
Cross-dimensional Analysis for
Improved Scene Understanding

Moos Hueting

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

December 19, 2017

2

I, Moos Hueting, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Acknowledgements

First off, I would like to thank my academic advisor Niloy Mitra for all the ad-

vice and direction he has given me throughout the last four years. His optimism

and vision have been inspiring and uplifting, especially on those occasions where

things got hard. His drive has more than once motivated me to push just that bit

harder, with great results. I owe a lot of gratitude to the people in the SmartGe-

ometry group. Aron, thanks for the countless discussions, coffee breaks, good (and

bad) puns, and above all, foosball matches. Paul, thanks for being the ideal postdoc

table mate. Nicolas, thanks for the good conversations, and showing me how to be a

good C++ programmer. James, Bongjin, Tuanfeng, Carlo, Robin – thanks for all the

lunch-time discussions, be it about international politics or the dangers of telepor-

tation (I still would not enter the cabin). Many thanks to my other colleagues and

friends. Clément, thanks for all the discussions, beer, food, and laughs, especially

when things didn’t seem so funny. Corneliu, thank you for your never-ending good

humour and the impromptu nights of drinking. Peter, thank you for the silliness as

well as the brainstorming sessions – the space next to my desk is going to miss you.

Tara, Clément, and Tracy, thanks for being there! To all my friends in Amsterdam,

thank you for being home, and for supporting me during the hard times. To my

parents, thank you for the unconditional interest, love and support you have given

me throughout the PhD as well as the rest of my life. This work would have been

so much harder without it. Thank you to all my family, especially Tante Veer, as

well as Carla & Freek for cheering me on from the sidelines. Finally, Lucy – where

to begin? Thank you for your endless encouragement, for the constant fun and

games, for the shared songs, and just for being you. We have deserved ourselves a

celebration!

Abstract
Visual data have taken up an increasingly large role in our society. Most people

have instant access to a high quality camera in their pockets, and we are taking

more pictures than ever before. Meanwhile, through the advent of better software

and hardware, the prevalence of 3D data is also rapidly expanding, and demand

for data and analysis methods is burgeoning in a wide range of industries. The

amount of information about the world implicitly contained in this stream of data

is staggering. However, as these images and models are created in uncontrolled

circumstances, the extraction of any structured information from the unstructured

pixels and vertices is highly non-trivial. To aid this process, we note that the 2D

and 3D data modalities are similar in content, but intrinsically different in form.

Exploiting their complementary nature, we can investigate certain problems in a

cross-dimensional fashion – for example, where 2D lacks expressiveness, 3D can

supplement it; where 3D lacks quality, 2D can provide it. In this thesis, we explore

three analysis tasks with this insight as our point of departure. First, we show that by

considering the tasks of 2D and 3D retrieval jointly we can improve performance

of 3D retrieval while simultaneously enabling interesting new ways of exploring

2D retrieval results. Second, we discuss a compact representation of indoor scenes

called a “scene map”, which represents the objects in a scene using a top-down map

of object locations. We propose a method for automatically extracting such scene

maps from single 2D images using a database of 3D models for training. Finally, we

seek to convert single 2D images to full 3D scenes using a database of 3D models

as input. Occlusion is handled by modelling object context explicitly, allowing us to

identify and pose objects that would otherwise be too occluded to make inferences

about. For all three tasks, we show the utility of our cross-dimensional insight

by evaluating each method extensively and showing favourable performance over

baseline methods.

Contents

1 Introduction 12

2 Related Work 18

2.1 Image and shape retrieval . 18

2.2 Image and shape analysis . 19

2.3 Scene understanding . 22

3 CrossLink: Joint Understanding of Image and 3D Model Collections

through Shape and Camera Pose Variations 25

3.1 Introduction . 25

3.2 Overview . 28

3.3 Input and Data Representation . 30

3.3.1 Rendering of the models 30

3.3.2 Feature extraction . 31

3.4 3D Model Collection Filtering . 33

3.4.1 3D model alignment . 35

3.5 Image Collection Organization . 38

3.5.1 Camera pose estimation 38

3.5.2 Modeling of classifier weights 40

3.5.3 2D repository re-sorting by shape 41

3.6 Evaluation . 43

3.6.1 3D repository filtering using 2D 44

3.6.2 3D model alignment . 46

Contents 6

3.6.3 2D repository view sorting 48

3.6.4 2D view classifier modeling 49

3.6.5 2D repository shape sorting 51

3.7 Exploring Image and 3D Model Collections 53

3.8 Conclusions and Future Work . 54

4 Scene Structure Inference through Scene Map Estimation 57

4.1 Introduction . 57

4.2 Method . 59

4.2.1 Scene Map . 60

4.2.2 Scene Map Inference Overview 62

4.2.3 Network . 63

4.2.4 Non-maximum suppression 63

4.2.5 Rendering pipeline . 65

4.3 Evaluation . 67

4.3.1 Baseline . 67

4.3.2 Training vs. test . 69

4.3.3 Comparison . 69

4.3.4 Effect of object density . 70

4.4 Discussion and Conclusion . 72

5 Finding Chairs in Indoor Scenes under Heavy Occlusion using Scene

Statistics 74

5.1 Introduction . 74

5.2 Motivation and overview . 77

5.3 Method . 79

5.3.1 Camera estimation . 81

5.3.2 Keypoint maps . 81

5.3.3 Candidate generation . 84

5.3.4 Candidate selection . 89

5.3.5 Iterative optimization . 93

Contents 7

5.3.6 Model selection . 95

5.3.7 Hyper parameters . 95

5.3.8 Data . 96

5.4 Evaluation . 99

5.4.1 Ground truth annotation 99

5.4.2 Performance measures . 100

5.4.3 Baseline methods . 102

5.4.4 Comparison . 104

5.4.5 Ablation study . 105

5.5 Discussion . 106

6 Discussion and Future Work 108

6.1 Summary . 108

6.2 Future work . 110

Appendices 112

A Full Results for Chapter 3 112

B Full Results for Chapter 5 125

C List of publications 149

Bibliography 150

List of Figures

1.1 In-the-wild, cross-dimensional analysis 12

1.2 Iconic images and 3D models . 15

1.3 Non-iconic images . 15

2.1 Crosslink vs. previous work . 18

2.2 Mockup vs. previous work . 21

3.1 Framework overview . 25

3.2 Input collections . 28

3.3 Rendered views . 31

3.4 HOG features . 32

3.5 3D re-sorting . 35

3.6 Model co-alignment . 36

3.7 Alignment algorithm visualization 37

3.8 Camera pose estimation . 39

3.9 PCA of view classifier weights . 41

3.10 Re-sorting baseline . 42

3.11 3D filtering ROC . 44

3.12 Co-alignment result . 46

3.13 2D view classification . 47

3.14 View classification precision . 48

3.15 Histogram of error magnitudes . 49

3.16 Background clutter . 50

3.17 Modeled SVM performance . 51

List of Figures 9

3.18 Attribute sorting . 51

3.19 Shape estimation accuracy . 52

3.20 Effect of data size . 53

3.21 Exploration possibilities . 54

4.1 Intended output . 57

4.2 Scene map . 60

4.3 Network architecture . 60

4.4 Non-maximum suppression . 64

4.5 Train/test split . 66

4.6 Data samples . 67

4.7 Qualitative results . 68

4.8 Effect of scene density . 71

4.9 Result on real data . 72

5.1 Scene mockup example . 74

5.2 Context example . 76

5.3 Baseline sample . 77

5.4 Decreasing context . 78

5.5 Pipeline . 80

5.6 Expected output . 80

5.7 Vanishing point detection . 82

5.8 Keypoint types . 82

5.9 Gaussian lobes . 83

5.10 Keypoint map postprocessing . 85

5.11 Template PCA . 86

5.12 Parameters estimated during the candidate fitting process. 87

5.13 GMM visualization . 90

5.14 Mixture components . 90

5.15 Candidate selection visualization 91

5.16 Max mixture model . 94

List of Figures 10

5.17 Houzz samples . 96

5.18 PBRS dataset . 97

5.19 MTurk interface . 98

5.20 Annotation tool . 100

5.21 Intersection-over-union visualization 101

5.22 Baseline output . 103

5.23 Qualitative results . 105

5.24 Changes in performance under varied angle and IoU thresholds. . . 105

List of Tables

3.1 3D alignment accuracy . 47

4.1 Baseline comparison . 69

4.2 Effect of object density . 70

5.1 Architecture performance . 84

5.2 Network architecture . 84

5.3 Hyper parameters . 96

5.4 Quantitative performance . 104

5.5 Ablation study . 106

Chapter 1

Introduction

2D
images

3D
models

Uncontrolled production In-the-wild data

Cross-dimensional
analysis

image collection

3D model collection

attribute-pose
ordered images

reordered 3D models, consistently co-aligned

ca
m

er
a

po
se

shape attribute

reo
rg

an
ized

im
ag

e co
llectio

n
reo

rg
an

ized
3D

 m
o

d
els

CROSSLINK

Retrieval and exploration

Scene map extraction

single image scene mockup

Mockup generation

Figure 1.1: In this dissertation, multiple methods for the analysis of in-the-wild visual data
are discussed. The emphasis lies on the role of cross-dimensional analysis, i.e.
the exploitation of specific advantages of 2D and 3D data sources to garner
success in the opposite domain.

The role of images in our society has never been greater than now. High quality

photographs are available to all through the smartphone in our pockets, the amount

of data being generated in this way is at an all time high, and through the internet

a considerable part of these images is available to all, for free. The numbers are

staggering: in 2017, the total number of photos captured by mobile devices and

still cameras will reach 1.2 trillion [57]. In that same year, 2.3 billion people use a

smartphone, with that number set to grow to 2.8 billion in 2020 [108].

These images constitute an extraordinary representation of the visual world

around us. The higher level information contained within the pixels of a single im-

age can be used for a wide range of tasks, but only if we can extract it. For example,

object detection in an uncontrolled image can be used for image retrieval, helping

13

industrial automation, and informing self-driving cars, while high quality semantic

segmentations and single image depth estimates can be used for path planning in un-

controlled, real-life scenarios. Furthermore, combining information extracted from

large sets of uncontrolled images allows us to perform more high level inference

tasks from the distribution of said information, such as discovering typical usage

of certain types of objects for the purpose of product design and architecture, train-

ing semantically informed models for image editing, and creating realistic synthetic

data for the purposes of simulation and entertainment.

By its nature, these images are uncontrolled – we have no control over how

these photographs are taken, and thus cannot rely on rigid methods for extracting all

this information. It is no surprise then, that the analysis of uncontrolled images, also

called images “in the wild”, has been focus of significant research efforts over the

past years. This has resulted in performance increases in a variety of different image

analysis tasks, ranging from object recognition [94] and semantic segmentation [85]

to pose [124] and depth estimation [37], and applications abound in both industry

and consumer markets.

At the same time, 3D data sources have become more commonplace. An

abundance of 3D models is available and growing through public access to 3D

search engines such as 3D Warehouse [115], Turbosquid [117], Sketchfab [105],

CGTrader [17], and many others. Furthermore, the creation of depth images is eas-

ily accessible through the advent of depth sensors such as the Microsoft Kinect,

Google’s Project Tango, and Intel RealSense, as well as through many smartphones

with dual cameras, enabling 3D photo and video through stereo vision. Demand for

3D data is also growing, with interest from many fields ranging from architecture

and indoor design to virtual reality, digital fabrication, and the game industry. As

with 2D data the need to understand and organize these data automatically has in-

creased in step with this growth, for example yielding works in shape labeling [53],

exploration [141], and semantic editing [134].

