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Abstract

While the basic laws of Newtonian mechanics are well
understood, explaining a physical scenario still requires
manually modeling the problem with suitable equations and
estimating the associated parameters. In order to be able
to leverage the approximation capabilities of artificial in-
telligence techniques in such physics related contexts, re-
searchers have handcrafted the relevant states, and then
used neural networks to learn the state transitions using
simulation runs as training data. Unfortunately, such ap-
proaches are unsuited for modeling complex real-world sce-
narios, where manually authoring relevant state spaces tend
to be tedious and challenging. In this work, we investigate
if neural networks can implicitly learn physical states of
real-world mechanical processes only based on visual data
while internally modeling non-homogeneous environment
and in the process enable long-term physical extrapolation.
We develop a recurrent neural network architecture for this
task and also characterize resultant uncertainties in the form
of evolving variance estimates. We evaluate our setup to
extrapolate motion of rolling ball(s) on bowls of varying
shape and orientation, and on arbitrary heightfields using
only images as input. We report significant improvements
over existing image-based methods both in terms of accu-
racy of predictions and complexity of scenarios; and report
competitive performance with approaches that, unlike us,
assume access to internal physical states.

1. Introduction

Animals can make remarkably accurate and fast predic-
tions of physical phenomena in order to perform activities
such as navigate, prey, or burrow. However, the nature of the
mental models used to perform such predictions remains un-
clear and is still actively researched [Hamrick et al., 2016].

In contrast, science has developed an excellent formal
understanding of physics; for example, mechanics is nearly
perfectly described by Newtonian physics. However, while
the constituent laws are simple and accurate, applying them

to the description of a physical scenario is anything but
trivial. First, the scenario needs to be abstracted (e.g., by
segmenting the scene into rigid objects, deciding which equa-
tions to apply, and estimating physical parameters such as
mass, linear and angular velocity, etc.). Then, prediction still
requires the numerical integration of complex systems of
equations. It is unlikely that this is the process of mental
modeling followed by natural intelligences.

In an effort to develop models of physics that are more
suitable for artificial intelligence, in this work, we ask
whether a representation of the physical state of a mechan-
ical system can be learned implicitly by a neural network,
and whether this can be used to perform accurate predictions
efficiently (i.e., extrapolating to predict future events). To
this end, we propose a new learnable representation with
several important properties. First, the representation is not
handcrafted, but rather automatically induced from visual
observations. Second, the representation is distributed and
can model physical interactions of objects with complex sur-
rounding, such as irregularly-shaped ground. Third, despite
its distributed nature, the representation can model a num-
ber of interacting discrete objects such as colliding balls,
without the need of ad-hoc components such as collision
detection subnetworks. Fourth, since physical predictions
integrate errors over time and are thus inherently ambiguous,
the representation produces robust probabilistic predictions
which model such ambiguity explicitly. Finally, through ex-
tensive evaluation, we show that the representation performs
well for both extrapolation and interpolation of mechanical
phenomena.

Our paper is not the first that looks at learning to pre-
dict mechanical phenomena using deep networks, but, to
the best of our knowledge, it is the first to achieve most of
the benefits listed above, particularly when these are com-
bined. For example, the recent Neural Physics Engine (NPE)
of [Chang et al., 2017] uses a neural network to learn the
state transition function of mechanical systems. Differently
from our approach, their state is handcrafted and includes
physical parameters such as positions, velocities, and masses
of rigid bodies. While NPE works well, it still requires to
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abstract the physical system manually, by identifying the
objects and their physical parameters, and by explicitly in-
tegrating such parameters. In contrast, our abstractions are
entirely induced from external observations of object mo-
tions. Hence, our system implicitly discovers any hidden
variable or state required to perform tasks such as long-term
physical extrapolation in an optimal manner. Furthermore,
the integration of physical parameters over time is also im-
plicit and performed by a recurrent neural network architec-
ture. This is needed since the nature of the internal state
is undetermined; it also has a major practical benefit as, as
we show empirically, the system can be trained to not only
extrapolate physical trajectories, but also to interpolate them.
Remarkably, interpolation is still obtained by computing the
trajectory in a feed-forward manner, from the first to the last
time step, using the recurrent model.

Another significant difference with NPE is in the fact that
our system uses visual observations to perform its predic-
tions. In this sense, the work closest to ours is the Visual
Interaction Networks (VIN) of [Watters et al., 2017], which
also use visual input for prediction. However, our system
is significantly more advanced as it can model the interac-
tion of objects with complex and irregular terrain. We show
empirically that VIN is not very competitive in our more
complex experimental setting.

There are also several aspects that we address for the
first time in this paper. Empirically, we push our model
by considering scenarios beyond the ‘flat’ ones tackled by
most recent papers, such as objects sliding and colliding on
planes, and look for the first time at the case of ball(s) rolling
on non-trivial 3D shapes (e.g., bowls of varying shape and
orientation, or terrains modeled as arbitrary heightfields),
where both linear and angular momenta are tightly coupled.
Furthermore, since physical extrapolation is inherently am-
biguous, we allow the model to explicitly estimate its pre-
diction uncertainty by estimating the variance of a Gaussian
observation model. We show that this modification further
improves the quality of long-term predictions.

The rest of the paper is organized as follows. The relation
of our work to the literature is discussed in section 2. The
detailed structure of the proposed neural networks is given
and motivated in section 3. These networks are tested on a
large dataset of simulated physical experiments described
in section 4 and extensively evaluated and contrasted against
related works in section 5. We conclude by discussing cur-
rent limitations and directions for future investigation in
section 6.

2. Related Work

We address the problem of training deep neural networks
that can perform long-term predictions of mechanical phe-
nomena while learning the required physical laws implicitly,

via empirical and visual observation of the motion of objects.
This research is thus related to a number of recent works in
various machine learning sub-areas, discussed next.

Learning intuitive physics [Battaglia et al., 2013] are
one of the first to consider ‘intuitive’ physical reasoning;
their aim is to answer simple qualitative questions related to
rigid body processes, such as determining whether a certain
tower of blocks is likely to fall or not. They approach the
problem by using a sophisticated physics engine that incor-
porates all required knowledge about Newtonian physics
a-priori. More recently, [Mottaghi et al., 2016] used static
images and a graphics rendering engine (Blender) to predict
motion and forces from a single RGB image. Motivated
by the recent success of deep learning for image analysis
(e.g., [Krizhevsky et al., 2012]), they trained a convolutional
neural network to predict such quantities and used it to
produce a “most likely motion,” rendering it using a tradi-
tional computer graphics pipeline. With a similar motivation,
[Lerer et al., 2016] and [Li et al., 2017] also applied deep
networks to predict the stability of towers of blocks purely
from images. These approaches demonstrated that such net-
works can not only predict instability, but also pinpoint the
source of such instability, if any. Other approaches such as
[Agrawal et al., 2016] or [Denil et al., 2016] have attempted
to learn intuitive physics of objects through manipulation;
however, their models did not aim to capture the underlying
dynamics of the systems.

