boundary vertices for each building-façade-

point. In the process, we aim to minimize both the building-façade-

point displacement and the height disparity between the building-

façade-based (street-level imagery), and mesh-based, estimates. We

note that multiple images may create overlapping building-façades,

with each suggesting a corresponding set of façade elements.

Selection variable: We cluster nearby building-façade-points to a

group, Ci , with a cluster-representative denoted bymi
⋆. For each

cluster-representative, we find the nearby boundary vertices in

V, denoted as nearby (mi
⋆). We use a selection variable, τ (i,w)

, to

identify the points in Ci mapped to vertex vw .

Objective terms:We introduce three terms: (O4) to discourage stretch

and height disparities between heights extracted from the mesh and

those from the street-level imagery; (O5) to encourage building-

façade-points to pick exterior corners of the tessellation; and (O6) to

reduce splitting of footprint-polygons under a building-façade.

First, to minimize stretch and height disparity of the building-

façades (see Figure 9), we add

O4 ({τ
(i,w) }) :=∑
∀Ci

∑
ma ∈Ci

∑
w ∈nearby (mi

⋆)

τ (i,w) (distance(vw ,ma)+

|htLeft (ma) − htLeft (vw) |+

|htRight (ma) − htRight (vw) |),

where the function distance() gives the distance between a boundary
vertex and building-façade-point, and htLeft () gives the building-
façade height or face height (from the street-level imagery or the 3D

mesh, respectively), on the left (similarly for htRight ()), as shown
in Figure 9.

It is particularly desirable to assign a building-façade-point to a

corner vertex of the tessellation boundary (a subset of V); thus, it
receives a reward

O5 ({τ
(i,w) }) := −

∑
vw ∈corners

τ (i,w) ,

where the set corner contains all vertices adjacent to two boundary

edges of G that meet at [π/3, 2π/3].

m1,2,3

v1
|htLeft (ma) − htLeft (vw) |

|htRight (ma) − htRight (vw) |

distance(vw ,ma)

Ci

v2

Fig. 9. Stretch and height disparity. Left: We evaluate the fit of the building-
façade (blue) to the 3D mesh (grey) using stretch and height disparity. Right:
The building-façade-points,m1,m2,m3, are grouped into a cluster, Ci , with
representativemi

⋆. The indicator variable γ
(i,1) (or γ (i,2)) denotes which

of the points in cluster Ci are mapped to the boundary vertex, v1 (or v2).

Finally, it is undesirable for an edge to

be selected that arrives at the tessellation

boundary underneath a building-façade (in-

set: top, blue). Such an edge may unnec-

essarily split a footprint-polygon (pink).

Hence, we penalize the selection of edges,

ek , that approach vertices of the boundary

with building-façades, but without selecting

building-façade-points. This results in im-

proved integration of the façade boundaries

into the mass model (inset, bottom). Specif-

ically, we penalize such a situation as

O6 ({l
k }) :=

∑
ek ∈G

sk ∧ lk .

Constraints: The auxiliary binary variable, lk , captures whether a
vertex of edge, ek , is not assigned a building-façade-point, but is

covered by a building-façade,

lk =
∑

vw ∈verts(ek)

*.
,
free(vw)

∑
∀Ci

τ (i,w)+/
-
< 1.

The above constraint evaluates whether an edge, ek , has a boundary
vertex, vw ∈ verts(ek), which is covered by a building-façade, but is

not assigned a building-façade-point by any τ . The function free(vw)
returns 0 if the vertex, vw , is covered by some building-façade and

1 otherwise.

4.1.4 Objective function. We find a solution that satisfies all the

above constraints, while minimizing

min

6∑
i=1

αiOi

over the variables {𝛾i }, {𝜂k }, {𝜏 (i,k) }, and the associated auxiliary

variables. In our results, we used α1 = 10, α2 = 1, α3 = 0.01, α4 = 1,

and α5 = α6 = 0.1
∑
ek ∈G ∥ek ∥.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

204:8 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

Fig. 10. Overlapping building-façade elements. An urban block is typically
covered by multiple overlapping façade images, giving repeated bounding
rectangles for many elements, such as windows (turquoise), shops (pink),
balconies (orange), doors (green), mouldings (dark blue), and building-façade
boundaries (light blue). The left-most visible facade of Figure. 1 was recon-
structed from these overlapping elements.

4.2 Creating the Structured Model
Given a solution to the above optimization, we can generate the

geometry for the final structured model.

Starting from the ground plane tessellation, G, and the region

coloring {𝛾i }, we merge neighboring faces to which the solution

assigns the same color. The resulting 2D polygons form the footprint-

polygons of the final mass models. For every edge in each footprint-

polygon, the solution contains a clean-profile from the set C, in {𝜂k }.
Procedural extrusions [Kelly and Wonka 2011] lift each footprint-

polygon using the selected clean-profiles to create a building’s mass

model. During this extrusion, we cap the PE mesh at the average

mesh height (sampled by h(x , z) over the footprint-polygon) to stop
runaway geometry and to create flat roofs. An exception is when

the PE horizontal cross-section area is decreasing rapidly at this

height, in which case we assume that the roof is pointed. We cap

pointed roofs at a higher level given by the average raw-profile

height around the footprint-polygon boundary. We classify the

surfaces obtained via PE as walls or roofs using the local normals.

The optimization solution assigns the building-façades to portions

of the mass-model. This correspondence between building-façade-

points and vertices of the footprint-polygons is given by {𝜏 }; from
this, we can position the building-façades over the mass models.