When considering both 2D and 3D data together, there are some important

things to note. First, these two types of data are intrinsically different in a number

14

of ways. Photographs are usually captured and provide a high quality representation

of the world, whereas 3D models are usually created by hand, with high variance

in quality. On the other hand, 3D models provide a third dimension, yielding in-

formation that 2D images by definition lack. Then again, even though the amount

of 3D data available has increased significantly, there is still a gap of multiple or-

ders of magnitude with the vast number of 2D images that can be found on-line –

the latest public estimate from 2010 puts the number of images indexed by Google

at 10 billion [40], whereas the number of available models on 3D Warehouse and

Turbosquid combined is around 3 million [115, 117].

Despite these differences it is also important to acknowledge the common

ground between the 2D and 3D domains. After all, they ultimately represent the

same subject, i.e. what we are actually interested in – our reality, the world in

which we live. In other words, the tasks we set out to perform which use these

data as input are usually concerned with understanding something about the world

represented by them.

Taking into account the differences as well as the commonalities leads to the

insight that for certain tasks relating to in-the-wild analysis, it could be useful to

take into account both data types. In these cases, the common ground makes

cross-dimensional analysis possible, while the differences ensure the availability

of a greater amount of information than in the single-dimensional case. This can

bring about solutions to problems that are otherwise impractical to solve, and in

other cases lead to performance improvement. In this thesis, we will consider three

analysis problems of images and models in-the-wild, while taking this insight of

cross-dimensional linking into account (see Figure 1.1).

The first problem we will address arises when considering retrieval of iconic

images and 3D models. An iconic image is, as the name suggests, an iconic exem-

plification of the object it represents. Figure 1.2, left shows an example of an iconic

image of a car. The internet is full of such images, and through highly developed

search engines such as Google and Bing images anyone can access thousands of

high quality iconic images of nearly any object class. 3D object models (Figure 1.2,

15

iconic image 3D model

Figure 1.2: Iconic images and 3D models are available in large numbers on the internet,
and have differing advantages and disadvantages

right) represent a similar concept for the 3D domain, and are also available in high

numbers through 3D search engines. However, the retrieval quality of these engines

still trails significantly behind that of the 2D search engines. On the other hand, the

3D models present us with geometry and pose information, which are lacking in

the 2D domain. By considering the retrieval task in a joint fashion, we can improve

the quality of 3D retrieval while enabling novel exploration methods of 2D retrieval

results. This idea is explored in Chapter 3, where such a method is proposed. We

show significant improvement in quality of 3D retrieval results, as well as new ex-

ploration methods of 2D retrieval results based on pose and geometry. These results

are valuable in itself, but will also be of use when considering non-iconic images.

Figure 1.3: Non-iconic images such as indoor scenes make up a large part of the in-the-wild
images on the web

Indeed, the majority of photographs are not iconic but depict scenes, which

contain arrangements of multiple objects of different types. Many of these scene

photographs are indoor, of which some typical examples can be seen in Figure 1.3.

Many efforts have been made to understand these images automatically in different

ways, such as finding objects (Ren et al., 2015 [94]), estimating depth (Godard et

al., 2017 [37]), and semantic segmentation (Noh et al., 2015 [85]). All of these

16

methods try to infer 3D semantic and geometric structure of a 2D image – what

3D objects are present, and where they are. Limiting ourselves to objects that are

placed on the ground, this information can be compactly summarized by a top-down

map of the scene, henceforth called a scene map. In other words, when looking at

the scene from top down, which objects are placed where? Automatically extract-

ing this information is useful for many domains, such as path planning from single

images, computing statistics of furniture usage from large datasets of indoor scene

photographs, as well as scene type classification. In Chapter 4 we will investi-

gate this problem, notably using the clean and co-aligned model sets resulting from

Chapter 3 as a source for generating synthetic training data.

The resulting method’s main weakness is occlusion. This is not so surprising

– even we as humans need to use contextual information to reason about scenes

under heavy occlusion. Moreover, for some purposes the format of the scene map

is too coarse. For example, if we want the extracted 3D information to help us edit

the input image in some way, we need more than just rough 3D location – we also

need the pose of the 3D objects, as well as the pose and intrinsic parameters of the

camera. In Chapter 5 we propose a method for generating a richer output called

a scene mockup: a 3D scene consisting of 3D objects from a clean and co-aligned

database (again collected from Chapter 3), together with an estimated camera, such

that the reprojection of the scene is as close as possible to the input image. To deal

with occlusion, we will introduce a model of object co-occurence, which helps in

finding objects for which otherwise too little visual information would be available.

This model is trained on a database of 3D indoor scenes, once more introducing

cross-dimensional links for performance improvement. The method is shown to

beat state-of-the-art methods.

The main contributions of this thesis are:

• a method for improving 3D model retrieval using results from high quality

2D image retrieval,

• a method for exploring 2D image retrieval results by view and shape using

3D model retrieval results,

17

• a multi-scale neural network setup for the estimation of top-down scene maps

from single images,

• a method for synthesizing 3D scenes from 3D model collections for the pur-

pose of training this neural network, and

• a multi-stage optimization framework for finding chairs in single images us-

ing keypoints from a neural network, as well as a learnt statistical model of

object co-occurrence.

Chapter 2

Related Work

Analysis of in-the-wild 2D and 3D visual data has been explored in the context of

many different tasks. The research most related to the work presented in this thesis

can roughly be split into two different parts: methods which attempt similar tasks to

the ones considered in this thesis, and methods whose goals are different but whose

underlying insight (the linking of the 2D and 3D domains) is similar. Both types

are discussed here.

2.1 Image and shape retrieval

2D image search. Many supervised and unsupervised methods have been devel-

oped for image retrieval (see recent surveys by Datta et al., 2008 [27] and Zhang

et al., 2013 [136]). Broadly, the majority of methods rely on image tags or accom-

panying annotations and/or extracted image features (e.g., HOG, SIFT, PCA-SIFT,

Wu et al., 2015 [127]
view

query: car

CrossLink (Chapter 3)

Figure 2.1: Many other works look at cross-modal retrieval, such as Wu et al., 2015 [127],
which allows for retrieval of text using images and vice versa. In contrast, we
do text-based retrieval of two different modalities jointly to improve perfor-
mance and enable new exploration methods.

2.2. Image and shape analysis 19

SURF, etc.) to train category-specific classifiers. More recently, correlation across

multiple information channels (e.g., text, images) has been explored for better re-

trieval performance [125, 78, 88, 121, 127, 77]. With a similar motivation, in Chap-

ter 3 a method is proposed to link and utilize information coming from 3D models

for richer image search and exploration. In contrast to most methods, we are not

looking to enable cross-modal search (i.e. search for images using shapes and vice

versa) but to improve text-based search in both modalities by implicitly linking the

retrieval process of both modalities (see Figure 2.2).

3D shape search. There has also been significant work on 3D shape retrieval

from large collections. These techniques can be classified according to the type

of query, and include text-based, or content-based, where a sample 3D shape is

given and the goal is to retrieve similar ones, either image-based, or sketch-based.

Although, in practice, text-based search is both simplest and most accessible, the

poor quality of user-assigned tags in public 3D model collections means that the

quality of pure text-based retrieval has so far been unsatisfactory [81, 38]. At the

same time, content-based and sketch-based retrieval approaches, while often accu-

rate [111, 30, 70, 120, 130], assume a 2D or 3D query, which can be non-trivial to

obtain for a casual user.

2.2 Image and shape analysis

Image analysis. In the context of image collections, such as those returned by a

2D search engine, the grand goal is to annotate the content of each image and link

it to an ontology of semantic concepts (e.g., ImageNet Visual Recognition Chal-

lenge [96] and references therein), often by using a large repository of ground truth

annotations. While this line of work is fundamental, we argue that some properties,

such as geometric attributes of objects (a ‘narrow’ chair) or camera pose are rarely

present in the annotations of even the largest image collections. Therefore, using

side information from a different modality can contribute to better overall image

understanding, as discussed in Chapter 3. In the context of image collections of a

single scene, learning discriminative patches has been proposed to characterize the

2.2. Image and shape analysis 20

underlying 3D scene. For example, Srivastava et al. [101] proposed exemplar SVM

to establish cross-domain image matching, while Aubry et al. [7] factor out various

sketching effects to facilitate painting-to-3D alignment.

Semantic segmentation. Many traditional approaches for in-the-wild scene under-

standing are based on semantic segmentation, which tries to associate class labels

to pixels in the image (see Gould et al., 2014 [42] for an overview of related meth-

ods). Most recently, successful techniques heavily exploit training data to guide

semantic segmentation (e.g. [16, 20, 85, 21], among many others). Moreover, some

recent approaches such as Handa et al. [44] have used synthetic (rendered) data

to augment the training set resulting in more accurate labeling. In Chapters 4 and

5, similar extraction of semantic data from single images is investigated, but unlike

these methods, the goal is not to associate class labels to image pixels, but to directly

output an abstracted scene in the form of either a scene map or scene mockup, which

summarizes the objects in the image in scene coordinates. In this way, our approach

is related to techniques that estimate depth together with semantics (e.g. Eigen et

al., 2015 [29]), although we avoid the error-prone depth estimation step by training

on the scene maps and mockups directly.

Shape analysis. Analogously, in the context of 3D model collections, co-analysis

approaches like Mitra et al. [82] have focused on extracting part-level anisotropic

scale variations for characterizing style (Xu et al., 2010 [131]), linking point-level

correspondence detection across shape variations to learn template-based shape

variations (Kim et al., 2013 [64]), semi-supervised learning strategies for fine

grained labeling of shapes collections (Huang et al., 2013 [50]), learning charac-

teristic deformation directions from models collections (Yumer et al., 2014 [135]),

performing semantic editing (Yumer et al., 2015 [134]), using functional maps to

analyze unstructured model collections (Huang et al., 2014 [51]), or learning func-

tion of objects through interaction co-analysis (Hu et al., 2016 [49]). These methods

rely on access to single-category collections free from outlier shapes. Often, such

model collections are manually curated, which limits extensions to different classes.

In Chapter 3 it is shown how large collections of natural images can be used to au-

2.2. Image and shape analysis 21

SeeingChairs [6] Our method (Chapter 5)

Figure 2.2: In the case of scene mockups, we manage to improve beyond existing baselines,
such as Aubry et al., 2014 [6], by exploiting contextual information between
objects in a scene. This allows us to reason about highly occluded objects, a
case where other methods fail.

tomatically filter irrelevant 3D models and to co-analyse and explore collections of

3D models. The resulting collection of models can be used as input to any of the

previously mentioned methods, and is used in this work to create object templates

for mockup creation in Chapter 5.