Learning physics The work by [Wu et al., 2015] and its
extension [Wu et al., 2016] propose methods to learn phys-
ical properties of scenes and objects. [Wu et al., 2015] use
an MCMC-sampling based approach that assumes com-
plete knowledge of the physical equations necessary to es-
timate physical parameters. In [Wu et al., 2016], a deep
learning based approach was used instead of MCMC, al-
beit still explicitly encoding physics in a simulator. Phys-
ical laws were also explicitly incorporated in the model
by [Stewart and Ermon, 2017] to predict the movement of a
pillow from unlabelled data. Their method was, however,
only applied to a fixed small number of future frames.

The research performed by [Battaglia et al., 2016]
and [Chang et al., 2017] focused on dynamics and attempted
to partially substitute the physics engine with a neural net-
work that captures a selection of relevant physical laws. Both
approaches were able to use such networks to accurately pre-
dict updates for the physical state of the world. Although
results are plausible and promising, [Chang et al., 2017] sug-
gest that long-term predictions remain difficult. Furthermore,
in both approaches, their neural networks only predict in-
stantaneous updates of physical parameters that are then
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explicitly integrated. In contrast, in this work propagation is
implicit and applies a recurrent neural network architecture
to an implicit representation of the world.

Closer to our approach, [Fragkiadaki et al., 2016] and
[Watters et al., 2017] attempted to learn an internal repre-
sentation of the physical world from images. In addition
to observing images, it is also possible to generate them
as [Fragkiadaki et al., 2016] learn to perform long-term ex-
trapolation more successfully. Image generation can be
seen as a constraint that avoids the over time degenera-
tion of the internal representation of dynamics. The work
of [Watters et al., 2017] extends the Interaction Network by
[Battaglia et al., 2016] to propagate an implicit representa-
tion of the dynamics of objects, obtaining a Visual Inter-
action Network (VIN). While their approach is the clos-
est to ours, it has various limitations including not mod-
eling the interaction with complex environments and the
relatively small size of the input images. The Predictron
by [Silver et al., 2016] also propagates a tensor state, but
suffers from the same drawbacks. [Ehrhardt et al., 2017b]
showed, how long-term extrapolation models can be trained
for one object moving on smooth analytic surfaces, such as
ellipsoids.

Approximating physics for plausible simulation Sev-
eral authors focused on learning to perform plausi-
ble physical predictions, for example to generate re-
alistic future frames in a video [Tompson et al., 2016,
Ladický et al., 2015], or to infer rigid body collision param-
eters from monocular videos [Monszpart et al., 2016]. In
these approaches, physics-based losses are used to learn
plausible yet not necessarily accurate results, which may
be appropriate for tasks such as rendering and animation.
[Battaglia et al., 2016] also use a loss that captures the con-
cept of energy conservation. The latter can be seen as a
way to incorporate knowledge about physics a-priori into
the network, which differs from our goal of learning any
required physical knowledge from empirical observations.

Learning dynamics Physical extrapolation can be per-
formed without integrating physical equations explic-
itly. For example, [Hochreiter and Schmidhuber, 1997]
used LSTMs to make accurate long-term predictions
in human pose estimation [R. Villegas, 2017] and in
simulated environments [Oh et al., 2015, Chiappa, 2017].
Propagation can also be done using simpler convolu-
tional operators; [Xue et al., 2016], in particular, used
these to generate possible future frames given a sin-
gle static image and [De Brabandere et al., 2016] applied
it to the moving MNIST dataset for long-term predic-
tion. The work by [Ondruska and Posner, 2016] and
[Ehrhardt et al., 2017a] also showed that an internal repre-
sentation of dynamics can be propagated through time using

DispNet / PosNet ProbNet

ENCODER

DECODER

TRANSITION

Input images t = 0 . . . 3

φtrans

φdec

φenc

3× 3×Nf

Figure 1. Overview of our proposed pipeline. The first four im-
ages of a sequence first pass through a partially pre-trained feature
encoder network to build the concept of physical state. It then
recursively passes through a transition layer to produce long-term
predictions about the future states of the objects. It is then decoded
to produce state estimates. While our DispNet and PosNet models
are trained to regress the next states, the ProbNet model trained
with the log-likelihood loss is also able to handle the notion of
uncertainty thanks to its extended state space. Note here that only
one object is considered, extension for multiple objects is discussed
in section 3.4.

a simple deep recurrent architecture. Our work builds on
their success, and propagates a tensor-based state represen-
tation instead of a vector-based one. Using spatial convo-
lutional operators allows for knowledge to be stored and
propagated locally w. r. t. the object locations in the images.

3. Method
In this section, we propose a novel neural network model

to make predictions about the evolution of a mechanical sys-
tem from visual observations of its initial state. In particular,
this network, summarized in Fig. 1, can predict the motion
of one or more rolling objects accounting for variations in
the 3D geometry of the environment.

Formally, let yt be a vector of physical quantities that
we would like to predict at time t, such as the position of
one or more objects. Physical systems satisfy a Markov

3



Under review at Computer Vision and Image Understanding Journal.

condition, in the sense that there exists a state vector ht such
that (i) measurements yt = g(ht) are a function of the state
and (ii) the state at the next time step ht+1 = f(ht) depends
only on the current value of the state ht. Uncertainty in
the model can be encoded by means of observation p(yt|ht)
and transition p(ht+1|ht) probabilities, resulting in a hidden
Markov model.

State-only methods, such as the Neural Physics Engine
(NPE) by [Chang et al., 2017] start from an handcrafted def-
inition of the state ht. For instance, in order to model a
scenario with two balls colliding, one may choose ht to con-
tain the position and velocity of each ball. In this case, the
observation function g may be as simple as extracting the
position components from the state vector. It is then possi-
ble to use a neural network φ to approximate the transition
function f . In particular, [Chang et al., 2017] suggest that
it is often easier for a network to predict a rate of change
∆t = φ(ht) for some of the physical parameters (e.g., the
balls’ velocities), which can be used to update the state using
a hand-crafted integrator ht+1 = f̃(ht,∆t).