The building-façade’s points are found from image features. One,

or both, points may be missing because they lie outside the image. If

both points are present, we translate and scale the building-façade

to align its building-façade-points with the corresponding footprint

vertices. If only one point is present, we simply translate it to align

with the found vertex. In the case of no points, the building-façade

is aligned using estimated Google StreetView (GSV) pose data.

In this manner, multiple building-façades can be positioned over

the same section of the mass model, giving us multiple position

estimates for façade elements (doors, windows, balconies etc., see

Figure 10). Further, because these elements have been estimated

from street-level imagery, they contain noise and omissions.

In the following, we explain our fusion and regularization process

for window elements, while other element classes (doors and bal-

conies, etc.) are treated similarly.We adopt a simplemean-shift [Fuku-

naga and Hostetler 1975] approach; at each iteration, we apply a

step of 0.2× the mean-shift vector to all window rectangles for a

variety of parameterizations. Namely: (i) absolute position of the

left, right, top, and bottom of the rectangle (to align windows with

themselves and others in a grid); (ii) width and height (to maintain

the shape of the windows in subsequent iterations); and (iii) spacing

between adjacent windows to the left, right, top and bottom (to en-

courage uniform spacing between windows). After the mean-shift

has converged (we use 30 iterations), we frequently have multiple

rectangles associated with each window. Such rectangles are merged

if the overlap is more than 50%; otherwise, the smallest rectangles

are discarded. Element rectangles are also discarded if they occur in

less than half of the street-level images that cover them.

These element rectangles are added to the mass model using

simple parametric models for each type of element, such as windows,

doors, window-sills, cornices, moldings, and balconies. These are

parameterized to the found dimensions, and windows or doors are

recessed into the mass model façade. As an exception, windows that

lie on a mass model surface that is classified as a roof, or between

surfaces with different normals, are added as dormer windows.

Finally, we color the mass model polygons classified as wall using
the information extracted from the street-level imagery, and those

classified as roof using optional satellite image information. Figure 1

shows such a resulting structured model.

5 IMPLEMENTATION DETAILS

5.1 Extracting Sweep-edges and Profiles
We now describe the profile analysis of the 3D mesh and GIS foot-

prints. First, we align the mesh with the GIS footprint boundary.

Then, we create and cluster horizontal-lines (Figure 11b, c) to find
the prominent-faces of the building-block (Figure 11d). Each such

face is used to compute a sweep-edge on the ground plane, along

which we extract vertical raw-profiles from the mesh (Figure 11e).

The profiles are processed to create a small, yet representative, set

of clean-profiles, C.
First, we align the mesh to the GIS footprints using the GPS

position associated with the mesh. We use the GIS footprint bound-

ary to discard mesh geometry more than a street-lane width away

(typically 4m) from the building-block of interest.

We found horizontal-lines to be good indicators of predominant

directions in architectural meshes; they also support the strong

horizontal edges that are characteristic of PEs. To find such lines, we

slice the mesh horizontally (we used 20cm intervals), and simplify

each such slice using polyline fitting (Figure 11a). Because the mesh

may have holes and noise, we use the directions in the GIS footprints

to regularize the line fitting (Figure 11b). Specifically, if lines are

within 20
◦
of the closest GIS edge, they are rotated to match the GIS

line’s orientation.

We now cluster the fitted horizontal-lines based on their ori-

entation to identify prominent-faces of the building-block (e.g., a

south-facing wall). The seed of the cluster is the longest horizontal-

line (Figure 11c, bold). From this seed-line we progressively build the

cluster by adding neighboring lines (from slices above and below) in

a “floodfill” fashion, ensuring that each line’s orientation matches

that of the seed-line (within 20
◦
). Such a cluster of lines defines a

prominent-face over the mesh. We continue to create prominent-

faces by taking the next longest unused horizontal-line as a seed

and repeating the floodfill. We discard any prominent-faces that

cover a small area of the mesh; we use a threshold of approximately

30m2
, which balances preserving detail with removing noise.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

BigSUR: Large-scale Structured Urban Reconstruction • 204:9

a b c d e

Fig. 11. Sweep-edges and profile analysis. A horizontal slice of the mesh (a, orange), has polylines fitted to it (b) and is regularized by the GIS information (b,
green). These are clustered from the seed-lines (c, bold lines), and the associated prominent-faces (d), which can be used to find the raw-profiles (e).

The prominent-faces are now sampled to obtain profiles (Fig-

ure 11d). A profile is a weakly y-monotone polychain (i.e., every

point is greater, or equal, in height to every preceding point). This

monotonic property is required by PEs, which we observe is satis-

fied by a large majority of building types. We continue to extract a

set of raw-profiles directly from the 3D mesh; the mesh is sliced per-

pendicularly to the seed-line’s direction at regular intervals (20cm).

Nearly horizontal mesh faces (with a normal approximately 5
◦
from

vertical), or those not associated with the prominent-face are ig-

nored. We create a raw-profile by traversing a portion of the slice,

starting at the closest point on the slice to the prominent-face’s

seed-line. The traversal takes place upwards and downwards, select-

ing monotonic line-segments from the slice to add to the profile. It

jumps over small gaps and non-monotonic sections of the slice by

searching for the next point in a small locale (approximately 2m).

We now use the raw-profiles to find a smaller, yet representative,

set of clean-profiles, C. We first cluster the raw-profiles along each

sweep-edge using profile distance. Given two monotone profiles, pi
and pj , we define the profile difference at a height, y, as

δ (pi ,pj ,y) =




√
(x (pi ,y) − x (pj ,y))2 + 4(∠(pi ,y) − ∠(pj ,y))2

if pi and pj are defined at height y,

10 otherwise.