Coupled image-shape analysis. The classic work on morphable faces by Blanz &

Vetter [12] demonstrated the utility of modal analysis using point-level correspon-

dence across shapes to computer graphics. Xu et al. [133] used model collections to

perform part-based model synthesis using photographs for style guidance, while Li

et al. [72] fuse photographs and LiDAR scans to create depth-layer decomposition

of urban facades. More recently, Wang et al. [122] analyze different 2D projections

of 3D shapes to transfer information from labeled images to consistently segment

the 3D shapes. In two related efforts, Vicente et al. [119] use landmark-based corre-

spondences to roughly estimate camera locations for images of different but related

shape instances in an effort to reconstruct the VOC data, while Su et al. [109] es-

timate deformation fields regularized by a network of shapes to convert segmented

images to corresponding depth maps. Note that in the later effort the input im-

ages are assumed to be presegmented. With a similar motivation, Aubry et al. [6]

use renderings of 3D models from multiple viewpoints to train a pose classifier for

2.3. Scene understanding 22

data-driven part-based 2D-3D alignment in a single manually curated object class.

The work presented in Chapter 5 is similarly motivated, but uses added scene statis-

tics information gleaned from a large database of 3D scenes to aid the process in

case of heavily occluded objects (see Figure 2.2).

Other recent methods exploit large databases of 3D models to facilitate im-

age analysis. Most notably, 3D model collections have been used for single-view

reconstruction (Huang et al., 2015 [52]), object detection (Aubry et al., 2014 [6],

Massa et al., 2015 [79]), view-point estimation (Su et al., 2015 [110]), scene parsing

(Zhao et al., 2013 [139]), or even for learning generative models for object synthe-

sis (Girdhar et al., 2016 [36]). Model collections are particularly useful as a source

of additional training data that can be incorporated into learning algorithms for la-

beling (Handa et al., 2015 [44]) or pose estimation tasks (Chen et al., 2016 [22]),

among many others [123, 129, 13]. The work presented in Chapter 4 and 5 overlap

with this area, being most closely related to those methods that use 3D data as side

information for scene understanding (e.g. Liu et al., 2015 [74] and Zhang et al.,

2016 [137]).

Finally, Li et al. [71] propose a method for embedding shapes and images

within the same embedding space via CNN image purification. This is in line with

the goal of Chapter 3 of reasoning about image and 3D model collections simul-

taneously without explicit links. However, their method requires clean 3D model

sets, while our pipeline is designed for the usually highly noisy model collections

returned by common 3D model search engines.

2.3 Scene understanding

Pose estimation. Another line of work that reasons about 3D and 2D data jointly, is

research in Camera Pose Estimation, which can also be stated as alignment of a sin-

gle 3D object with a natural 2D image. Although a classical and well-studied prob-

lem, there are many variations that range in robustness and complexity (see Dambre-

ville et al., 2008 [26], Corsini et al., 2009 [23], and Prisacariu et al., 2012 [92]

among many others, as well as work by Russell et al. [97] applying this idea to align

2.3. Scene understanding 23

historical architectural paintings with 3D models obtained using multi-view stereo).

In Chapter 3 a method is proposed that achieves both scalability and robustness to

large changes in geometry and appearance, and avoids any explicit correspondence.

Our use of classifier smoothing and interpolation in this context can also be seen as

a special-case of regularized multi-task learning (Evgeniou et al., 2004 [31]), where

we exploit the circular nature of the parameter space. In addition, in Chapter 5

the co-aligned models resulting from Chapter 3 are used to extend the 3D object

alignment problem to multiple instances.

Scene mockups. A number of methods have also been proposed for high-level

scene understanding and labeling, by exploiting additional depth information avail-

able from RGB-D sensors [107, 43, 106]. The goals of Chapter 4 are similar, but we

only use 2D image information at test time, and exploit rendered synthetic scenes

for training. In Chapter 5 the extra information used comes in the form of a database

of 3D models and scenes, which heavily regularize the mockup process. A similar

recent technique by Bansal et al. [10] uses a database of 3D models and retrieves the

closest model to a given bounding box in the image. In addition, they do dense nor-

mal estimation first, which again introduces additional complexity and a potential

source of inaccuracies.

Most recently, Izadinia et al. [60] demonstrated scene reconstruction with CAD

models from a single image using image based object detection and pose estimation

approaches. Although their objective is similar to ours in Chapter 5, the perfor-

mance is bounded by the individual vision algorithms utilized in their pipeline. This

obstacle is similar to the one encountered by our second baseline, which is based on

FasterRCNN [94] (see Section 5.4). For example, if FasterRCNN misses an object

because of significant occlusion, there is no mechanism to recover it in the recon-

struction. On the contrary, our novel pairwise based search incorporates high level

relationships typical to indoor scenes to recover from such failures successfully.

Scene priors for reconstruction. Scene arrangement priors have been successfully

demonstrated in 3D reconstruction from unstructured 3D input, as well as scene

synthesis (Fisher et al., 2012 [34]). Shao et al. [99] demonstrated that scenes with

2.3. Scene understanding 24

significant occlusion can be reconstructed from depth images by reasoning about

the physical plausibility of object placements; a similar observation concerning the

statistical plausibility of object placements is used by us in Chapter 5. Monszpart

et al. [83] uses the insight that planar patches in indoor scenes are often oriented

in a sparse set of directions to regularize the process of 3D reconstruction. Fisher

et al. [35] leveraged human activity priors together with object relationships as a

foundation for 3D scenes synthesis. In contrast to the complex and high order joint

relationships used in these works, the object centric templates used in Chapter 5 aim

to capture object co-occurence statistics using first order relationships between two

object placements. This compact and simple template representation help ensure

our search is tractable at runtime.

Chapter 3

CrossLink: Joint Understanding of

Image and 3D Model Collections

through Shape and Camera Pose

Variations1

image
collection

model collection

feature
extraction

reordered
3D models

view
classifier

shape classifier

attribute-pose
ordered images

ou
t-o

f-c
la

ss
im

ag
es

co-alignment
(3D)

image > 3D models

3D models > image

attribute-consistent
ordering

feature
extraction

view-ordered
images

renderings

feature
extraction

+
attribute
extractor

Figure 3.1: Overview of the proposed framework for joint understanding of class-labelled
2D image and 3D model collections.

3.1 Introduction
Image and model collections are ubiquitous and continue to grow rapidly. Analyz-

ing and processing such collections has been the focus of a large body of work in
1Published at SIGGRAPH Asia 2015 [54]

3.1. Introduction 26

computer graphics, computer vision and related fields over the past several decades.

However, despite a great amount of progress, several tasks remain challenging, in-

cluding text-based 3D model search and camera pose estimation in images, in large

part due to the significant noise (e.g. in tags or annotations of 3D models), or the

lack of training data (e.g. in camera pose estimation) in the unorganized online

repositories.

At the same time, several recent techniques have been proposed for co-analysis

and exploration of 3D model collections, leading to the area of structure-aware

shape processing [82]. Works in this direction are motivated by the fact that the

structure and relations between 3D objects are best understood within the context of

other related models in a large repository. However, the vast majority of these tech-

niques require a pre-filtered set of models falling within the same category (‘car’,

‘chair’, ‘bicycle’, etc.), and obtaining such a set often requires manual interven-

tion, especially because most existing text-based 3D search approaches are based

on user-generated tags, which can be noisy and unreliable.

Similarly, in the image domain, estimating shape attributes, such as geometric

properties including height or width of the object, or the viewing angle/camera pose,

is difficult even for the largest image collections, since these attributes are rarely

provided as part user labelings. Therefore, training image classifiers that would be

able to discriminate across object views or provide geometric information about the

object in an image still remains challenging (e.g., ‘show an image of a long bicycle

from a particular viewing angle’).

This domain is the first in which the main point of this thesis is explored. The

strengths and weaknesses of 2D and 3D data retrieval are combined and put to

the test as a joint system. Several key problems are addressed, for which signifi-

cant quantitative improvement in performance over existing baseline methods are

reported: text-based 3D search, 3D model co-alignment, as well as camera pose

estimation and geometric property (height or width of an object) in 2D images. For

each of these problems it is demonstrated how to exploit the strengths of different

types of data to co-analyze image and 3D model collections for common object

3.1. Introduction 27

categories. The ultimate objective is to allow better understanding and joint explo-

ration of image and 3D model collections. This is achieved by improving 3D search

results, consistently aligning the models, and exposing to the user an exploration

interface, which allows image retrieval based on pose and shape, learned from 3D

models. Furthermore, the resulting co-aligned model sets provide the basis for the

scene understanding tasks explored in Chapters 4 and 5.

In creating this system, henceforth to be called CROSSLINK, several key tech-

nical challenges are solved: (i) show how image-based feature representations can

be used to learn efficient classifiers on 3D shapes for better text-based search,

(ii) propose an efficient 3D co-alignment procedure, based on a hybrid 2D-3D repre-

sentation, (iii) demonstrate how this representation leads to efficient pose estimation

by using the inherent periodic (spherical or circular) nature of the space of views

of a 3D model, and finally (iv) develop an object shape estimation method in im-

ages, using 3D models for training. Note that although to solve the problems we

heavily use classical techniques such as Support Vector Machines and non-linear

regression, significant technical contributions are made to exploit the particular and

novel structure of multimodal data at hand.

The proposed framework is extensively evaluated on 20 object categories ob-

tained using the Bing Image Search and the Trimble 3D Warehouse. Several quan-

titative metrics are proposed to evaluate each step of the system, setup appropri-

ate ground truth datasets, and compare the performance over existing baseline ap-

proaches. In summary:

• we introduce and study the problem of joint analysis of 2D image and 3D

model collections, while factoring out significant shape and camera pose vari-

ations; and

• we propose a framework for multi-modal data analysis across collections for

search and exploration, without explicitly solving for point- or patch-level

correspondences, requiring background detection, or assuming manual filter-

ing.

3.2. Overview 28

3.2 Overview
Our key hypothesis is that by jointly considering the inherent qualities of 2D and 3D

collections, we can harness the power of one of the domains to improve performance

of tasks in the other. However, translating this intuition into a practical framework

is challenging as the connections between 2D and 3D repositories are not trivial to

discover and exploit, due to the fundamental differences in the two representations.

More importantly, natural images (i.e., photographs of real objects) usually have

very different appearance compared to counterpart user-generated 3D models. Both

the presence of the background clutter in the natural images and the variation of

geometry and texture in the 3D models often lead to significant differences in the

resulting representations (see Figure 3.2).

input image collection

input 3D model collection

Figure 3.2: Using a keyword search, ‘airplane’ in this example, we retrieve the default
ordered images and 3D models from Bing and the Trimble 3D Warehouse.
Note the poor quality on the bottom.

CROSSLINK (see Figure 3.1) takes as input a class-labelled 2D image collec-

tion I , and a class-labelled 3D model repository M . We represent each model in

M by a set of renderings V taken from a fixed set of viewing angles. We retrieve

the class-labelled collections by respectively querying the Bing and the Trimble 3D

Warehouse repositories with text queries (e.g., ‘car,’ ‘airplane,’ etc.).

Images to improve 3D model search. We observe that image collections often

have more accurate labels than their 3D counterparts. For example, a keyword

search of ‘car’ on a 2D search engine yields nearly only true positives among the

top hits, whereas the same search on a 3D search engine yields more questionable

results (see Figure 3.2). This is partly explained by the fact that online image repos-

3.2. Overview 29

itories are orders of magnitude larger than 3D shape collections, which enables

training significantly more accurate image labelling and classification mechanisms.