While this approach works well, there are several limi-
tations. First, even if the transition function is learned, the
state ht is defined by hand. Even in the simple case of the
colliding balls, the choice of state is ambiguous; for exam-
ple, one could include in the state not only the position and
velocity of the balls, but also their radius, mass, elasticity,
friction coefficients, etc. Learning the state as well has the
significant benefit of making such choices automatic. Sec-
ond, training a transition function requires knowledge of the
state values, which may be difficult to obtain except in the
case of simulated data. Third, in order to use such a system
to perform predictions, one must know the initial value of
the state h0 of the system, whereas in many applications one
would like to start instead from sensory inputs xt such as
images [Fragkiadaki et al., 2016].

We propose here an approach to address these difficul-
ties. We assume that the state ht is a hidden variable, to
be determined as part of the learning process. Since the ht
cannot be observed, the transition function ht+1 = f(ht)
cannot be learned directly as in the NPE. Instead, state and
transitions must be inferred jointly as a good explanation
of the observed physical measurements yt. Any integrator
involved in the computation of the transition function is
implicitly moved inside the network, which is a recurrent
neural network architecture. In our experiments (section 5),
we show that the added flexibility of learning an internal
state representation and its evolution automatically allows
the system to scale well to the complexity of the physical
scenario.

Since the evolution of the state ht cannot be learned by
observing measurements yt in isolation, the system is super-
vised using sequences y[0,T ) = (y0, . . . , yT−1) of observa-
tions. This is analogous to a Hidden Markov Model (HMM),

which is often learned by maximizing the likelihood of the
observation sequences after marginalizing the hidden state.1

As an alternative learning formulation, we propose instead to
consider the problem of long-term predictions starting from
an initial set of observations. Not only this is more directly
related to applications, but it has the important benefit that
predictions can be performed equally well from initial obser-
vations of the physical quantities yt or of some other sensor
reading xt, such as images.

Our system is thus based on learning three modules:
(i) an encoder function that estimates the state ht =
φenc(x(t−T0,t]) from the T0 most recent sensor readings
(alternatively ht = φenc(y(t−T0,t]) can use the T0 most
recent physical observations); (ii) a transition function
ht+1 = φtrans(ht) that evolves the state through time; and
(iii) a decoder function that maps the state ht to a physical
observation yt = φdec(ht), and in some case an uncertainty
associated. The rest of the section discusses the three mod-
ules, encoder, transition, and decoder maps, as well as the
loss function used for training. Further technical details can
be found in section 5.

3.1. Encoder Map: from images to state

The goal of the encoder map is to take T0 consecutive
video frames observing the initial part of the object mo-
tion and to produce an estimate h0 = φenc(x(−T0,0]) of
the initial state of the physical system. In order to build
this encoder, we follow [Fragkiadaki et al., 2016] and con-
catenate the RGB channels of the T0 images in a single
Hi × Wi × 3T0 tensor. The latter is passed to a con-
volutional neural network φenc outputting a feature tensor
s0 ∈ RH×W×C , used as internal representation of the sys-
tem’s state. Note that this representation is spatially dis-
tributed and differs from the concentrated vector representa-
tion of the VIN of [Watters et al., 2017]. In the experiments,
we will show the advantage of using a tensorial representa-
tion in modeling complex environments. We also augment
our tensor representation with a state vector pt ∈ Rn, so
that the state is the pair ht = (st, pt). In deterministic cases,
n = 2 and pt is the 2D projection of the object’s location on
the image plane. For multiple objects (see section 3.4) this
state is computed for each object independently.

1 Formally, a Markov model is given by p(y[0,T )],h[0,T )) =

p(h0)p(y0|h0)
∏T−2

t=0 p(ht+1|ht)p(yt+1|ht+1); traditionally, p can be
learned as the maximizer of the log-likelihood maxp Ey [logEh[p(y,h)]],
where we dropped the subscripts for compactness. Learning to interpo-
late/extrapolate can be done by considering subsets ȳ ⊂ y of the measure-
ments as given and optimizing the likelihood of the conditional probability
maxp Ey[logEh[p(y,h|ȳ)]].
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3.2. Transition Map: evolving the state

The state ht is evolved through time by learning the tran-
sition function φtrans : ht 7→ ht+1. Since the initial state h0
is obtained from the encoder map, the state at time t can be
written as, ht = φttrans(φenc(x(−T0,0])).

More in detail, the distributed state component st is up-
dated by using a convolutional network st+1 = φs(st).
The concentrated component pt is updated incrementally
as pt+1 = pt + φp(st), where φp(st) is estimated using a
single layer perceptron regressor from the distributed rep-
resentation. Combined, the state update can be written as,

(st+1, pt+1) = φtrans(st, pt) = (φs(st), pt + φp(st)).

Inspired by the work of [Watters et al., 2017], we also con-
sider an alternative architecture where pt is estimated directly
from st rather than incrementally. In order to do so, the loca-
tion x and y of each pixel is appended as feature channels
C+1 andC+2 of the distributed state tensor st, obtaining an
augmented tensor augxy(st). Then the object’s position pt
is estimated by a two-layer perceptron pt = φp(augxy(st)).

3.3. Decoder Map: from state to probabilistic pre-
dictions

For deterministic models, the projected object position
pt is part of the neural network state, the decoder map ŷt =
φdec(st, pt) = pt simply extracts and returns that part of the
state. Training optimizes the average L2 distance between
ground truth yt and predicted ŷt positions 1

T

∑T−1
t=0 ‖ŷt −

yt‖2.
In addition to this simple scheme, we also consider a more

robust variant based on probabilistic predictions. In fact, the
extrapolation error accumulates and increases over time, and
the L2-based loss may be dominated by outliers, unbalanc-
ing learning. Hence, we modify the model to explicitly and
dynamically express its own prediction uncertainty by out-
putting the mean and variance (µt,Σt) of a bivariate Gaus-
sian observation model. The L2 loss is thus replaced with the
negative log likelihood − 1

T

∑T−1
t=0 logN (yt;µt,Σt) under

this model.
In order to estimate the Gaussian parameters µt and Σt,

we extend the state component pt = (µt, λ1,t, λ2,t, θt) to
include both the mean as well as the eigenvalues and rotation
of the covariance matrix Σt = R(θt)

ᵀ diag(λ1,t, λ2,t)R(θt).
In order to ensure numerical stability, eigenvalues are con-
strained to be in the range [0.01, 100] by setting them as the
output of a scaled and translated sigmoid λi,t = σλ,α(βi,t),

Table 1. Neural network variants.