Fig. 12. Raw- and clean-profiles. Left: Each color represents a cluster of
adjacent and similar raw-profiles from Figure 1. Right: A cluster of raw-
profiles (grey) has line segments fitted to it (purple) and is finally regularized
to yield a clean-profile (blue).

where x (pi ,y) and ∠(pi ,y) are, respectively, the x-position and an-

gle (in radians), of profile pi at height y. When the profiles range

between heights yl and yu , the cumulative distance function is then

the mean horizontal distance between the profiles discretized over

the vertical range [yl ,yu] as

d (pi ,pj ,yl ,yu) :=
∑

y∈[yl ,yu]

δ (pi ,pj ,y)/(yu − yl).

The raw-profiles are clustered by examining consecutive profiles

along each sweep-edge, starting a new cluster whenever

d (plast ,pnext , 0,maxY (plast ,pnext)) > t ,

where t is a threshold value andmaxY (pi ,pj) is themaximumheight

of profiles pi and pj . Small clusters with fewer than five profiles

are discarded. Empirically, we find that forming clusters from such

contiguous portions of sweep-edges gave better results than tech-

niques such as spectral clustering, because it prioritizes the strong

spatial-correlation between adjacent raw-profiles. Examples of such

clusters are shown in Figure 12-left.

To create a simplified clean-profile from each cluster of raw-

profiles, we fit a set of line segments (Figure 12-right). Using strong

architectural priors, we regularize these lines into a clean-profile.

Because of the low resolution of our input meshes, we found we

could aid regularization by requiring the profiles to be both verti-

cally and horizontally monotonic (note that PEs require only that

the profiles be vertically monotonic).

We used the following rules to create the clean-profiles (see Fig-

ure 12-right): (i) lines that are nearly horizontal or vertical are

snapped to these orientations. Near the ground, this snapping is

very aggressive to mitigate the effect of occluders; (ii) lines that do

not form part of vertically and horizontally monotonic profiles are

either removed or sliced so that they do; (iii) lines that are near the

ground are extended to the ground; and, finally, (iv) if two adjacent

lines could be extended to intersect within 2m of an end of both

lines, we extend the lines to this intersection. We add the resulting

clean-profile to the profile set, C.

A large number of clean-profiles in C are computationally expen-

sive in the optimization stage (Section 4). Hence, we aggressively

reduce them by: (i) removing pairs of similar profiles from the pool

using d (we used d () < 1); (ii) discarding any profile that is not pre-

ferred by some cluster of raw profiles, and (iii) replacing all simple

vertical profiles with a single vertical profile at the start of C.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

204:10 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

Positive Negative Edge Ignored

Fig. 13. Training data and façade classification. Top-left: The ground truth
used to for the ‘Façade’ and ‘Window’ labels. Remainder: The source image
(top-right) used to compare a model trained to recognize a single set of
disjoint labels (bottom-left) with one trained to recognize independent sets
of labels for each type of feature with edge labels (bottom-right). Each model
was trained for 150 Epochs. The second option leads to crisper features.

Finally, for each prominent-

face, we compute a sweep-
edge. Sweep-edges repre-

sent potential wall posi-

tions over the ground plane,

and, along with suitable

vertical clean-profiles, cre-

ate the 3D mass models. We find a sweep-edge by projecting the

seed-line of each prominent-face onto the ground plane (inset; or-

ange line), and offsetting it to lie close to the start of the profiles

(inset; pink line). This offset is necessary because the found seed-line

may not be on the structure’s wall. The offset is the mean horizontal

distance from the seed-line to the bottom of the raw-profiles. This

set of sweep-edges, S, represents the potential wall-positions.

5.2 Acquiring Street-level Imagery
We use street-level imagery from Google StreetView (GSV) to esti-

mate the locations of façade elements such as windows, balconies,

doors, and moldings, as well as the locations of façade boundaries.

Unprocessed GSV images are 360
◦
panoramas including approxi-

mate pose data (position and orientation of the rig used to capture

the images) that are estimated using GPS and a variety of additional

techniques described by Anguelov et al. [2010]. Based on the GSV

pose information and GIS footprints, we project the GSV panorama

images onto the expected façade plane to obtain a (roughly) rectified

projected image.
These projected images are generated at a resolution of 40 pixels /

meter. We crop the images to a fixed horizontal field of view of 120
◦
.

This is centered on the projection of the paranorama center onto

the façade plane. We use a fixed field of view to avoid distortion

caused by projecting the panorama at extreme angles. This results in

more than one overlapping image of each façade and many images

containing only a portion of a façade. We note that some façades

have no GSV images because of legal and physical constraints on

photography. A typical example of missing imagery is the private

courtyards found in the center of many European city blocks. Next,

we describe how to find façade features in the projected images.

µ

µ + σ

Fig. 14. Finding façade extents. Left: We split images with multiple façades
based on the peaks of the vertical sums of the façade ‘Edge’ scores that are
output by the segmenter (superimposed in blue over the image); façades
are split at the highest point of each interval where the projection’s value is
more than one standard deviation (σ) above its mean (µ). Right: The integral
of the detected ’Sky’ label (green) is used with a threshold to identify the
top of the façade.

5.3 Analyzing Street-level Imagery
Starting from input street-level imagery, our goal is to detect each

façade’s location and dimension, and its building elements (e.g.,

windows, balconies, etc.). A building-façade records this information

for one image and one estimated façade; we refer to the set of

building-façades as B.

In practice, we found the GSV pose estimates to be insufficient to

produce projected street-level imagery that is sufficiently aligned

with GIS data. In the example of London, we observed overlaid

GSV imagery to deviate from GIS building footprints by nearly 3m

on the façade plane, or 5
◦
in GSV panoramas. Therefore, a pre-

processing step removes parts of the images that are unlikely to

be part of a façade and then rectifies each image. The unwanted

features are segmented and masked-out using the Bayesian SEGNET
CNN [Badrinarayanan et al. 2017; Kendall et al. 2015]. This network

was trained on urban street scenes using CamVid data [Brostow et al.