We exploit this difference in quality by training a classifier using the data in I ,

by considering them to be ‘ground truth positives,’ using image descriptors to first

convert the images to canonical feature vectors (Section 3.3.2). We then re-sort the

models in M using the scores of the classifier on the renderings in V and discard

models based on the classification scores. This leaves us with the filtered set of 3D

models Mf (Section 3.4). These 3D models, however, are not consistently oriented.

We develop a novel image-based approach to co-align the filtered set of 3D models

Mf (Section 3.4.1) by exploiting the circular structure in the view space. Thus, an

image collection helps to re-sort and co-align a corresponding model collection.

Re-sorted models to reorder images. We then use the clean set of co-aligned 3D

models for a given object class to better organize and annotate the input set of 2D

images. Our motivation is that whereas 3D models can be viewed from any angle,

2D images are fixed, and extracting the viewpoint (i.e., camera pose) from a given

2D image is non-trivial. We therefore propose an approach for viewpoint estimation

that exploits the set of 3D models. We train view-specific classifiers, this time with

renderings of one viewpoint from each model in Mf as positives, and the other

viewpoint renderings as negatives. As an interesting technical novelty, we show

how a one-parameter family of classifiers can be obtained via fitting, thus alleviating

the need to train many independent classifiers for each view independently (Section

3.5.2). Given a target viewpoint, we then re-sort the image collection I based on

the classifier score. Further, we assign to each image in I its most likely view.

Having factored out view variation, we turn to shape variation. While both the

3D models and the natural images exhibit shape variation, we note that certain geo-

metric shape attributes are trivial to extract from the re-sorted 3D models, while the

same task is difficult in 2D images. Hence, we train a nonlinear regressor by using

the models Mf , regularized using a novel formulation to exploit the circular view

structure, for each shape attribute and each viewpoint. We then use the regressors

to estimate the geometric properties for images in I , while using the view informa-

3.3. Input and Data Representation 30

tion extracted in the previous stage (Section 3.5.3). Thus, the 3D model collection

helps to re-organize the counterpart image collections according to view and shape

variations. The extracted cross links are then used for jointly exploring the image

and model collections (Section 3.6).

3.3 Input and Data Representation

The goal of our framework is to reason about 2D and 3D data concurrently. For the

2D part, we take as input a collection I of natural images, which consists of sets

of images Ic, obtained by issuing a text query c (e.g., ‘car,’ ‘chair,’ ‘bicycle,’ etc.)

to a standard 2D image search engine (Bing Image Search). Similarly, we take a

3D repository M consisting of sets of models Mc, obtained by issuing the same

text query c to a 3D model search engine (Trimble 3D Warehouse). One of our

goals is to use the set Ic to filter out the incorrect 3D models from Mc. For this, as

well as for the other steps in our pipeline, we first bring both sets into a common

representation, as described next.

3.3.1 Rendering of the models

To obtain a common representation for both 2D and 3D data, we summarize each

model M i
c ∈ Mc via a set of 2D renderings V i

c . These renderings are made from

a set of Nv viewing angles, at a fixed elevation in a ring around the object. In

our experiments, the renderings were taken directly from the 3D Warehouse search

results, which provide Nv = 36 views per 3D model. Figure 3.3 shows an example.

Note that we assume that the up-vector for all models is consistent, and is similar

to the standard up-vector in 2D images. While this may not be the case for all

types of objects, we have found this assumption to hold for most categories that we

considered (except ‘guitars’ and ‘helicopters’). Let us stress that we represent each

3D model as a structured collection of images. Throughout the pipeline we will

heavily exploit the circular ordering (i.e., views are wrapped around 360◦) and the

consistent up-direction of the renderings of each 3D model.

3.3. Input and Data Representation 31

3D mesh rendered views

Figure 3.3: Each 3D model retrieved from the Trimble 3D Warehouse is used to create
36 renderings in different views, by sampling 10 degree rotations at a fixed
elevation (only a few shown in this example). We assume that every input
model is upright oriented.

3.3.2 Feature extraction

The 2D repository consists mostly of photographs, which often have background

clutter, whereas the 3D models are rendered against no background. In addition,

although some of the models have textures, they are not nearly of photographic

quality. Finally, the geometry of the models in the 3D repository is often of poor

quality, further increasing the difference in appearance. In order to gain resilience

to a large class of transformations, we employ a feature encoding approach. We use

two different feature representations, both selected for their individual strengths.

KC-encoded HOG features. The first type of feature is a combination of local

histogram of gradients (HOG) [25] features, and a Kernel Codebook (KC) encod-

ing [118] to combine them globally. The success of HOG in many recent object

detection and classification approaches (cf., [33]) and its sensitivity to changes in

orientation makes this descriptor especially interesting in our application. For each

8×8 patch, the HOG features yield a 36-dimensional feature vector, which captures

local image gradients (see Figure 3.4).

We combine the local HOG features into global descriptors using the afore-

mentioned kernel codebook encoding. Specifically, we first perform K-means clus-

tering on all local HOG features of all images in both Ic and Vc, resulting in a

codebook µc of K visual words for each class c (K = 800 in our tests). Then,

for a given image x with HOG features H(x), each local HOG feature h ∈ H(x)

is encoded as a K-dimensional vector, which has non-zero elements only for the

3.3. Input and Data Representation 32

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

image

rendering

HOG features global encoding

Figure 3.4: Left-to-right: Input images, corresponding HOG features, global feature vector
encoding using max pooling (K=20 for visualization). Top row: car image
from Bing; bottom row: a comparable camera view rendering from Trimble 3D
Warehouse.

closest k (k = 4) neighbors of h in µc:

[KC c(h)]i =


d(h,µi

c)∑
j∈Nk

d(h,µj
c)

if i ∈ Nk(h,µc)

0 otherwise

where, Nk(h,µc) are the indices of the k closest neighbors of h in µc, and d(h, µ)

is a distance kernel, defined as

d(h, µ) = exp(−γ||h− µ||2).

We used γ = 100 in our experiments. A major advantage of this approach is that

the global feature vector will vary more smoothly with small changes in the local

feature vectors. This is important when modelling the view classifiers as a smoothly

varying family, as discussed in Section 3.5.2. Finally, we combine these local en-

codings into a global encoding using max pooling [62, 15]

[KC c(H(x))]i = max
h

[KCc(h)]i, h ∈ H(x).

This setup results in one 800-dimensional Euclidean feature vector per image.

3.4. 3D Model Collection Filtering 33

Please note the variation from the original approach [118], where the local encod-

ings are summed together. Our reasoning here is that the 2D images in I often have

background. Using sum pooling, the gradients of the background would always be

taken into account, which can adversely affect later image comparison. Our experi-

ments confirm this boost in performance.

CNN features. The second type of feature is extracted using a pre-trained convo-

lutional neural network (CNN) [67, 63]. This network was trained on ImageNet

[28] – a dataset of over 10 million images in over 10000 subcategories – and is

the state-of-the-art for classification on this particular dataset. We use the final

4096-dimensional fully connected layer from this network as a global image fea-

ture. One CNN feature vector represents one image, and is of dimension 4096.

Note that this feature descriptor is expected not to discriminate well between views,

as it was specifically trained to recognize objects in any configuration. We show

and evaluate the difference in performance between the two features in Section 3.6.

For each object class c, we compute HOG and CNN features of all images in

Ic and all rendered views in Vc. For any image x, we will refer to its KC-encoded

HOG features as HOG(x), and to its CNN features as CNN(x). As most of the

pipeline is agnostic to the type of feature used, we refer to any feature generically

as F(x).

3.4 3D Model Collection Filtering
Our first observation is that label accuracy of the images in Ic is significantly higher

than of the models in Mc. Therefore, we capture the characteristic features of the

given class in a classifier by using the high accuracy of the images in Ic, and then

re-sort the models in Mc using this classifier.

By using one of the feature representations F(x) mentioned above, we first

create a set of ‘positives’ from the feature encodings of the in-class images in Ic,

i.e.,

P filt
c := F(Ic).

Similarly, as negatives, we use the feature encodings of the out-class images, as well

3.4. 3D Model Collection Filtering 34

as the feature encodings of a sampling of renderings from the out-class models:

Nfilt
c := F(IC\c) ∪ F(V i,j

C\c)

where, V i,j
c is a sampling of the j-th rendered view of 3D model i. In our exper-

iments, we take 10 models per class, and 2 views per model, randomly sampled

from the set. Empirically, the addition of these out-of-class negatives significantly

improved the results. Intuitively, the features in the negatives from rendered 3D

models are more likely to appear in the test data, and therefore, force the classifier

to find a better trade-off between the positive features from the natural images and

negative features from both images and rendered 3D models.

We use the sets P filt
c and Nfilt

c to train a standard linear support vector machine

(SVM) [24] ffilt
c that finds the separating hyperplane with the largest margin between

the positives and negatives. This will allow us to give a confidence score that a

particular 3D model in Mc actually belongs to class c, by considering the scores of

its rendered views on ffilt
c .

We apply the trained support vector machine to all views in Vc, resulting in

a per-view score ffilt
c (V i,j

c). For a 3D model, we define the score as the maximum

score over all its views:

ffilt
c (M i

c) = max
j

ffilt
c (V i,j

c).

An alternative would be to use the average instead of maximum. However, we have

found that the distribution of different views in Ic is most often not well-balanced,

and thus we cannot expect views in Vc that are not well represented in Ic to have a

high score, even when they are views of an in-class model (see Figure 3.5).

Finally, we sort the models in Mc based on their scores to obtain an ordering

on the 3D models based on the confidence of them belonging to class c. In Section

3.6, we show that this ordering significantly outperforms the default ordering given

by Trimble 3D Warehouse or obtained by a direct shape descriptor-based clustering.

Finally, the filtered model set is obtained by removing all models with a negative

3.4. 3D Model Collection Filtering 35

Figure 3.5: We re-sort the (top) original ordering of ‘cars’ from the 3D model collection to
obtain a new ordering (bottom), automatically pushing the false positives to the
end of the list.

classifier score.

3.4.1 3D model alignment

Having filtered the 3D models for each class c, next we organize them in a way

that makes joint shape analysis and exploration simple and effective. First, we

co-align the shapes into a shared canonical position (see Figure 3.6). To achieve

this, we developed a novel method for joint alignment, which is sensitive to object

appearance. Our approach takes as input a set of 3D models that mostly belong to

a single category c, with a few potential mis-classified instances, gathered using the

method described in the previous section. Our goal then is to find the rotation for

each 3D model such that a properly defined global alignment error is minimized.

The proposed technique particularly exploits the circular nature of the view space,

and hence is both efficient and robust in the presence of mis-classified instances.

In this part we use the same hybrid 2D-3D shape representation as described

above. Namely, we represent each 3D model as a collection of 36 images rendered

at 10 degree increments of azimuth from a fixed elevation. Recall that this represen-

tation assumes that all 3D models have a consistent “up” direction. We summarize

each of the rendered views compactly using a Euclidean vector of size K with the

chosen feature encoding F . This means that each 3D model is represented as a ma-

trix of size K × 36, where the rows and columns stand for feature encodings and

views (camera poses), respectively.