Name pt regression pt+1 output and loss
DispNet incremental pt + φp(st) deterministic
ProbNet incremental pt + φp(st) probabilistic
PosNet direct φp(st) deterministic

where σλ,α(z) = λ/(1 + exp(−z)) + α. In the following,
we will refer to this method as ProbNet, whereas the other
method estimated displacement without uncertainty will be
referred to as DispNet. Table 1 summarize the different
methods and their specificity.

3.4. Extension to multiple objects

We now consider how the model described above can
be extended to handle multiple interacting objects. This is
more challenging as it requires to handle complex object
interactions such as collisions.

In order to do so, for each object oi, i = 1, . . . , Nobjects
we consider a separate copy of the distributed state tensor
soit (hence the overall state is st = (so1t , . . . , s

oNobjects
t )). The

encoder network φenc is thus modified to output a H ×W ×
NobjectsC tensor. It is then split along the third dimension to
produce H ×W × C tensor for each of the Nobjects. We
order objects w. r. t. their color so that each feature is always
responsible for the same object identified by its color. We
recall here that this extension studies the ability of handling
collisions of our model without any explicit module. We aim
in the future to build more object agnostic representation.

The input of the transition module is also modified to take
into account the interaction between objects. Focusing on an
object of with state soft , the update is written as

s
of
t+1 = φs

soft ,∑
i 6=f

soit


where the second argument is the sum of the state subtensors
for all other objects. Since the function φs is the same for
all objects of , this ensures that object interactions are sym-
metric and commutative. Note that, as opposed to methods
such as [Chang et al., 2017], no explicit collision detection
module is implemented here. Instead, handling collisions is
left to the discretion of the network.

Σ

s2t

s1t

s3t

s2t+1

φs

Figure 2. Multiple object extension. For each object (here object
2) we concatenate the state of this object with the addition of the
other objects features. We then give this tensor to the module φs to
obtain our new state s2t+1
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With this modification, the transition subnetwork is illus-
trated in Fig. 2. The rest of the pipeline is essentially the
same as before and is applied independently to each object.
The same network parameters are used for each application
of a module regardless of the specific object.

4. Experimental Setup
In the experiments (Fig. 3), we consider two physical sce-

narios: spheres rolling on a 3D surface, which can be either
a semi-ellipsoid with random parameters or a continuous
randomized heightfield. When the semi-ellipsoid is isotropic
(i.e. a hemisphere) we refer to it as ‘Hemispherical bowl’,
and in the more general case as ‘Ellipsoidal bowl’ (see Ta-
ble 2), whereas the heightfield scenario is referred to as
‘Heightfield.’

4.1. Hemispherical bowl and Ellipsoidal bowl sce-
narios

The symbol p = (px, py, pz) ∈ R3 denotes a point in 3D
space or a vector (direction). The camera center is placed at
location (0, 0, cz), cz > 0 and looks downward along vector
(0, 0,−1) using orthographic projection, such that the point
(px, py, pz) projects to pixel (px, py) in the image.

x

y

z
(0, 1, 1)

(0, 0, cz)

(0, 0, 0) (a, 0, 1)

(a) (b) (c)

Figure 3. Problem setup. We consider the problem of understand-
ing and extrapolating mechanical phenomena with recurrent deep
networks. (a) Experimental setup: an orthographic camera looks at
a ball rolling in a 3D bowl. (b) Example of a 3D trajectory in the
3D bowl simulated using Blender 2.78’s OpenGL renderer. (c) An
example of a rendered frame in the ‘Ellipsoidal bowl’ experiment
that is fed to our model as input.

Thus, the ‘Ellipsoidal bowl’ is the bottom half of an el-
lipsoid of equation x2/a2 + y2 + (z − 1)2 = 1 with its
axes aligned to the xyz axes and its lowest point correspond-
ing to the origin. For the ‘Ellipsoidal bowl’ scenario, the
ellipsoid shape is further varied by sampling a ∈ U [0.5, 1]
for the (a = 1 for the ‘Hemispherical bowl’ scenario) and
by rotating the resulting shape randomly around the z-axis.
Both ‘Hemispherical bowl’ and ‘Ellipsoidal bowl’ are ren-
dered by mapping a checker board pattern to their 3D surface
(to make it visible to the network).

The rolling object is a ball of radius ρ ∈ {0.04, 0.225}.
The ball’s center of mass at time t is denoted as qt =
(qtx, q

t
y, q

t
z), which, due to the orthographic projection, is

imaged at pixel (qtx, q
t
y). The ball has a fixed multi-color

texture attached to its surface, so it appears as a painted ob-
ject. The texture is used to observe the object rotation. We
study the impact of being able to visually observe rotation
by re-rendering the single ball experiments with a uniform
white color (see Table 3). In the multi-object experiments,
instead, each ball has a constant, distinctive diffuse color (in-
tensity 0.8) with Phong specular component (intensity 0.5).
We initially position the ball at angles (θ, φ) with respect to
the the bowl center, where the elevation θ is uniformly sam-
pled in the range θ ∈ U [−9π/10,−π/2] and the azimuth
φ ∈ U [−π, π]. The minimum elevation is set to −9π/10
to avoid starting the ball at the bottom of the bowl. Due to
friction, at the end of each experiment the ball rests at the
bottom of the bowl.

The initial orientation of the ball (relevant for the multi-
colored texture) is obtained by uniformly sampling its
xyz Euler angles in [−π, π]. The ball’s initial velocity
v is obtained by first sampling vx, vy uniformly in the
range U [5, 10], assigning each of vx, vy a random sign
(∼ 2B (0.5)−1), and then by projecting the vector (vx, vy, 0)
to be tangential to the bowl’s surface. In the multi-object
‘Ellipsoidal bowl’ scenario, in order to achieve more inter-
esting motion patterns, the magnitude of the initial velocities
is set uniformly in the range U [10, 15]; if, after simulation,
a ball leaves the bowl due to a collision or excessive initial
velocity, the scene is discarded. Sequences are recorded
until all objects stop moving. Short sequences (less than 250
frames) are discarded as well. The average angular velocity
computed over all ‘Bowl’ scenes was 5.94 radian/s.