2008] and then refined using CityScapes data [Cordts et al. 2016] to

identify parts of images that are likely to have façade features. We

then rectify based on the edges within that region using the method

proposed by Affara et al. [2016].

Next, we identify the façade elements within these rectified im-

ages. We refine the probabilistic Bayesian SEGNET architecture to

segment a set of labels for architectural façade element features

using the CMP Facade dataset [Tylecek 2012], the dataset used

by Affara et al. [2016], and an additional dataset of 800 facades

that we annotated directly from GSV images of London, Oviedo,

and New York. We use this SEGNET-FACADE model (available

at: https://github.com/jfemiani/facade-segmentation) to assign per-

pixel probabilities to the images for each feature class.

Traditional segmentation approaches, including SEGNET, assign

a single label to each pixel in an image. In contrast, we treat façade

segmentation as a number of separate labeling tasks, one for each

class of façade element (window, shop, balcony, molding, door etc.),

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

https://github.com/jfemiani/facade-segmentation

BigSUR: Large-scale Structured Urban Reconstruction • 204:11

Fig. 15. Oviedo, Manhattan, and London. City blocks from Oviedo (left, center-left), Manhattan (center-right) and London: Little Portland Street (right, as
Figure 1). Top: Our results. Bottom: input GIS footprints (green) and optimization output floorplans (blue). See also Table 1.

and one for the façade extent itself. Each task assigns one of four

labels to each pixel; ‘Negative’, ‘Positive’, ‘Unspecified’ (which is

ignored), or ‘Edge’. The ’Edge’ label is automatically assigned to a

thin region (6 pixels spanning an estimated 15cm) around the edge of

each feature, with the exception of vertical façade edges, where the

‘Edge’ label is assigned to a wider region (15 pixels wide, spanning

approximately 38cm). Using a separate ‘Edge’ label ensures more

weight is given to the training-loss in these pixels due to median

frequency balancing [Eigen and Fergus 2015]. Empirically, these

improvements result in sharper features, as shown in Figure 13,

which is useful for isolating individual feature instances. The CNN

processes images at a resolution of 512 × 512 pixels. We rescale

all images to a height of 512 pixels and crop the widths. During

inference, several horizontal tiles are used to cover an image.

The GSV images often contain multiple façades, and it is impor-

tant to separate them into different individual building-façades for

the optimization. At the inference stage, we sum each pixel col-

umn’s Bayesian SEGNET-FACADE scores for the ‘Edge’ label. This

one-dimensional signal peaks at each façade boundary. The signal

is dilated by 60 pixels (1.5m) in order to merge the dual-peaks that

can occur if the street-level imagery is imperfectly rectified, or if

there are stitching artifacts (see Figure 14). We extract peaks as local

maxima that are more than one standard deviation above the mean

of the dilated signal (see Figure 14-left). Each façade image is split at

these peaks to produce building-façades. For each building-façade,

we produce axis-aligned bounding boxes of all features as shown

in Figure 14-right. In order to estimate the height of each building-

façade, we use the original SEGNET to label pixels as ‘Sky’. The 85
th

percentile of the scores at each pixel-row forms a one dimensional

sky signal (see the green region of Figure 14-right). The top of the

façade is the lowest point where the sky signal crosses 50%. These

width and height estimates are assigned to each building-façade and

used in the optimization stage. Because we know the location of the

façade image-plane in R3, the building-façade has an estimated 3D

position, as do the associated features.

5.3.1 Training and Evaluation. We trained SEGNET-FACADE on

80% (1173 images) of the data we collected, an additional 20% (293

images) were used to evaluate the precision, recall, and F1-scores of
our approach. SEGNET-FACADE obtained a per-pixel precision of

96%, recall of 69%, and an F1 of 0.80. By comparison SEGNET trained

on the same data obtained a per-pixel precision of 73%, recall of 62%

and an F1 of 0.67. We also evaluated per-object precision by defining

a successful match between objects as an intersection-over-union

over 50%. The per-object scores gave a precision of 88%, recall of

68%, and an F1 score of 0.77. We consider these to be useful results

as many of the façade images were collected “in the wild” from

GSV and imperfectly rectified. In comparison, SEGNET acheived

precision of 36% and recall of 28%, with an F1 of 0.32. The recent
method of Affara et al. [2016] had a per-object precision of 85%,

recall of 52%, and an F1 score of 0.64 on the same data.

5.3.2 Collecting color estimates. Although a façade may contain

a variety of texture and color patterns, we limit ourselves to a single

color; additional color variation comes from the inclusion of façade

elements with fixed colors, such as windows, molding, cornices,

sills, and balconies. To estimate the color of the walls, we mask

out all regions that have been identified as any other feature and

estimate the mode color in the remaining pixels. Specifically, we

use the Lab color space and select 50 colors randomly from the

(unmasked) façade. The color with the most matches is selected

as representative of the façade. Optionally, a separate color can be

used for the ground floor and for the higher stories. In this case, we

estimate the ground floor height by finding the highest row in the

image with the ‘Shop’ label.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

204:12 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

Fig. 16. London: Oxford Circus blocks. Structured urban reconstruction spanning 37 blocks and 1,011 buildings.

6 RESULTS
We implemented the proposed framework using Java and Python;

the sourcecode is available online at the project page (http://geometry.

cs.ucl.ac.uk/projects/2017/bigsur). We used Gurobi [Gurobi 2016]

for binary integer programming and Caffe [Jia et al. 2014] for the

CNN-based classification. The timings were recorded on an i7-7700K

desktop (with the exception of the Oxford Circus example).