Given a set of matrices {M1,M2, . . .MN} of size K × 36 corresponding to N

different shapes, our goal is to find a vector V of size N , where each Vi is an integer

3.4. 3D Model Collection Filtering 36

Figure 3.6: The input models do not come co-aligned (top). We propose a simple effective
method to consistently align them (bottom).

in the range [0 . . . 35], such that the following error is minimized:

E(V) =
N∑
i=1

N∑
j=1

35∑
k=0

∥∥∥MVi+k mod 36
i −M

Vj+k mod 36
j

∥∥∥2

2
. (3.1)

Here we let M l
i be the lth column of matrix Mi, and the norm corresponds to the L2

norm between the corresponding column vectors. Intuitively, the alignment prob-

lem amounts to finding the offset Vi for each shape i, such that the feature represen-

tation of the k + Vi view of 3D model i corresponds to the representation of k + Vj

view of 3D model j for each j and each k, modulo 36. Note that E(V) = E(G) if

G is any vector such that Gi = Vi + c mod 36 for any constant c for all i.

We optimize Equation (3.1) using a simple iterative technique, similar to It-

erated Conditional Modes inference of Markov Random Fields, and to congealing

[68] with a discrete search space. In particular, we start by considering a random

vector V . Then, for each i ∈ [1 . . . N], we find the minimizer of E(V) with all but

ith dimension of V fixed, and update Vi, if necessary. Note that since Vi ∈ [0 . . . 35]

the optimum can be found by direct inspection. We repeat this procedure, iterating

over the different dimensions of V (corresponding to different shapes), until con-

vergence. We then restart this procedure for several (200 in our experiments) initial

random vectors V and keep the solution V opt which minimizes the error E(V). See

Figure 3.7 for a visualization of this procedure. In practice, we have noticed that

keeping one dimension of V fixed during optimization helps to speed up conver-

gence by reducing the presence of multiple global optima due to the circular nature

of the energy function E.

The final vector V opt provides a set of views, one per shape, that are as consis-

3.4. 3D Model Collection Filtering 37

Figure 3.7: Visualization of the alignment algorithm. Exploiting the cyclic nature of each
model’s collection of renders, we find the offset that minimizes the feature
description distance between each render within the same row. After a few
iterations a stationary point is reached. By running this algorithm with many
different initializations, we avoid local minima as much as possible. The result
is an accurate and efficient alignment of the models.

3.5. Image Collection Organization 38

tent as possible (see Figures 3.6 and 3.12). Note that if we expect V opt
i and V opt

j to

correspond for shapes i and j, then views V opt
i + k mod 36 and V opt

j + k mod 36

should correspond for any k as well. This simple method is remarkably efficient

and works well resulting in an average error of only 5-10◦ (see Section 3.6).

3.5 Image Collection Organization
The output of the method described in the previous section is a set of co-aligned and

filtered 3D models with a small number of false positives for each class c. We then

use these models to better organize the corresponding image collections. Namely,

we use the co-aligned 3D models to estimate both the camera pose and certain

geometric properties of objects in the 2D image set Ic, which then enables queries

such as ‘show images of a tall chair from a particular viewpoint’.

Note that we can render the co-aligned 3D models from specific viewing an-

gles for each model in Mf . Specifically, we put together sets of images (render-

ings) taken from the same view, and use them as positives in a linear classifier, as

described below.

3.5.1 Camera pose estimation

Suppose we are given a class c and a viewing angle θ. To compute a classifier

corresponding to this view, we first construct a set of positive examples by gathering

all views of the 3D models in Vc corresponding to θ:

Pview := F(V θ
c).

As negatives, we use the other views from the same class:

Nview := F(Vc \ V θ
c).

As neighbouring views are often very similar, including them in the negatives de-

creases the score for positives as well. However we are interested only in the relative

scores of the classifiers to decide which view a given 2D image should be assigned

to. This overall decrease in classifier score is thus not an issue for our case.

3.5. Image Collection Organization 39

Having trained a linear SVM with these positives and negatives, we run the

obtained classifier f view
c on the images in Ic. The resulting classifier scores corre-

spond to the confidence of each 2D image being associated with the viewing angle

θ. Note that the approach here is similar to the 3D repository filtering from Section

3.4 – although the modality from which the training data and the test data originate

are now switched, the overall classification approach we employ is the same.

We generate one classifier f view
c per viewing angle, yielding Nv different clas-

sifiers (36 in our case). Given this set of classifiers, we use them to re-sort the 2D

images according to their scores f view
c,v , which puts the images in Ic taken from the

view v at the top.

In some applications we may also need assign a single view to each image.

However, we cannot directly compare classifier scores, as SVM classifier scores are

not calibrated, i.e., similar scores in f view
c,i and f view

c,j (i 6= j) does not imply similar

confidence of the image belonging to view i or j. Thus, we use Platt scaling [90]

to convert the SVM score of a test image to a probability.

Figure 3.8: Camera pose estimation. Here, we show the top results for three different
views, one per row, for the ‘car’ dataset. The icons on the far left indicate
the corresponding 3D model view.

Instead of directly taking the view with the maximum probability, we once

again exploit the circular structure of the data. Specifically, given an image and

its ground truth view, we expect the score of the classifier pertaining to that specific

view to be high, but as neighboring views are similar in appearance, we furthermore

expect the neighboring classifiers to score above average as well. For the feature

vector of a given image x, we take this into account by computing a score for each

view v as the weighted sum of the classifier score f view
c,v (x) and its neighboring

3.5. Image Collection Organization 40

views f view
c,v±rv(x), with weights chosen as a Gaussian distribution g with zero mean

and unit variance:

f viewWeighted
c,v (x) =

rv∑
i=−rv

g(i)f view
c,v+i(x).

We then assign each image to the view which has the highest weighted score. We

have observed this weighting across neighboring views to improve performance

(Figure 3.8).

Note on regression and non-linearity. Regression seems to be the natural choice

for learning the relationship between the viewing angle and the feature vector of an

image. However, this approach is made difficult by the inherent non-linearity of the

relationship. As the Euclidean distance between feature vectors of two neighboring

views is expected to be small, the feature vectors of the 36 views of a given model

lie on a loop in feature space. We tried support vector regression with a number of

different kernels (radial basis function, hypertangent and polynomial) with a range

of different parameters, but the performance was very low in all cases (see Section

3.6). Although writing a kernel capable of dealing with this specific type of non-

linearity may be possible, our approach is particularly appealing due to its simplicity

and good performance in practice.

3.5.2 Modeling of classifier weights

Training one classifier for each of the 36 different views is both costly in practice,

and moreover, does not allow classification corresponding to views outside of this

fixed set. Intuitively, the weights of the classifiers f view
c will have a regular structure:

we expect the weights wi
c of f view

c,i to be quite similar to the weights of f view
c,i+1. We il-

lustrate this by performing a Principal Component Analysis (PCA) on the classifier

weights of the 36 classifiers for the class ‘car.’ Examining the resulting PCA dimen-

sions we note that the first three explain over 80% of the variance in the classifier

weights (Figure 3.9, left). Plotting the coefficients in these dimensions (Figure 3.9,

right) of the computed SVM weights f view
c against the viewing angle shows very

smooth and regular structure. This regularity is also present for the classifier biases

bc. We exploit this structure to setup a model of the classifier weights and bias,

3.5. Image Collection Organization 41

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Cumulative sum of POV of classifiers PCA

Views

C
u

m
u

la
ti
v
e

 P
O

V

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

View

P
C

A
 r

e
s
p

o
n

s
e

Top 3 PCA dimensions view classifiers "car"

PCA1

PCA2

PCA3

Figure 3.9: Left: Cumulative fraction of variance of the PCA dimensions for the view clas-
sifier weights of class ‘car.’ Note that 80% of variance is explained by just 3
PCA dimensions. Right: The top 3 PCA dimensions show regular structure,
suggesting that they can be modeled.

allowing us to create a one-parameter family of classifiers per object class, param-

eterized by the viewing angle, without explicitly training an independent classifier

for each angle.

Specifically, we sample Nsample of 36 viewing angles, evenly across the circle

(every 360/Nsample degrees), and perform PCA on the weight vectors of the resulting

classifiers (see Section 3.5.1). For each of the top 3 PCA dimensions [pic]
3
i=1 and for

the bias vector bc we find interpolating cubic splines [qi]3i=1, qb. Then, to compute a

classifier for a given view θ, we evaluate the interpolators for θ and reproject to the

original space:

wθ
c =

3∑
i=0

pic qi(θ) and bθc = qb(θ). (3.2)

This yields a classifier f viewModeled
c,θ that provides a confidence score for a given ex-

ample of class c as to whether it belongs to view θ. Note that the higher we set

Nsample, the less data we take into account, and thus the lower the actual training

cost. Section 3.6 describes the effect of varying Nsample.

3.5.3 2D repository re-sorting by shape

At this stage, we have a one-parameter family of classifiers that we use to re-sort

the 2D images in Ic for any viewing angle. Having now tackled view variation, we

3.5. Image Collection Organization 42

a
ir
p
la
n
e

b
ic
y
cl
e

Figure 3.10: Re-sorting of model collections for ‘airplanes’ and ‘bicycles.’ In each case,
top shows original ordering from the 3D Trimble Warehouse, middle shows
ordering using Lightfield clustering, while bottom shows CROSSLINK re-
sults. See Figure 3.11 for performance evaluation against manually annotated
ground truth. Note that the results are not co-aligned at this stage.

focus on in-class shape attribute variation. Capturing such variations in the image

domain allows not only sorting the images by camera pose (view), but also to sort

the images within each view by object structure.

To achieve this, we extract, from the filtered models Mf in class c a certain

scalar geometric shape attribute X ∈ R, which is chosen to be trivial to extract in

the 3D domain, but challenging in the 2D domain. In our experiments, X is the

ratio of the height over the width of the model (we consider the ratio to account

for image/model scale variations). Concatenating these Xi for each model in Mc

results in a vector Xc.

Our goal is to arrive at an estimator that links the property X using the features

of the images in Ic. We do so by training kernel ridge regressors (KRR) [98] on the

feature encodings F of the views in Vc. To factor out view variation, we train one

regressor rθc per viewing angle θ.

More so than in the previous parts of the pipeline, the stark difference in feature

distribution between photographs and renderings significantly limits the regressor’s

performance on the 2D images when trained on the 3D renderings. To offset this

difference between the domains, we use a geodesic flow kernel [39] in the KRR.

This kernel constructs an implicit feature domain assembling information from the

3.6. Evaluation 43

source and target domains (photographs and renderings) and an infinite number of

domains interpolating between the two. Our results show a significant performance

increase when using such a domain-adaptation technique.

To estimate the value of the attribute X in a given image I ic ∈ Ic, we use

the regressor corresponding to the assigned view of I ic, which we extracted in the

previous section, and apply it on the feature encoding of I ic:

x(I ic) = rθc(F(I
i
c)).

The output of this procedure is a set of estimators of the given geometric attribute,

one per each viewing angle. We use these estimators to sort the natural images

according to the shape of the objects in them.

3.6 Evaluation

We extensively evaluated the proposed framework on various real world examples.

First, we shortly discuss the data sources on which we performed our experiments,

including their origins, size, and associated ground truth. Then, we show the results

of applying each part of the system on the data, and both discuss and show how we

evaluate the various results.

Data collections. Below, we present results for 4 (of 20) classes, namely airplane,

bicycle, car and chair. For each of these classes, we scraped the top 150 results

from a keyword search from Bing and Trimble 3D Warehouse for 2D and 3D data,

respectively. As mentioned in Section 3.3.1, for each model 3D Warehouse provides

36 views, rendered from evenly spaced angles in a circle around the model from a

fixed elevation. Results for another 16 classes can be found in Appendix A.