Ellipse

0.00

0.14

0.29

0.43

0.57

0.71

0.86

1.00

Network input and contours

(a)

Ellipse

0.00

0.14

0.29

0.43

0.57

0.71

0.86

1.00

Network input and contours

Network input and contours

Ellipsoidal bowl

Network input and contours

Heightfield

0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

Network input and contours

Heightfield

0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

Network input and contours

Heightfield

(b) (c)

Heightfield simulation setup

camera

Figure 4. Experimental setups. (a) ‘Ellipsoidal bowl’ experiment
setup, depth map on the top, network input with isocontours at
the bottom. We create the dataset by varying the ellipsoid’s main
axis ratio and orientation, and the starting position and velocity
of the balls. (b-c) ‘Heightfield’ rendering setup. Each sequence
is generated using a random translation and rotation of the fixed
heightfield geometry. Walls ensure the automatically generated
sequences are long enough. A randomly positioned area light
presents additional generalization challenges to the network.
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Note that, while some physical parameters of the ball’s
state are included in the observation vector yα[−T0,T ), these
are not part of the state h of the neural network, which is
inferred automatically. The network itself is tasked with
predicting part of these measurements, but their meaning is
not hardcoded.

Simulation details

For efficiency, we extract multiple sub-sequences xα[−T0,T )

form a single longer simulation (training, test, and validation
sets are however completely independent). The simulator
runs at 120fps for accuracy, but the data is subsampled to
40fps. We use Blender 2.78’s OpenGL renderer and the
Blender Game Engine (relying on Bullet 2 as physics en-
gine). The ball is a textured sphere with unit mass. The
simulation parameters were set as: max physics steps = 5,
physics substeps = 3, max logic steps = 5, fps = 120. Ren-
dering used white environment lighting (energy = 0.7) and
no other light source in the ‘Hemispherical bowl’ case, envi-
ronment energy = 0.2, and a spotlight at the location of the
camera in the ‘Ellipsoidal bowl’ case. We used 70% the data
for training, 15% for validation, and 15% for test, 12500 se-
quences in the ‘Hemispherical bowl’/‘Ellipsoidal bowl’ ex-
periments and 6400 in the ‘Heightfield’ case. During train-
ing, we start observation at a random time while it is fixed
for test. The output images were stored as 256× 256 color
JPEG files. For multiple objects in the ellipsoid experiment,
we set the elasticity parameter of the balls to 0.7 in order to
get a couple of collisions before they settle in the middle of
the scene.

4.2. Heightfield scenario

An important part of our experiments involve randomly
generated continuous heightfields. Long-term motion predic-
tion on random heightfields represent a tougher challenge,
since solely observing the motion of the object at the begin-
ning of the sequence does not contain enough information
for successful mechanical predictions. In contrast to the
‘Ellipsoidal bowl’ cases, where the 2D shape that the con-
tainer occupies in the image is theoretically enough to infer
the analytical shape of the local surface at any future 3D
point of interest, in the ‘Heightfield’ case the illumination
conditions of the surface have to be parsed. Furthermore, a
more elaborate understanding about the interaction between
surface and 3D rolling motion has to be developed.

Similar to the ellipsoid cases, we generate randomized
sequences of a ball rolling on a random (heightfield) sur-
face. We approximate random heightfields by generating a
large (8 × 8) Improved Perlin noise texture and applying
it as a displacement map to a highly tessellated plane. For
each scene, we uniform randomly rotate and translate the
plane so that a different part (2.5 × 2.5) of the heightfield

is visible under the static camera. In order to generate mo-
tion sequences of enough length for long-term extrapolation,
we also surround the camera frustum with perfectly elastic
walls (see Fig. 4c). The noise texture has a scale parameter,
which we vary between 0.7 (fairly planar) and 0.2 result-
ing in high curvature surfaces that have holes comparable
with the ball diameter. We set the surface elasticity to 0 in
order to encourage the balls to roll and not bounce. The
initial placement of the ball, similarly to the bowl case, is
drawn from a 2D uniform distribution. Then, we use sphere
tracing to push the ball onto the surface from the camera
plane. We add a small random initial velocity (U [2, 4]), and
similarly to the ‘Hemispherical bowl’ case, we project the
initial velocity onto the local surface normal. The average
angular velocity computed over all ‘Heightfield’ scenes was
2.8 radian/s. The surface is lit with a small (0.1× 0.1) area
light from a random location. We draw the 2D position of
the light as x, y ∼ (2B (0.5)− 1) (U [1, 1.5]× U [1, 1.5]),
with a fixed camera height z = 2.

5. Results and Discussions
5.1. Baselines

(i) Least squares fit We compare the performance of our
methods to two simple least squares baselines: Linear and
Quadratic. In both cases, we fit least squares polynomials
to the screen-space coordinates of the first T = 10 frames,
which are not computed but given as inputs. The polynomials
are of first and second degree(s), respectively. Note, that
being able to observe the first 10 frames is a large advantage
compared to the networks, which only see the first T0 = 4
frames.

(ii) NPE The NPE method and its variants were trained
using available online code. We used the same training pro-
cedure as reported in [Chang et al., 2017]. Additionally, we
added angular velocities as input and regressed type of pa-
rameter. In the case of the Ellipsoidal bowl, both scaling and
bowl rotation angle are also given as input to the networks.
In this case NPE’s method carries forward the estimated
states via the network.

(iii) VIN and IN From State (IFS) Finally, we used
VIN network and its state variant IN From State from
[Watters et al., 2017]. IFS is essentially a version of VIN
where the propagation mechanism is the same but the first
state vector is not deduced from visual observation but given
as ground truth position and velocity as in the NPE. The VIN
network uses downscaled 32 × 32 images. Both networks
use training procedures as reported in [Watters et al., 2017]
with the exceptions that for IFS the learning rate was updated
using our method (see section 5.2) and we rely on the first 4
states and 16 rolled out steps. As with NPE, angular velocity
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Figure 5. Errors in bowls. Pixel errors and angular velocity RMSE in radian/s (first two columns of Table 2). Our method performs
comparably to state based methods, which use ground truth state information for initialization compared to ours, which operates with visual
input. Hatched denotes non-visual input (i.e. direct access to physical states).

was also added to IFS input and regressed parameters. Scal-
ing and rotation angle of the bowl were also given as input
to the network in Ellipsoidal bowl experiment. Note that
VIN and our models work with images as direct observation
of the world rather than perfect states, which represents a
much more difficult problem whilst yielding a more gen-
eral applicability. Physical properties are then deduced from
the observations and integrated through our Markov model.
Thus, these methods do not need a simulator to estimate
parameters of the physical worlds (such as scaling and ro-
tation angle) and can be trained on changing environments
without requiring additional external measurements of the
underlying 3D spaces.