We demonstrate our framework on building blocks from different

cities: Detroit (see Figure 17), Manhattan and Oviedo (see Figure 15),

and London (see Figure 1 for Little Portland Street and Figure 16

for Oxford Circus). We selected building blocks to show a variety of

inputs, from free standing single-family houses in Detroit to dense

urban areas in the other three selected cities. We selected cities with

Table 1. Details for Figure 15. Values are given for location, number of clean
profiles (|C |) and sweep edges (|S |), binary variables (vars) and constraints
(constr), number of output footprints (fp), and the solve times.

Fig:col location |C| |S| vars constr fp solve

(lat,long) out time

15:1 43.36635, 75 61 32,242 73,193 34 15h

-5.83256

15:2 43.36584, 73 56 74,694 148,945 38 5h

-5.83189

15:3 40.72191, 46 30 23,172 49,941 37 4h

-74.00131

1:1 51.51724, 58 60 45,249 88,171 28 4h

15:4 -0.14199

Fig. 17. Detroit. Without building-façades, our technique exhibits strong
architectural regularization with the coarse mesh (pink) and GIS footprint
(green, no interior edges) as inputs. See Table 2 for details.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

http://geometry.cs.ucl.ac.uk/projects/2017/bigsur
http://geometry.cs.ucl.ac.uk/projects/2017/bigsur

BigSUR: Large-scale Structured Urban Reconstruction • 204:13

Table 2. Details for Figure 17, columns as in Table 1.

Fig:row location |C| |S| vars solve

(lat,long) time

17:1 42.38458, 9 5 196 0.01s

-82.95086

17:2 42.38458, 8 7 657 0.05s

-82.95084

17:3 42.38587, 6 4 165 0.00s

-82.95165

17:4 42.38614 23 13 1,799 2.92s

-82.95125

17:5 42.38350, 37 14 1,494 0.3s

-82.94954

accessible mesh and GIS data. In our experiments, we found most

of the parameters to be stable when the input data quality remained

consistent. Typically, we adjusted two parameters before running

the optimization: the thresholds for the creation of G and the mesh

area for ignoring small clusters of horizontal lines. These parameter

adjustments are relatively interactive because they occur before the

slow BIP optimization.

6.1 Timings
The computation times are dominated by the time it takes to com-

pute a solution to the binary integer program. We list details of this

optimization for selected blocks in Tables 1 and 2. Other compo-

nents that contribute to the runtime are image processing to extract

building-façades (about 45 seconds per image), mesh processing to

extract sweep-edges and clean-profiles (less than 20 seconds per

block), grid-based regularization of façade elements (less than 3

seconds per façade), basic mass model construction (less than 10 sec-

onds per block), and façade element insertion into the mass models

(less than 10 seconds per block).

6.2 Comparison
We compared our work to other related algorithms in Figure 19. As

there exists no competing work to fuse multiple data sources, we

limited our comparison to the processing of mass models. Therefore,

we did not use GIS footprints or building-façades as input to any

of the algorithms for this comparison; we used only the polygon

soup meshes. To select competing work, we limited our choices to

methods that had sourcecode available or where the authors helped

us to generate results. The first method in our comparison is Poisson

reconstruction [Kazhdan et al. 2006], which can fill some smaller

holes in the input, but the output looks similar to the input. Fit-

ting a polygonal model using the Manhattan-world assumption [Li

et al. 2016] works well when the geometry conforms to such an

assumption. However, we can see that over sloped roofs and within

a larger block of buildings, the surface orientations vary too much,

allowing the algorithm to produce good results on only one of the

three inputs. Finally, we compare our method to structure-aware

mesh decimation [Salinas et al. 2015], which also produces good

results, but only a part of the model is simplified.

6.3 Little Portland Street
Finally, we also provide results for a larger area in London consisting

of 37 building blocks and 1,011 buildings (see Fig. 16). We used 738

images to find 2,716 building-façades giving rise to 19,377 detected

features. We used a fixed computational budget of 1 hr for small

blocks and 4 hrs for large blocks; the optimization returns the best

solution found within the given time. A 40 core (10× E5-2630) server

was used for this example.

6.4 Limitations
Our system suffers from a few limitations. The PE representation of

our mass models uses straight-line segments for footprint-polygons

and profiles, so we cannot correctly capture freeform buildings (e.g.,

buildings with a curved front or requiring a curved profile as in

Figure 18). In addition, our aggressive profile processing has the

consequence that overhanging structures cannot be represented

(e.g., bridges or balconies). Another source of error is misclassifi-

cations of façade imagery. This is particularly the case when our

classifier encounters datasets with building styles for which it has

not been trained. We found datasets from certain European cities

to be particularly challenging as the street-level imagery had to be

obtained from narrow streets and alleys, resulting in strong perspec-

tive distortions. Other reasons for low accuracy classification results

are very tall buildings, untrained features (e.g., fire escapes, buses,

statues, etc.), or recessed floors that are not visible from street-level

imagery. While we expect that our classification results will con-

tinue to improve with access to more annotated training data, in

the interim, allowing the user to correct mistakes would be a good

alternative. Another observed failure case occurs when roof gutters

do not align to detected building-façade boundaries, as our opti-

mization assumes such situations are noisy data. Finally, our core

Fig. 18. Limitations. (Top) Curved façades can become over-fragmented
during sweep-line fitting and then adversely affect the street-level imagery
analysis stage, resulting in missed building-façade elements. (Bottom) An-
other limitation is handling buildings with curved profiles.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

204:14 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

Fig. 19. Comparison. Columns left to right, input polygon soup mesh, Poisson reconstruction [Kazhdan et al. 2006], Manhattan box fitting [Li et al. 2016],
Structure-Aware Mesh Decimation [Salinas et al. 2015] and our technique (without GIS footprints or building-façade inputs).

optimization relies on a BIP solver that globally combines the input

data sets. This prevents us from developing an interactive system

because the resulting optimization can run for multiple hours for

larger city blocks. However, because the actual coupling is at the

city-block level, the problem does not amplify with increasing city

size as long as the complexity of the city blocks remains constant.