Ground truth. We manually annotated all 3D models as being either a good exam-

ple of their class (true positive), or a bad example (false positive). In some cases, a

model file contained either more than one instance of the class, or contained multi-

ple other objects as well. In those cases, we only counted the model as positive if

the model was prominent in the renderings. In the 2D repository, each image was

3.6. Evaluation 44

annotated with its ground truth viewing angle (discretized to 10 degree bins to cor-

respond with the renderings of the models). Note that this assumes camera poses

level with the ground (fixed up-vector) and a view taken from a similar elevation as

the renderings. This assumption breaks down for some classes, such as airplane and

helicopter.

3.6.1 3D repository filtering using 2D

In the first experiment, we filter the 3D models using the 2D images, based on the

feature encodings of the 2D images and the renderings of the models (see Section

3.4). Note that the only user supervision in the whole process is the choice of

classes, via a choice of the text query issued to the 2D and 3D search engines (Bing

Image Search and Trimble 3D Warehouse search), such as ‘car,’ ‘chair,’ ‘bicycle,’

etc. We tested the setup with both KC-encoded HOG features, as well as with the

pretrained CNN features.

Lightfield baseline. Intuitively, models in the same class should be geometrically

similar, and are thus expected to be clustered in any standard descriptive feature

space. We extracted 3D shape descriptors from all models and then performed

unsupervised hierarchical clustering on the feature vectors. The optimal distance

criterion for the clustering was found by trial and error on a number of classes and

then fixed. Next, we ordered the clusters by size (largest first, smallest last), and

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

airplane baseline

airplane hog kc linear

airplane cnn iden linear

airplane lightfield

car baseline

car hog kc linear

car cnn iden linear

car lightfield

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

bicycle baseline

bicycle hog kc linear

bicycle cnn iden linear

bicycle lightfield

chair baseline

chair hog kc linear

chair cnn iden linear

chair lightfield

Figure 3.11: ROC curves for 4 different classes measuring effect of 3D repository filtering
using 2D image information as compared to manually annotated ground truth
quality for 3D models. As baselines, we present both the original orderings in
the model collections and the ordering based on the Lightfield descriptor.

3.6. Evaluation 45

within each cluster sorted the models by distance to the cluster centroid (closest

first, farthest last). We use this as a baseline to compare our method. We employed

a Lightfield descriptor [18], which was found to be the most discriminative shape

descriptor available [100].

Qualitative evaluation. Figure 3.10 shows the results of two keyword searches ac-

cording to the original ordering in which they were returned by 3D Warehouse, the

ordering garnered from the unsupervised clustering of the Lightfield descriptor as

mentioned above, as well as the ordering by our algorithm. Note that the original

top results returned by 3D Warehouse contain a high number of false positives, even

though many true positives do appear later in the set of results. Although the Light-

field clustering does improve results, the presence of many false positives throws it

off balance. After reordering using our algorithm, most of the false positives in the

top results for both classes have disappeared, having been assigned low scores by

the classifier.

Quantitative evaluation. In Figure 3.11, we show the ROC curves for 4 different

classes, for the original ordering from 3D warehouse, the one using the Lightfield

descriptor, and our ordering for both feature setups. For all classes, the perfor-

mance is significantly better than the original ordering. For classes with little shape

variation and many true positives, such as ‘car’, the Lightfield descriptor cluster-

ing works well. However for classes with a significant number of false positives,

such as ‘bicycle’ and ‘airplane’, our method is noticeably better than the Lightfield

clustering baseline.

CNN vs. HOG. The CNN based feature outperforms HOG on nearly all classes.

This is especially apparent for classes where there is very consistent background

in the photographs, airplane and boat (see Appendix A). We believe that the HOG

based feature associates the class with the background, which is missing from the

renderings. In contrast, CNN based feature does not have this problem.

3.6. Evaluation 46

3.6.2 3D model alignment

Having filtered the datasets, we now test the 3D alignment method in image space,

as proposed in Section 3.4.1. We apply our method to the model set of each class.

The resulting alignment for one such class is shown in Figure 3.12. Note that al-

though the original set of models is quite random in its co-alignment, our simple

image-based algorithm finds the correct alignment for most models.

Pairwise consistency. The mean pairwise angular offset (MPAO) of all models

before and after alignment is shown in Table 3.1. This error metric is the expected

difference in alignment between two randomly picked models from the set. The

‘airplane’ class still has a high MPAO after alignment, which is mostly due to the

algorithm not being able to distinguish well between flipped versions of the same

model, due to their feature encoding similarity. Changing the feature representation

could improve performance in this case, and exploring this avenue is left for future

work.

or
ig

in
al

or
de

ri
ng

co
al

ig
nm

en
tr

es
ul

t

Figure 3.12: Co-alignment of 3D models. (Top) Initial alignment across the 3D models,
(bottom) consistently co-aligned 3D models for the ‘chair’ models. Please
refer to Table 3.1 for detailed error analysis against hand annotated ground
truth data.

Comparison with mesh-based method. For comparison, we ran the filtered model

set for two of the classes (laptop and car) through an existing mesh-based alignment

method, as described in [50, 8]. Although the accuracy of this method is slightly

higher than ours, the method takes significantly longer to run. Note that for both our

3.6. Evaluation 47

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0

TPR

FPR

Figure 3.13: View-classifying Bing images using classifiers trained using 3D models. We
assign a best view-estimate for each Bing image. Here, we show a set of
example view estimations for ‘car’ images. The corresponding ROC curves
are computed again ground truth data compiled by manually annotating each
of the retrieved Bing images (only a sampling shown here).

method and the mesh-based method, we started with the filtered sets of 3D models.

The performance decreases significantly for both methods when using the unfiltered

model collections.

Effect of filtering. We show the importance of filtering the 3D models before ap-

plying the alignment step using the class ‘bicycle.’ This class contains very few true

positives. As such, without prefiltering, the dataset is very noisy, making it difficult

to find a consistent co-alignment across models. After prefiltering the performance

is increased by an order of magnitude. The same can be observed for small data

sizes in general, as shown for class ‘helicopter.’ When only taking 50 models, re-

aligning them in the unfiltered state yields an error 50% higher than when filtering

first.

Table 3.1: Accuracy of 3D alignment. Each value represents the mean pairwise angular
offset between models in that specific scenario. For the ‘bicycle’ class, there are
not many models left after filtering, resulting in an underconstrained optimiza-
tion. This is reflected by the lower number of perfect alignments. ‘Airplane’
models often have a 180◦ error, resulting in a relatively high MPAO.

Class Before After Perfect
airplane 82.5◦ 41◦ 64%
bicycle 91.2◦ 7.72◦ 23%
bicycle, no filtering 91.2◦ 83.32◦ 23%
car 90.3◦ 5.79◦ 95%
chair 87.4◦ 0.9◦ 95%
helicopter 93.1◦ 17.4◦ 95%
helicopter, no filt. 93.1◦ 19.2◦ 95%
helicopter, no filt. (50 models) 93.1◦ 30.2◦ 95%

3.6. Evaluation 48

3.6.3 2D repository view sorting

After filtering and alignment of the 3D repository, we reorder the 2D images from

Bing according to view variation (see Section 3.5). We solely use KC-encoded

HOG-based feature for this part, as the CNN-based feature was specifically trained

not to respond to changes in viewing angle. Figure 3.13 shows, for class ‘car,’ the

assigned views for a number of images, as well as the ROC curves for the ordering

based on the view classifier scores of three different views. Note that many of the

errors are due to the assignment of images to 180 degree flipped views, which are

especially prevalent for the side view of the car, but are also present in other views.

bicycle car chair

0 30 60 90 120 150 180180

Figure 3.14: R-precision of view classification per view shown for three different classes.
For each bar, color signifies the R-precision with respect to ground truth, while
height corresponds to the number of Bing images with that view as ground
truth. Note that the height gives a measure of confidence to the error (i.e., taller
bars indicate more statistically significant), and also shows the distribution of
views per class. For all classes, this distribution is very biased towards a
number of canonical views (e.g., showroom 3/4th views for cars). Tall blue
bars indicate perfect results, while short bars of any color can be ignored due
to lack of enough data.

Error per viewing angle. Figure 3.14 visualizes the R-precision (the precision

of the classifier at position R, where R is the number of positives available) per

viewing angle together with the distribution of viewing angles across the ground

truth. Judging only from the ordering of the images themselves, the somewhat

high quantitative error for some views seems surprising. We have observed that

perceptually two views can look very similar, while still being objectively somewhat

further apart. For exploration, this ambiguity works in our favor – even with slightly

erroneous view alignment, perceptually the ordering of the images makes sense.

Comparison with regression. In Figure 3.15 we show the distribution of error

3.6. Evaluation 49

magnitude in degrees for two classes, for both our method as well as a comparative

regression method. We ran a support vector regressor using 4 different common ker-

nels (linear, polynomial, hypertangent and radial basis function) on the data, using

10-fold cross validation to find the best parameters (both for the kernel and the reg-

ularization parameter). The results shown in the figure have highest performance.

Note that this approach does not work nearly as well as our classification approach.

Finding a kernel capable of handling the circular nature of the data remains an in-

teresting direction for future work.

Effect of background clutter. Figure 3.16 shows representative examples of view

classification degradation under background clutter in test images. Often these im-

ages exhibit strong directional lines, such as a sharp horizon, or the silhouettes of

buildings. Dealing more explicitly with such difficulty, for example by incorporat-

ing background in the training stage, a direction which is explored in Chapter 5.

0-
10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

14
0-

15
0

15
0-

16
0

16
0-

17
0

17
0-

18
0

18
0-

19
0

0.00

0.05

0.10

0.15

0.20

0.25

car classification

car regression

0-
10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

14
0-

15
0

15
0-

16
0

16
0-

17
0

17
0-

18
0

18
0-

19
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

chair classification

chair regression

Figure 3.15: Histogram of error magnitudes for the ‘car’ and the ‘chair’ class, discretized
in bins of 10 degrees, for both classification and non-linear regression. Note
that our method results in a large concentration of errors in 0-10 and 10-20
bins.

3.6.4 2D view classifier modeling

To avoid the high cost of training many classifiers, we exploit the regular structure

of the classifiers’ weight vectors and bias, as described in Section 3.5.2. Figure 3.17

shows for the class ‘car’ the Kendall-Tau rank correlation between the original view

classifiers, trained as normal, and the modeled classifiers. This statistic measures

the correlation of two data orderings, being 1 when the orderings are equal, −1

3.6. Evaluation 50

in
pu

t
vi

ew
in

pu
t

vi
ew

Figure 3.16: View classification of images with significant background clutter. The pho-
tographs are input to our view classification pipeline, the renderings are the
resulting view classifications. In some cases (bottom row) the background
clutter leads to misclassifications, whereas in other cases the system handles
the difficulty well.

when they are opposite, and 0 when they are mutually independent. The left-most

chart shows that applying PCA to the weight vectors and using only the top 3 di-

mensions does not change the resultant ordering much, showing that just the top

3 dimensions in feature space are responsible for most of the view classification

performance. In the middle chart, we sample only every 30 degrees, reducing the

number of classifiers we have to train by a factor of 3. Although the original classifi-

cation score orderings are not preserved entirely, the performance is still reasonable.