5.2. Results

Implementation details The encoder network φenc is ob-
tained by taking the ImageNet-pretrained VGG16 network
of [Simonyan and Zisserman, 2015] and retaining the lay-
ers up to conv5 (for an input image of size (Hi,Wi) =
(128, 128, 3) this results in a (8, 8, Nf = 512) state tensor
st). In the 3 balls experiments, we replaced the last conv5
layer with a convolutional layer of output 256× 3 channels.
Object features are thus obtained by splitting this last tensor
along the channel dimension into (8, 8, Nf = 256) state ten-
sor per object. The filter weights of all layers except conv1
are retained for fine-tuning on our problem. The conv1
is reinitialized as filters must operate on images with 3T0
channels. The transition network φs(st) uses a simple chain
of two convolution layers with 256 and Nf filters respec-
tively, of size 3× 3, stride 1, and padding 1 interleaved by
a ReLU layer. Network weights are initialized by sampling
from a Gaussian distribution. Additionally, angular velocity
is always regressed from the state st using a single layer
perceptron.

Training uses a batch size of 50 using the first Ttrain po-
sitions and angular velocity (or only position when explic-
itly mentioned) of each video sequence using RMSProp by
[Tieleman and Hinton, 2012]. We start with a learning rate
of 10−4 and decrease it by a factor of 10 when no improve-

ments of the loss have been found after 100 consecutive
epochs. Training is halted when the loss has not decreased
after 200 successive epochs; 2,000 epochs were found to be
usually sufficient for convergence. In every case the loss is
the sum of the L2 angular velocity loss and either L2 posi-
tion errors (PosNet, DispNet) or likelihood loss (ProbNet)
(see section 3.3). We omit the angular loss, when angular
velocity is not regressed (labelled as “* w/o ang. vel.” in the
tables).

Since during the initial phases of training the network is
very uncertain, the model using the Gaussian log-likelihood
loss was found to get stuck on solutions with very high
variance Σ(t). To address this, we added a regularizer
λ
∑
t det Σ(t) to the loss, with λ = 0.01.

In all our experiments we used Tensorflow
([Abadi et al., 2015]) r1.3 on a single NVIDIA Titan
X GPU.

5.2.1 Extrapolation

(i) Experiments using a single ball Table 2 compares the
baseline predictors and the eight networks on the task of
long term prediction of the object trajectory. All meth-
ods observed only the first T0 = 4 inputs (either object
states or simply image frames) except for the linear and
quadratic baselines, and aimed to extrapolate the trajectory
to Tgen = 40 time steps. Predictions are “long term” rel-
ative to the number of inputs T0 � Tgen. Note also that
during training networks only observe sequences of up to
Ttrain ≤ Tgen frames; hence, the challenge is not only to
extrapolate physics, but to generalize beyond extrapolations
observed during training.

Table 2 reports the average errors at time Ttrain = 20
and Tgen = 40 for the different estimated parameters. Our
methods outperform state-only approaches for predictions
of up-to Ttrain steps. For example, PosNet has a pixel error
of 1.0/1.2/6.8 in the Hemispherical/Ellipsoidal/Heightfield
scenarios vs 3.3/2.7/10.9 of NPE and 1.6/3.1/8.7 of IFS. This
is non-trivial as our networks know nothing about physical
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Table 2. Long term predictions. All of our models (below thick line) observed the T0 = 4 first frames as input. All networks have been
trained to predict the Ttrain = 20 first positions, except for the NPEs which were given T0 = 4 states as input and train to predict state at time
T0 + 1. We report here results for time Ttrain = 20 and Tgen = 40. Unless noted, reported models are trained to predict position and angular
velocity. For each time we report on the left average pixel error and root squared L2 angular velocity loss on the right. Perplexity (loge
values shown in the table) is defined as 2−E[log2(p(x))] where p is the estimated posterior distribution. This value is shown in bracket.

Hemispherical bowl Ellipsoidal bowl Heightfield
Method State Errors (Perplexity) Errors (Perplexity) Errors (Perplexity)

Ttrain Tgen Ttrain Tgen Ttrain Tgen

pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel.
Linear GT 39.2 7.5 127.5 17.9 61.9 23.3 20.1 80.0 21.3 9.4 61.9 19.3

Quadratic GT 164.3 18.4 120.1 861.2 11.7 14.8 93.1 70.6 26.7 27.4 126.0 122.2
NPE w/o ang. vel. GT 2.6 – 6.0 – 3.2 – 6.1 – 12.0 – 38.5 –

NPE GT 3.3 0.8 9.6 1.7 2.7 1.4 7.6 2.9 10.9 3.7 32.9 4.6
IFS w/o ang. vel. GT 1.3 – 2.9 – 3.3 – 8.9 – 10.4 – 27.6 –

IFS GT 1.6 0.3 2.2 0.4 3.1 1.0 6.9 1.4 8.7 2.5 26.1 2.8
VIN w/o ang. vel. Visual 40.4 – 37.8 – 24.0 – 30.2 – 42.6 – 42.7 –

PosNet w/o ang. vel. Visual 1.0 – 18.1 – 1.6 – 24.4 – 7.2 – 24.6 –
PosNet Visual 1.0 0.4 13.8 3.0 1.2 0.5 11.8 3.0 6.8 2.1 23.2 4.2

DispNet w/o ang. vel. Visual 3.0 – 29.7 – 2.5 – 20.6 – 7.7 – 25.8 –
DispNet Visual 3.5 1.2 15.9 4.3 2.1 1.0 16.1 4.4 7.2 2.0 21.6 3.3

ProbNet w/o ang. vel. Visual 2.9 – 24.2 – 2.9 – 21.8 – 6.4 – 22.5 –
(4.5) (21.9) (32.1) (54.0) (9.5 ) (12.7)

ProbNet Visual 3.4 1.2 15.3 3.4 4.0 1.8 16.7 3.8 6.8 2.1 20.5 2.7
(4.7) ( 9.2) (4.5) (9.3) (10.8) (12.3 )

laws a-priori, and observe the world through images rather
than being given the initial ground-truth state values. On the
other hand, our methods can, through images, better observe
and hence model the underlying environments. The gap in
the heightfield results, in particular, shows the value in ob-
serving the environments in this manner as we constantly
out-perform state-only methods. Our methods also shown to
make significantly better predictions compared to the other
visual competitor (VIN) which failed to be able to model
interactions between the object and its environment and per-
formed poorly even on training regimes (40.4/24.0/42.6 in
the Hemispherical/Ellipsoidal/Heightfield scenarios respec-
tively).