7 CONCLUSION
We present a system to fuse partial and heterogeneous sources of

data, specifically building footprints from GIS databases, polygonal

meshes (polygon soup), and street-level imagery, to produce plausi-

ble structured models for densely-built building-blocks. Technically,

we achieve this by formulating a binary integer program that si-
multaneously considers how to partition the ground plane, assign

profiles, and position building-façades. In the process, we globally

balance information from incomplete and inconsistent input data to

produce a semantically consistent structured model. We evaluated

our system on large scale datasets, spanning multiple urban blocks,

to produce semantic results at a scale and quality not previously pos-

sible using state-of-the-art automated workflows. Incidentally, we

introduced a new CNN for detecting façade elements (e.g., windows,

doors, etc.) on real-world images, and a mesh processing framework

to decompose architectural meshes into footprints and profiles.

Our work opens up several future research directions. As an im-

mediate next step, we would like to evaluate our CNN on other

city datasets, and collect additional training data (i.e., labels) on

façade images from a wider range of cities to improve classifica-

tion accuracy. Another interesting direction is to develop a semi-

automatic system to allow users to edit inaccurate footprints, pro-

files, building-façades, or façade elements, to improve the output

quality. For example, the user can mark a few smaller features, such

as fire-escapes or air-conditioning units, which can then be used to

refine city-specific feature detectors. In the longer-term, we envision

a two-stage dynamic city-modeling tool, where a few city blocks are

initially reconstructed using our proposed system. Once the models

are approved by the user, the structured model can be used to obtain

a style description of buildings in the city. Such a description can

then be used for wider-scale data integration, allowing us to handle

large areas of missing data. Thus, the first round of results would act

as a prior to synthesize missing information. This workflow would

make it feasible to rapidly produce high-quality structured models

of entire cities.

ACKNOWLEDGEMENTS
We would like to thank the many people who contributed to this pa-

per; the reviewers, image labellers, and others who readmanuscripts,

each made valuable contributions. In particular, we thank Florent

Lafarge, Pierre Alliez, Pascal Müller, and Lama Affara for providing

us with comparisons, software, and sourcecode, as well as Virginia

Unkefer, Robin Roussel, Carlo Innamorati, and Aron Monszpart

for their feedback. This work was supported by the ERC Starting

Grant (SmartGeometry StG-2013-335373), KAUST-UCL grant (OSR-

2015-CCF-2533), the KAUST Office of Sponsored Research (award

No. OCRF-2014-CGR3-62140401), the Salt River Project Agricul-

tural Improvement and Power District Cooperative Agreement No.

12061288, and the Visual Computing Center (VCC) at KAUST.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

BigSUR: Large-scale Structured Urban Reconstruction • 204:15

A REPRESENTING BOOLEAN OPERATORS IN A BIP
In this appendix, we note that arbitrary Boolean relationships (∧,

∨, ⊕, ¬, = etc.) can be encoded as IP constraints with additional

variables and constraints (see [Chinneck 2008]); such variables are

omitted from the main text, but some examples are given in Table 3.

Modern IP solvers [Gurobi 2016] are very efficient at solving such

trivially constrained sets of variables. Finally, we recall that the

logical disjuction of a binary selection vector,

r = χ1 ∨ · · · ∨ χn ,

can be more efficiently implemented as a summation, given that

only one element will take the value 1, as

r =
n∑
i=1

χi .

Table 3. Expressing Boolean operations in a BIP.

expression c = a ∧ b c = a ⊕ b c = a ∨ b

BIP encoding

c ≥ a + b − 1

c ≤ a

c ≤ b,

c ≤ a + b

c ≥ a − b

c ≥ b − a

c ≤ 2 − a − b

c ≤ a + b

c ≥ a

c ≥ b

B AVOIDING BAD GEOMETRY
The ground tessellation, G, is

created by a variety of data

sources. Hence, it can contain un-

likely combinations of edge se-

lections that we wish to avoid.

For example, edges that are par-

allel, and in close proximity with

one another, may create skinny

footprint-polygons, while pairs of edges with a small angle be-

tween them may produce pointed polygons. Such details are un-

architectural, and we can optionally add a term to our optimization

that penalizes undesirable pairs of edges within a polygon (this term

was used in the Little Portland Street example shown in Figure 1).

We find pairs of edges within each face that we wish to penalize,

bad (G). This set contains pairs of edges that are approximately

parallel, and less than 2.5m apart, or are adjacent with an angle less

than 30
◦
(pairs of such lines are shown in pink and blue in the above

inset). Entries from this set can be discouraged by only selecting

one edge from each pair; we model such a penalty term as

O7 ({s
k }) :=

∑
(ei ,ej)∈bad (G)

si ∧ s j

with a large weight of α7 = 0.5
∑
ek ∈G ∥ek ∥.

REFERENCES
Lama Affara, Liangliang Nan, Bernard Ghanem, and Peter Wonka. 2016. Large Scale

Asset Extraction for Urban Images. ECCV (2016), 437–452.

Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. 1996. A

novel type of skeleton for polygons. In The Journal of Universal Computer Science.
Springer, 752–761.

Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh, Stéphane Lafon,

Richard Lyon, Abhijit Ogale, Luc Vincent, and Josh Weaver. 2010. Google street

view: Capturing the world at street level. Computer 43, 6 (2010), 32–38.
Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE TPAMI
(2017).

Therese Biedl, Stefan Huber, and Peter Palfrader. 2016. Planar matchings for weighted

straight skeletons. International Journal of Computational Geometry & Applications
26, 03n04 (2016), 211–229.

Claus Brenner. 2005. Building reconstruction from images and laser scanning. In-
ternational Journal of Applied Earth Observation and Geoinformation 6, 3 (2005),

187–198.

Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. 2008. Segmen-

tation and Recognition Using Structure from Motion Point Clouds. ECCV (2008),

44–57.

Duygu Ceylan, Minh Dang, Niloy J. Mitra, Boris Neubert, and Mark Pauly. 2016. Dis-

covering Structured Variations Via Template Matching. CGF (01 2016).

Duygu Ceylan, Niloy J. Mitra, Youyi Zheng, and Mark Pauly. 2013. Coupled Structure-

from-Motion and 3D Symmetry Detection for Urban Facades. ACM TOG (2013),

15.

John W. Chinneck. 2008. Feasibility and Infeasibility in Optimization: Algorithms and
Computational Methods. Springer.

Andrea Cohen, Alexander G Schwing, and Marc Pollefeys. 2014. Efficient structured

parsing of facades using dynamic programming. IEEE CVPR (2014), 3206–3213.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,

Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016. The Cityscapes

Dataset for Semantic Urban Scene Understanding. In IEEE CVPR.
Dengxin Dai, Mukta Prasad, Gerhard Schmitt, and Luc Van Gool. 2012. Learning domain

knowledge for facade labelling. ECCV (2012), 710–723.

Paul E Debevec, Camillo J Taylor, and Jitendra Malik. 1996. Modeling and rendering

architecture from photographs: A hybrid geometry-and image-based approach.

ACM SIGGRAPH (1996), 11–20.

Anthony RDick, Philip HS Torr, and Roberto Cipolla. 2004. Modelling and interpretation

of architecture from several images. IJCV 60, 2 (2004), 111–134.

David Eigen and Rob Fergus. 2015. Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture. IEEE ICCV (2015),

2650–2658.

David Eppstein and Jeff Erickson. 1999. Raising roofs, crashing cycles, and playing

pool: Applications of a data structure for finding pairwise interactions. Discrete &
Computational Geometry 22, 4 (1999), 569–592.

Tian Fang, Zhexi Wang, Honghui Zhang, and Long Quan. 2013. Image-based modeling

of unwrappable facades. IEEE TVCG 19, 10 (2013), 1720–1731.

K. Fukunaga and L. Hostetler. 1975. The estimation of the gradient of a density function,

with applications in pattern recognition. IEEE TIT 21, 1 (January 1975), 32–40.

Yasutaka Furukawa and Jean Ponce. 2010. Accurate, dense, and robust multiview

stereopsis. IEEE PAMI 32, 8 (2010), 1362–1376.
Ignacio Garcia-Dorado, Ilke Demir, and Daniel G Aliaga. 2013. Automatic urban

modeling using volumetric reconstruction with surface graph cuts. Computers &
Graphics 37, 7 (2013), 896–910.

Aleksey Golovinskiy, Vladimir G Kim, and Thomas Funkhouser. 2009. Shape-based

recognition of 3D point clouds in urban environments. IEEE ICCV (2009), 2154–2161.

Gurobi. 2016. Gurobi Optimizer Reference Manual. (2016). http://www.gurobi.com

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional Archi-

tecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).
Haiyong Jiang, Liangliang Nan, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and

Peter Wonka. 2016. Automatic constraint detection for 2D layout regularization.

IEEE TVCG 22, 8 (2016), 1933–1944.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Recon-

struction. SGP (2006), 61–70.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.

ACM TOG 32, 3 (2013), 29.

Tom Kelly and Peter Wonka. 2011. Interactive architectural modeling with procedural

extrusions. ACM TOG 30, 2 (2011), 14.

Alex Kendall, Vijay Badrinarayanan, , and Roberto Cipolla. 2015. Bayesian SegNet:

Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene

Understanding. arXiv preprint arXiv:1511.02680 (2015).
Mateusz Kozinski, Raghudeep Gadde, Sergey Zagoruyko, Guillaume Obozinski, and

Renaud Marlet. 2015. A MRF shape prior for facade parsing with occlusions. IEEE
CVPR (2015), 2820–2828.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

http://www.gurobi.com

204:16 • Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra

Florent Lafarge, Xavier Descombes, Josiane Zerubia, and Marc Pierrot-Deseilligny. 2010.

Structural approach for building reconstruction from a single DSM. IEEE TPAMI 32,
1 (2010), 135–147.

Robert G Laycock and AM Day. 2003. Automatically generating large urban environ-

ments based on the footprint data of buildings. ACM SMA (2003), 346–351.

Minglei Li, Peter Wonka, and Liangliang Nan. 2016. Manhattan-world urban recon-

struction from point clouds. ECCV (2016), 54–69.

Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei Sharf, Daniel Cohen-Or, and

Niloy J Mitra. 2011a. Globfit: Consistently fitting primitives by discovering global

relations. ACM SIGGRAPH 30, 4 (2011), 52.

Yangyan Li, Qian Zheng, Andrei Sharf, Daniel Cohen-Or, Baoquan Chen, and Niloy J

Mitra. 2011b. 2D-3D fusion for layer decomposition of urban facades. IEEE ICCV
(2011), 882–889.