Even increasing the step size to 50 degrees does not dwindle performance entirely,

although it approaches the limit of what is useful.

Currently, we use cubic interpolation for the estimation of the weight vectors.

The curves, as shown in Figure 3.9 and as we observed for other classes as well,

have a clear periodic structure, and could possibly be approximated using a sum of

sines model. This would possibly constrain the system more, allowing us to use

even sparser sampling of the classifier space. We leave this possibility for future

work.

3.6. Evaluation 51

step 1 step 3 step 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.17: Performance of modeled SVM classifiers on synthetic data using 3 different
sampling densities. A step size of n means we model the first 3 PCA dimen-
sions using every nthth classifier from the set of normally trained classifiers.
The color signifies the Kendall-Tau ranking correlation between the modeled
SVM of the corresponding view and the respective normally trained SVM. A
score of 1 signifies perfect correlation (equal ordering, so zero loss), a score
of 0 means uncorrelated orderings. To show the effect of the PCA we also
show step size 1 (taking all classifiers).

Figure 3.18: Attribute-sorted view-classified Bing images for two classes. Each row shows
a different view sorting. For each row, as we go from left-to-right, the height-
to-width ratio increases, i.e., the objects turn from short-and-wide to tall-and-
narrow.

3.6.5 2D repository shape sorting

We test the method described in Section 3.5.3 for estimating a certain shape property

from images in the 2D repository. First, we extract the ratio of height over width

from the set of aligned 3D models. Then, for each viewing angle a KRR is trained

using the method described in Section 3.5.3. To estimate the ratio for a given image

from the 2D repository, we apply the KRR corresponding to the image’s assigned

3.6. Evaluation 52

viewing angle to the features of that image. Applying this to all images of each

view, we can re-sort the images within a view by ratio. We show a sampling of such

results for the class ‘chair’ in Figure 3.18. Figure 3.19 shows for the 3D renderings

the Kendall-Tau rank correlation between the ordering by ground truth ratio and the

ordering by estimated ratio for each view. Although the score decreases for views

from which the width is difficult to judge, the scores across most other views is

high.

bicycle car chair

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.19: Accuracy of shape estimation. Color represents the Kendall-Tau rank cor-
relation coefficient for the ordering of the synthetic models according to the
shape ground truth versus the estimated shape. A score of 1 indicates perfect
correlation (equal ordering); a score of 0 indicates uncorrelated orderings.

Notes on scalability and performance. So far, we reported evaluations on 20

classes with image and model sets of size 150 per collection. To test scalability,

we tested a number of classes on datasets of larger size. (Note that the main bot-

tleneck is to prepare the ground truth for larger sets.) Specifically, we tested the

influence of increasing both the size of training data and the number of testing data.

The left ROC plot in Figure 3.20 shows that increasing the test set to the top 1000

search results does not decrease performance with respect to the original set of 150

(compare with Figure 3.11). Note that this is not trivial, as we expect the 3D Ware-

house search results to increasingly contain more false positives. In contrast, recall

that method only relying on 3D data, will perform worse as the fraction of outlier

shapes increase. The right plot shows the performance of training with 1000 ex-

amples. Note that performance increases only slightly with respect to the original

training of only 150 examples.

Our pipeline consists of unoptimized code, with the extraction of the features

3.7. Exploring Image and 3D Model Collections 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Car Orig

Chair Orig
Car After (1000/1000)

Chair After (1000/1000)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Car Orig

Chair Orig
Car After (150/1000)

Chair After (150/1000)

Figure 3.20: Left: ROC curve for HOG-based classifier trained on 1000 2D images with the
purpose of filtering 1000 3D models. Right: ROC curve for classifier trained
on 150 2D images with the purpose of filtering 1000 3D models. Although
results improve slightly, very similar performance is obtained with the smaller
training set. This shows that our approach scales to large datasets, as only
training the classifiers is expensive.

being the main bottleneck. While timings can be improved in the future, currently

in order to process 150 image/model sets, the system takes 1-2 minutes for the

image→ model direction and 3-4 minutes for the image← model direction. While

linear in complexity with the number of models, the step can be easily be run across

multiple threads.

Limitations. We observed two main sources of errors: (i) In case of a class like

‘boats,’ consistent image background (i.e., water) can easily be learned as a distin-

guishing feature by view classifier. Although this effect is diminished when using

CNN features, it is still an issue. An interesting future direction is to avoid such er-

rors, without explicit background extraction. (ii) In case of a class like ‘helicopters,’

we observed a consistent difference in the camera pose in the image (looking up to

the object) and model renderings (looking horizontally at the object). This leads to

higher than usual view estimation error (around 17◦).

3.7 Exploring Image and 3D Model Collections
We now describe how to use the output of the jointly analyzed image and 3D model

collections for multi-modal data exploration. Figure 3.21 shows the user interface2.

2A video showing this interface is available at https://youtu.be/m584yqGtlCE

https://youtu.be/m584yqGtlCE

3.8. Conclusions and Future Work 54

view-based exploration shape attribute-based exploration

Figure 3.21: The view-shape refactored image collections and the filtered and consis-
tently coaligned model collections enable novel exploration possibilities.
(Left) User selects a view by posing the model icon in the view-dial, while
the system retrieves the top rated images for the indicated view. (Right) Any
selected image can be used to probe for other images in a comparable view or
with a comparable shape attribute.

CROSSLINK produces filtered and coaligned model collections, and image col-

lections resorted by view-shape attribute axes. The user can then select a 3D model

(shown as an icon) and use the provided view-dial to interactively pose a view (i.e.,

vary azimuthal angle) as the system retrieves the top rated images for the selected

view. The height of the bars indicates the number of images in that view, while the

color indicates confidence in the view estimates. The user can click on any image

to further probe the confidence in its view estimate. More interestingly, the user can

ask for images (from the same view) of objects with higher/lower shape attribute

values. This interaction makes use of the discovered links between the two data

repositories. Note that while this mode is very natural using our view-attribute re-

ordered images, performing comparable actions using the raw image and/or model

collections would be cumbersome and very difficult using existing query interfaces.

3.8 Conclusions and Future Work
We presented a framework for joint processing of image and 3D model collections

that exploits the strengths of each data modality to improve tasks in the other. As a

key difference to standard image/shape analysis approaches, we investigated how to

3.8. Conclusions and Future Work 55

factor out both shape and (camera) pose variations across such collections, and thus

reveal their underlying structure. Our proposed framework is easy to scale, and does

not attempt to explicitly compute point- or patch-level correspondences, or back-

ground segmentation on the image. Technically, we modeled how pose variation

manifests as image-space feature variation, and then demonstrated how to factor

out such variations to reveal consistent shape attribute-based reordering on images

across multiple views. One important result is that through this framework we now

have access to a large, co-aligned set of 3D models of a diverse set of classes. Many

shape analysis techniques benefit from this (see related work in Section 2.2). More-

over, this model database will serve as input to the methods of Chapters 4 and 5.

There we will show the utility of this database for 2D scene understanding. Inter-

estingly, the cross-modal links are again traversed in both directions: from 2D to

3D for cleaning up the model database, and from 3D to 2D for aiding 2D scene

understanding.

Finally, we extensively evaluated our framework to demonstrate that cross-

domain processing not only results in cleaner and more consistent image and 3D

model search, but also enables novel exploration possibilities.

While we presented a first framework to jointly exploit correlations across

across image and 3D model collections, there are many exciting and important ques-

tions that need to be investigated:

1. A natural next step will be to investigate how 2-parameter view variations

(i.e., include altitude variations) beyond one parameter view variations as in-

vestigated here.

2. The domain adaptation technique we used for shape attribute regression can

also be used for the other parts of the pipeline. As performance in these

other parts was good without this extra layer, we did not perform any domain

adaptation there. Performance might still increase by using the geodesic flow

kernels throughout the pipeline.

3. The shape attribute regressor currently does not take into account the circular

3.8. Conclusions and Future Work 56

nature of the data – as with the model alignment, realizing that renderings

from very similar views will have similar regressor weights could be used as

an extra regularizer. Note that this regularization would need to be carefully

combined with the geodesic flow kernel.

4. Finally, as a long term goal, we would expect to use such cross-domain con-

nections along with advances in material modeling and semantic links [134]

to eventually unify image and 3D model collection, and thus be able to natu-

rally transition between the two representations.

Chapter 4

Scene Structure Inference through

Scene Map Estimation1

Figure 4.1: Given a single RGB image (left), we propose a pipeline to generate a scene
map (middle) in the form of a floor plan with grid locations for the discovered
objects. The resulting scene map can then be potentially used to generate a
3D scene mockup (right). Please note that our system does not yet support
pose estimation; hence in the mockup the objects are in default front-facing
orientations.

4.1 Introduction
In the previous chapter, the analysis of iconic images in-the-wild was discussed

through the lens of 2D and 3D retrieval. Most in-the-wild data, however, is not

iconic. In the 2D domain, images of our environment are much more common.

These images mimic our own visual input in our daily environment. Our ability of

reasoning from this visual input is vital, both to the constant and continuous analysis

1Published at the International Symposium on Vision, Modeling and Visualization 2016 [55]

4.1. Introduction 58

of our surroundings, as well as to the formation of a correct response to this analysis.

If we are to create intelligent systems capable of navigating the intricacies of the real

world as well as human beings, we need to find ways of recreating this impressive

mental ability. Hence, not surprisingly, indoor scene understanding has received

significant research attention in both computer graphics and vision.

A core subtask of indoor scene understanding is scene structure inference, i.e.,

deducing the presence and the locations of individual objects composing the scene.

Given a single image, as humans, we can in most cases tell the class of the objects

and their relative positions in the scene. Of course, from this information a lot

can be inferred, such as an unobstructed path through the room, scale, and scene

type (a room containing a bed and a chair is likely to be a bedroom, while a room

containing a desk and an executive chair is likely to be an office). Such floor plan-

level information thus provides a compact and useful summary about the nature and

the structure of the scene (see Figure 4.1).

One possible solution to inferring such a scene floor plan from a single image is

to merge state-of-the-art solutions to both semantic segmentation and depth estima-

tion to define the location of all objects in the scene. Such an approach has several

disadvantages. Firstly, it is not trivial to delineate the boundaries of the individ-

ual objects in the image, as most of the existing semantic segmentation approaches

do not produce instance-aware segmentation [103]. Secondly, both semantic seg-

mentation and depth estimation model each pixel individually. Fundamentally, as

we are only interested in the relative location of the objects, the intermediate steps

that involve pixel-level labeling can introduce a significant source of error affecting

holistic scene understanding.

To circumvent these problems, we propose a novel representation, called a

scene map. The scene map models the structure of an indoor scene using a collec-

tion of grids that mark the location of objects of different classes in a top-down view

of the scene (see Figure 4.2). Importantly, as we target directly the global structure

of the scene compared to e.g., extracting placement in world coordinates, low res-

olution grids suffice for this task. This limits the number of variables necessary to

4.2. Method 59

train and estimate in practice to the bare minimum.