All methods can perform arbitrary long predictions. Our
networks, which are only trained to predict the first Ttrain po-
sitions, are still competitive with state-only methods (which
only predict a transition function and hence implicitly gener-
alize to arbitrarily lengths) even when predictions are gen-
eralized to Tgen steps. In particular, while performances
around Tgen deteriorates, PosNet provides very promising re-
sults, reaching nearly state-only models performances on the
‘Ellipsoidal bowl’ experiments (11.8 pixel prediction error
vs 6.1 of NPE).

We also note that learning to regress angular velocity
generally improve the ability of our models to predict po-
sition, in particular when generalizing to Tgen steps. For
example, PosNet in the Ellipsoidal bowl reduces its position
error from 24.4 to 11.8 at Tgen when it is required to predict
angular velocity during training. For further comparisons,
see the similarly colored, adjacent bars in Fig. 5 (left) and
Fig. 7 (left)). This is remarkable as angular velocity as such
remains very challenging to predict.

An interesting question is whether the model learns or
not to measure angular velocity from images, or whether
predicting this quantity during simply induces a better inter-
nal understanding of physics. To tease this effect out, we
prevent the network from observing the ball spin by remov-
ing the texture on the ball. Table 3 shows that this results
approximately in the same accuracy as the textured cases,
indicating that angular velocity is not estimated visually.

Finally, introducing the probability-based loss in DispNet
results in the ProbNet network. As shown in Table 2, This
change significantly outperforms the deterministic DispNet
results in most cases.

(ii) Experiments using multiple balls We also trained our
models with two and three balls in the ‘Ellipsoidal bowl’ en-
vironment to study the ability of our models to handle object
interactions without explicit collision modules. The afore-
mentioned training setups are maintained in these experi-
ments. Quantitatively, Table 4 shows that our models were
able to get competitive results w. r. t. state-only methods

Table 3. Impact of ball texturing on prediction. We compare the
impact of ball texturing on predictions. Table layout and measures
are same as Table 2. Results show that ball texture is rather ignored
to make predictions.

Ellipsoidal bowl Ellipsoidal bowl (no ball texture)
Method Errors (Perplexity) Errors (Perplexity)

Ttrain Tgen Ttrain Tgen

pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel.
PosNet w/o ang. vel. 1.6 – 24.4 – 1.6 – 23.7 –

PosNet 1.2 0.5 11.8 3.0 1.1 0.6 12.7 3.5

DispNet w/o ang. vel. 2.5 – 20.6 – 1.7 – 26.3 –
DispNet 2.1 1.0 16.1 4.4 1.6 1.0 16.2 3.8

ProbNet w/o ang. vel. 2.9 – 21.8 – 3.1 – 24.0 –
(32.1) (54.0) (5.0) (12.7)

ProbNet 4.0 1.8 16.7 3.8 4.3 1.3 15.0 3.5
(4.5) (9.3) (4.5) (8.2)
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containing explicit collision modules, e.g., NPE. Probabilis-
tic model shows an increase in uncertainty at Ttrain, which
reveals that the task to solve were harder due to the chaotic
nature of the system. In addition, angular velocity seems to
be very challenging to estimate in this case. Qualitatively,
Section 5.2.1 shows that collisions are well handled by our
model despite not being explicitly encoded.

Table 4. Multiple balls experiment. We extend the
‘Ellipsoidal bowl’ setup adding more balls. We show that in this
case our networks get comparable performances to state-only meth-
ods. Table layout and measures are the same as Table 2 except that
Ttrain = 15 and Tgen = 30.

Ellipsoidal bowl 2 balls Ellipsoidal bowl 3 balls
Method States Errors (Perplexity) Errors (Perplexity)

Ttrain Tgen Ttrain Tgen

pixel ang. vel. pixel ang. vel. pixel ang. vel. pixel ang. vel.
NPE GT 5.3 1.5 13.4 2.0 5.0 1.6 13.3 2.0

IFS GT 4.1 1.3 9.6 1.5 4.3 1.5 10.0 1.6

PosNet Visual 4.2 2.4 11.7 2.8 5.7 4.0 15.6 4.5

DispNet Visual 3.9 2.4 18.5 4.3 6.2 3.9 17.4 4.6

ProbNet Visual 5.3 2.5 19.8 3.6 6.5 3.9 17.1 4.1
(7.0) (14.0) (7.5) (12.6)

5.2.2 Interpolation

So far, we have consider the problem of extrapolating tra-
jectories without any information on the possible final state
of the system. We aim here to study the impact of injecting
such knowledge in our networks.

In order to do so, in this experiment we concatenate to
the first T0 = 4 input frames the last observed frame at time
Tfinal and give the resulting stack as input to the encoder
network h0 = φenc(x(−T0,0], xTfinal) to estimate the first state
h0. In this setting, the model performs “interpolation” as
it sees images at the beginning as well as the end of the
sequence. The rest of the model works as before with the
exception that the first state h0 is decoded in a prediction
(y0, yTfinal) = φdec(h0) of both the first and the last position
yTfinal ; in this manner, the loss encourages state h0 to encode
information about the last observed frame xTfinal .

Table 5 indicates that the ability of observing an image
of the final state enables our models to provide far better
estimations. Even in the more complex scenarios with 2
and 3 balls and the heightfield experiments, the errors are
significantly lower than for extrapolation. As expected, for
InterpNet the highest errors are always found in the middle
of the estimate as these points are less predictable from the
available information; by contrast, for DispNet the highest
errors are at the end.

Still, we note that harder scenarios result in larger errors
even for interpolation, and particularly for colliding balls
due to the chaotic nature of this dynamics. This also shows
the current limitation of our system in modeling collisions
and complex variable environments.

5.3. Discussion

In addition to the various results we presented, we discuss
our conclusions regarding the main sources of prediction
error in the conducted experiments.