Hui Lin, Jizhou Gao, Yu Zhou, Guiliang Lu, Mao Ye, Chenxi Zhang, Ligang Liu, and

Ruigang Yang. 2013. Semantic decomposition and reconstruction of residential

scenes from LiDAR data. ACM SIGGRAPH 32, 4 (2013), 66.

Anđelo Martinović, Markus Mathias, Julien Weissenberg, and Luc Van Gool. 2012. A

three-layered approach to facade parsing. ECCV (2012), 416–429.

Bogdan C Matei, Harpreet S Sawhney, Supun Samarasekera, Janet Kim, and Rakesh

Kumar. 2008. Building segmentation for densely built urban regions using aerial

lidar data. IEEE CVPR (2008), 1–8.

Peter Miller et al. 2017. Buildings - OpenStreetMap Wiki. (2017). Retrieved August 8,

2017 from http://wiki.openstreetmap.org/wiki/Buildings

Aron Monszpart, Nicolas Mellado, Gabriel J Brostow, and Niloy J Mitra. 2015. RAPter:

rebuilding man-made scenes with regular arrangements of planes. ACM SIGGRAPH
34, 4 (2015), 103–1.

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.

Procedural modeling of buildings. ACM SIGGRAPH 25, 3 (2006), 614–623.

Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. 2007. Image-based proce-

dural modeling of facades. ACM SIGGRAPH 26, 3 (2007), 85.

Przemyslaw Musialski, Peter Wonka, Daniel G Aliaga, Michael Wimmer, L v Gool, and

Werner Purgathofer. 2013. A survey of urban reconstruction. CGF 32, 6 (2013),

146–177.

Liangliang Nan, Caigui Jiang, Bernard Ghanem, and Peter Wonka. 2015. Template

assembly for detailed urban reconstruction. CGF Eurographics 34, 2 (2015), 217–228.
Liangliang Nan, Andrei Sharf, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2010.

Smartboxes for interactive urban reconstruction. ACM SIGGRAPH 29, 4 (2010), 93.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and Adrien

Bousseau. 2016. Interactive sketching of urban procedural models. ACM SIGGRAPH
35, 4 (2016), 130.

Charalambos Poullis and Suya You. 2009. Automatic reconstruction of cities from

remote sensor data. IEEE CVPR (2009), 2775–2782.

Hayko Riemenschneider, Ulrich Krispel, Wolfgang Thaller, Michael Donoser, Sven

Havemann, Dieter Fellner, and Horst Bischof. 2012. Irregular lattices for complex

shape grammar facade parsing. IEEE CVPR (2012), 1640–1647.

David Salinas, Florent Lafarge, and Pierre Alliez. 2015. Structure-Aware Mesh Decima-

tion. CGF 34, 6 (2015), 211–227.

Chao-Hui Shen, Shi-Sheng Huang, Hongbo Fu, and Shi-Min Hu. 2011. Adaptive parti-

tioning of urban facades. ACM SIGGRAPH Asia 30, 6 (2011), 184.
Noah Snavely, Steven M Seitz, and Richard Szeliski. 2006. Photo tourism: exploring

photo collections in 3D. ACM SIGGRAPH 25, 3 (2006), 835–846.

Olivier Teboul, Iasonas Kokkinos, Loic Simon, Panagiotis Koutsourakis, and Nikos

Paragios. 2013. Parsing facades with shape grammars and reinforcement learning.

IEEE TPAMI 35, 7 (2013), 1744–1756.
Radim Tylecek. 2012. The CMP facade database. Technical Report. Tech. rep., CTU–

CMP–2012–24, Czech Technical University.

Carlos A Vanegas, Daniel G Aliaga, and Bedřich Beneš. 2010. Building reconstruction

using manhattan-world grammars. IEEE CVPR (2010), 358–365.

Yannick Verdie, Florent Lafarge, and Pierre Alliez. 2015. LOD generation for urban
scenes. Technical Report 3. 30:1–30:14 pages. https://doi.org/10.1145/2732527

Jianxiong Xiao, Tian Fang, Ping Tan, Peng Zhao, Eyal Ofek, and Long Quan. 2008.

Image-based façade modeling. ACM SIGGRAPH Asia 27, 5 (2008), 161.
Chao Yang, Tian Han, Long Quan, and Chiew-Lan Tai. 2012. Parsing façade with

rank-one approximation. IEEE CVPR (2012), 1720–1727.

Qian Zheng, Andrei Sharf, Guowei Wan, Yangyan Li, Niloy J Mitra, Daniel Cohen-Or,

and Baoquan Chen. 2010. Non-local scan consolidation for 3D urban scenes. ACM
SIGGRAPH 29, 4 (2010), 94.

Qian-Yi Zhou and Ulrich Neumann. 2010. 2.5D dual contouring: a robust approach to

creating building models from aerial lidar point clouds. ECCV (2010), 115–128.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 204. Publication date: November 2017.

http://wiki.openstreetmap.org/wiki/Buildings
https://doi.org/10.1145/2732527

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reconstructing mass models
	2.2 Façade parsing
	2.3 Interactive reconstruction

	3 Problem Setup
	3.1 GIS footprints
	3.2 Coarse 3D mesh
	3.3 Street-level façade images
	3.4 Notation

	4 Fusion Optimization
	4.1 Formulation
	4.2 Creating the Structured Model

	5 Implementation Details
	5.1 Extracting Sweep-edges and Profiles
	5.2 Acquiring Street-level Imagery
	5.3 Analyzing Street-level Imagery

	6 Results
	6.1 Timings
	6.2 Comparison
	6.3 Little Portland Street
	6.4 Limitations

	7 Conclusion
	A Representing Boolean Operators in a BIP
	B Avoiding Bad Geometry
	References