Does training for longer horizons help? Training for longer
horizons Ttrain= 40 in Table 5 compared to Ttrain= 20
in Table 2 results in better position estimates as expected.
When a single end state is also observed (interpolation) the
model manages to infer plausible trajectories even though
the initial and final states are far apart in time.

This motivates us to design more structured represen-
tations in the future, which would generalize even better
outside the supervised time spans (see Table 6).

Can the models handle collisions of multiple objects?
Adding additional objects to our scenes has appeared to
be a challenging task for our models. Training for longer
time horizons did not decrease the errors significantly in
these cases, which shows that collisions remain difficult
to estimate. Promisingly, InterpNet manages to improve
performance similarly to the earlier cases, the remaining
ambiguity in the middle of the sequences matches the
ratios of single object examples (ErrorT=10/ErrorT=20:
1.0/1.6 ' 3.2/4.5 ' 3.3/4.5 in Table 5 middle columns).

Does regression of angular velocity help? Almost all models
benefit from the additional supervision signal coming from
the loss on angular velocity, as shown in Fig. 5(left) and
Fig. 7 (left). The objects’ texture at these resolutions is
difficult to interpret, and the connection between pixel
color and rotation around axis is highly non-linear, which
encourages us to look for a different representation of
rotation in the future to improve our angular prediction
errors.

Are changing environments more difficult? The character-
istics of the environment also appear to strongly contribute
to the final estimation errors. When only following one
ball we notice that for simple shapes where the environ-
ment parameters can vary along at most 3 dimensions (in the
‘Hemispherical bowl’ and ‘Ellipsoidal bowl’ cases), the sys-
tem can obtain nearly perfect estimates in the interpolation
experiments. However in the ‘Heightfield’ scenes interaction
with the environment is much more difficult to estimate and
the maximum errors are larger, even for InterpNet the errors
remains substantial.

6. Conclusions

In this paper, we studied the possibility of abstracting
knowledge of physics using a single neural network with a
recurrent architecture to model long term predictions with a
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Figure 6. Ellipsoidal bowl and Heightfield extrapolations. (a-c) Example scene from the 3 balls in the ‘Ellipsoidal bowl’ experiment.
Extrapolation on multiple objects generalises well to 3 objects. Note how in (b) the collision of the red and green ball is predicted by our
networks, solely by seeing the first 4 frames of the sequence. Remember, NPE and IFS start with the ground truth knowledge of the physical
state of the objects. (d-f) Our models, taking only 4 images as input, have learned to parse the illumination of a quickly changing heightfield
surface and use it to predict the long-term (up to 10x the length of initial observation) motion of an object. (d) For homogeneously lit flat
regions, it is difficult to make decisions, indicated by ProbNet’s large uncertainty estimates. (e) IFS, DispNet and PosNet correctly interpret
the ball’s initial angular velocity to predict the future path. ProbNet demonstrates the power of anisotropic uncertainty estimation (c, f). It is
more certain in the direction of motion than orthogonal to it. Note, that NPE and IFS were given the ground truth object positions for the
first four frames, and do not have the capability to take images as input.
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Figure 7. Errors on Heightfields. Position errors (left) and angular velocity error (right) for trained (Ttrain= 20) and untrained (Tgen= 40)
generalization on increasing difficulty heightfields (’Mean’ is reported in the right column of Table 2). Note, how angular velocity estimation
helps position accuracy. Hatches denote non-visual methods.

Table 5. Extrapolation vs Interpolation. We constructed InterpNet as an extension of DispNet, where in addition to the concatenation
of the first T0 = 4 frames, also the last frame at Tfinal is provided to the model as inputs. All networks have been trained to predict the
Ttrain := Tfinal positions. As expected, InterpNet learned to predict the positions at Tfinal by relying on the features extracted from the last
input image. We report the pixel errors at different times along the sequences. Tfinal is the last value shown for every experiment.

Hemispherical bowl Ellipsoidal bowl 1 ball Ellipsoidal bowl 2 balls Ellipsoidal bowl 3 balls Heightfield
Method pixel error, Ttrain = 40 pixel error, Ttrain = 40 pixel error, Ttrain = 30 pixel error, Ttrain = 30 pixel error, Ttrain = 40

T=10 20 30 40 T=10 20 30 40 T=10 20 30 T=10 20 30 T=10 20 30 40
DispNet 2.2 3.6 3.9 5.0 1.4 2.4 2.7 3.0 2.8 5.8 8.7 3.2 8.1 12.0 3.6 7.9 12.9 17.9

InterpNet 1.4 1.8 1.6 1.0 1.0 1.6 1.3 0.6 3.2 4.5 3.1 3.3 4.5 2.1 2.5 5.2 5.1 1.6

Table 6. Length of supervision. The maximum position error of
DispNet decreases when we add more supervision during training.

Dataset Extrapolation Interpolation
Ttrain= 20 Ttrain= 40 Ttrain= 40

‘Hemispherical bowl’ 15.9 5.0 1.8
‘Ellipsoidal bowl’ 16.1 3.0 1.6

‘Heightfield’ 21.6 17.9 5.2

changing environment. We compared our model to various
baselines on the non-trivial motion of ball(s) rolling on a
surfaces with different possible shapes (e.g. ellipsoidal bowls
or randomized heightfields). As opposed to some concur-
rent approaches, we do not integrate physical quantities but
implicitly encode the states in a feature vector that we can
propagate through time.

Our experiments on synthetic simulations indicate that
our networks can predict mechanical phenomena more accu-
rately than networks that build on hand-crafted physically-
grounded representations of the system state. This means
that our approach can both infer automatically an internal
representation of these phenomena and work with visual in-
puts in order to initialize such a representation and use it for
extrapolation. Our models can also estimate a distribution
over physical measurements such as position to account for
uncertainty in the predictions.

We also demonstrated another significant difference with
existing networks, namely the ability to account for complex
variable environments. The latter leverage a distributed rep-

resentation of the system state which, at the same time, is
still able to model concentrated object interactions such as
collisions.

While keeping the same architecture, we further demon-
strate that it is possible to remove ambiguity by showing
the network an image of the final state of the system, per-
forming interpolation. However, in this case the internal
state propagation mechanism is still limited by its ability to
make accurate long term predictions outside temporal spans
observed during training.

In the future, we aim at increasing the robustness and
generalization capabilities of our models by enforcing more
explicitly temporal and spatial invariance (as physical laws
are constant and homogeneous). Another important step will
be to test our framework on real video footage to assess the
ability of the predictions to generalize to situations affected
by real-world nuisance factors.
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