In this chapter a pipeline is presented for estimating the scene map from a sin-

gle image. At its heart lies a convolutional neural network, based on the successful

VGG architecture [104]. As training data for scene maps is scarce, we create a ren-

dering pipeline that synthesizes scenes using the model set generated by the method

in Chapter 3 and renders them on the fly, supplying the network with a virtually

unlimited amount of training data. Using this synthetic training data, the network is

trained end-to-end. The pipeline’s performance is compelling, with 52% of models

being located within one grid cell of their ground truth location.

We compare the method with a baseline that combines state-of-the-art semantic

segmentation and single frame depth estimation. Our evaluation shows that the

scene map representation gives more accurate results for this task, while needing to

solve for a significantly fewer variables than its baseline counterparts. We conclude

with discussion of limitations and future work.

The main contributions thus include:

• Introducing the scene map as a representation for holistic scene understand-

ing;

• suggesting a method for synthesizing scenes together with their scene maps

by exploiting a 3D model collection, and using this data to train a convolu-

tional neural network; and

• proposing a method for inferring the scene map given a single frame as input,

using our learning pipeline.

4.2 Method
Our method infers scene structure from a single RGB image. It does so by learning

a mapping from the input to a new representation called a scene map through the

use of a deep neural network. We will first discuss this new representation, and then

detail the network architecture at the core of our method. Finally, we explain our

4.2. Method 60

Figure 4.2: A scene map describes the scene on a per-class basis from a top-down view cor-
responding to an input RGB image. A white square indicates the presence of an
instance of that particular class at that location. Here we show the groundtruth
scene map, while our result can be seen in Figure 4.7, bottom row.

RGB image
3 channels

Input

conv(3x3) ReLUbatch normalization pooling(2x2)

reshape sigmoid fully-connected

Output

Number
of classes

SceneMap

Figure 4.3: Our network architecture, based on VGG11.

synthetic rendering pipeline, which feeds the network with an unlimited supply of

training data, which helps to offset the lack of real training data for this purpose.

4.2.1 Scene Map

Our system takes as input a single RGB image, and outputs a top-down view of the

scene called a scene map. Intuitively, the scene map provides a two-dimensional

summary of the objects present in the scene and their relative positions in a way

that is similar to a floor-plan. The two coordinates of the scene map correspond

to the x and y coordinates of the plane parallel to the floor of the given indoor

scene, and the values stored at a particular coordinate correspond to the objects

present at that position. Importantly, the scene map completely removes the third

coordinate (height), and only represents the floor implicitly by using it as a frame of

reference for other objects. As we demonstrate below, such a reduced representation

4.2. Method 61

greatly facilitates the inference and learning tasks, while still providing a very useful

summary of the overall scene structure.

More precisely, assuming that the scenes contain objects belonging to N dif-

ferent classes, a scene map S consists of grids Gi ∈ S of resolution r × r, with

i ∈ {1 . . . N}, giving one grid per class. Each grid is represented as a binary

matrix, which marks the locations of all instances of any class in the scene; see

Figure 4.2. This representation is inspired by the popular occupancy grid repre-

sentation commonly used in robotics applications for 3D mapping [112], where the

3D environment is modeled as an evenly-spaced field of binary random variables,

taking the value 1 when an obstacle is present at the corresponding location. Thus,

a scene map can be considered as a spatial-semantic occupancy grid, with 2 dimen-

sions reserved to spatial coordinates and the third to class identity.

The scene map is of limited resolution by design. As we are interested in the

general layout of a scene, a margin of e.g., 30cm in the placement of an object could

be acceptable. By assuming such a margin, the number of variables in the place-

ment problem (r × r × N) is significantly reduced compared to using a fine grid,

or to modeling the problem in the original pixel space (w × h × N). This type of

simplification is encountered equally in computer vision applications that convert

regression into classification: e.g., in [4] where the aim is to predict ego-motion

encoded as a rotation-translation movement. Instead of regressing to precise (con-

tinuous) angle and translation values, the problem is converted into a classification

task by binning each movement into a fixed (discrete) number of ranges of move-

ment magnitude. This choice results in a sensible trade-off between accuracy and

complexity in problems where very precise predictions are not mandatory.

In our setup, the scene map is designed to encode a square area on the floor

of the scene in front of the camera of 6m × 6m in size. This is large enough to

accommodate more than 95% of the scenes in the SUNRGB-D dataset, and can

easily fit the average UK room size[126]. We use grids of size 16× 16, resulting in

a grid cell size of 37.5cm.

4.2. Method 62

4.2.2 Scene Map Inference Overview

Our main goal is to compute the scene map representation from a single input RGB

image. For this we follow a data-driven approach that has been shown to be effective

for a wide variety of image processing tasks. Namely, we train a Convolutional

Neural Network (CNN) that, given a single image, tries to output its scene map

representation directly, without estimating any low-level attributes such as depth or

pixel-wise class labels. One challenge with adopting this approach, however, is that

it requires a large amount of training data to be successful, due in part to the large

number of variables that typically need to be estimated. Unfortunately, there is no

existing sufficiently large dataset that contains ground truth scene map labelings

(e.g., the recent SUNRGB-D dataset [106] contains approximately 10000 images).

To overcome this issue, we train our network with scenes that we synthesize on the

fly by exploiting an existing 3D model collection [73] and varying the composition

of the scene and the appearance of the objects using a large texture dataset [89] using

a probabilistic model. In particular, we create a scene synthesis pipeline that uses

a rendering approach and a randomized object placement and appearance variation

model. This pipeline effectively provides our learning framework with an unlimited

source of data that we use to train an adapted CNN for scene map inference. To

summarize, our general approach consists of the following key steps:

• Adapting a well-developed CNN architecture for inference of scene maps

from single images.

• Constructing a randomized scene synthesis pipeline based on a scene com-

position model coupled with appearance variation and an efficient rendering

method.

• Using our scene synthesis method to train the network by generating a large

number of ground truth pairs consisting of an image and its associated scene

map.

• Using the trained network to estimate the scene map on a new test image.

4.2. Method 63

Below we describe each of the individual steps of our pipeline and provide the

corresponding implementation details.

4.2.3 Network

To learn the mapping from the RGB image space to the scene map representation,

we use a deep neural network that builds upon VGG11 [104], with a few modifica-

tions (see Figure 4.3). Notably, we added batch normalization after each convolu-

tional and fully-connected layer, resulting in a significant decrease in training time

[59]. The original VGG11 maps the input image to a discriminative feature repre-

sentation in R1024, then uses a classifier to predict a class label for each image. Since

our problem requires a spatial representation and not a single class label, we remove

the classifier and instead reshape this representation to the desired scene map repre-

sentation of size r × r ×N . Note that most architectures designed for spatial tasks

(e.g. for semantic segmentation) use mirrored encoder-decoder networks, enforc-

ing direct correspondences between the feature maps learnt by the encoder and the

decoder at each level [85]. But in our case such architectures are not justified, since

the input domain (image pixels) is different in resolution and viewpoint from the

output domain (grid cells). However, investigating for more adapted architectures

for our task constitutes a direction of future work. The result is passed through a

sigmoid layer, so that each cell in the grid reflects the likelihood of an object of a

given class being present. The overall architecture has 20 million parameters.

Training. We have implemented the proposed network using Torch. The RMSprop

optimiser [113] was used with an initial learning rate of 10−3, and a learning rate

decay of 0.8 after every 10000 iterations. Note that the training is done from scratch,

since no pre-trained models are available for VGG11. The training was performed

on a multi-GPU system (4 GPUs, 12G memory each), with batch size of 32, and

took approximately 10 hours to converge.

4.2.4 Non-maximum suppression

Each cell within a class grid shows the confidence of the network about the pres-

ence of an object of that class at the corresponding spatial location. However, the

4.2. Method 64

network is often uncertain about the precise location of an object. This uncertainty

is expressed by a spreading of the probability across multiple cells in the vicinity of

the actual location. Note that this behavior is justified considering that depth esti-

mation from a single image suffers from scale ambiguity, especially when a certain

object has not been seen before. Deep learning approaches for depth estimation

from single RGB images [29] try to bypass this issue by implicitly learning abso-

lute scale ranges for each object from the large number of training examples. The

intra-class scale variability will dictate the range width, and eventually the accuracy

that can be obtained; wide range resulting in more uncertainty in the output. A very

simple idea to reduce uncertainty and binarize the probability maps would be to use

a fixed cut-off value, e.g. 0.5, and deem every cell with an output probability of

0.5 or higher to contain an object of that class. However, we found that performing

a max pooling post-processing step, with a 3 × 3 window, results in sparser, more

accurate scene maps than direct thresholding. Hence, we use this approach in our

experiments (see Figure 4.4).

Figure 4.4: Result of non-maximum suppression. Yellow cells represent false positives,
green cells true positives. The top row shows the scene map after simple thresh-
olding at 0.5. This results in spurious activations around the true location of
each object. After non-maximum suppression, these are removed, with only
the local maximum (the true positive) being left.

4.2. Method 65

4.2.5 Rendering pipeline

Training a deep neural network requires large amounts of training data. The largest

available dataset for our purpose, SUNRGB-D [106], contains approximately 10000

images with 60000 bounding boxes of 1000 different classes. We have found this

not to be enough for training a network that generalizes well. To boost our training

data numbers, we set up a synthetic rendering pipeline, which renders training pairs

of images with the associated scene maps on the fly. This provides the system with

an unlimited stream of essentially unique training data (although theoretically two

scenes could be identical, the probability of this is vanishingly low). This is an

instance of online learning, which has self-regularizing capabilities, limiting the

risk of overfitting [14].

Data. The rendering pipeline takes a set of class-labeled objects O and textures T

as input. In our experiments, we take O as a subset of the IKEA dataset [73]. This

dataset contains objects of four classes chair, shelf, table and sofa, with 16 objects

per class. We manually curated all models to have accurate relative scale and to be

centered at world origin, with consistent orientation. The texture set T consists of a

subset of 136 textures from the VisTex dataset [89], which we curated manually to

be appropriate textures for furniture. Both O and T are separated into training and

test sets, using a 75%/25% split, as illustrated in Figure 4.5.

Scene generation. When the pipeline is queried for a new training example, a new

random scene is generated (see Figure 4.6). First, a subset o ranging from 2 to

6 objects from O is sampled at random with replacement. These objects are then

randomly placed around the world center in a 6 × 6 meter square. The objects

are randomly rotated around the up-vector in increments of 90 degrees. We make

sure the objects placed do not collide with each other. Inspection of 100 publicly

available indoor photographs shows that one wall is nearly always visible, with a

second perpendicular wall being visible approximately 75% of the time. As such,

two perpendicular walls are placed around the scene, with random, but coherent

orientation. Finally, the objects and walls are individually textured by randomly

sampling and scaling from our texture set T . Note that by including small texture

4.2. Method 66

Figure 4.5: We split models and textures into training and test sets at a 75%/25% split. This
allows us to test how well the network learns the general shape of each class of
object.

scales, we mimic textures with repeating patterns.

The camera is placed at a height drawn randomly in the range between 1m

and 1.8m to mimic the range of heights from which most handheld photographs are

taken.

Rendering. The generated scenes are then rendered using an OpenGL setup with

a simple Phong shading model. For each scene, we also generate the scene map,

semantic labeling, and depth ground truth. The latter two are used only for baseline

comparison (see Section 4.3.1). See Figure 4.6 for some samples from the rendering

4.3. Evaluation 67

Figure 4.6: An illustration of 4 samples from the data generation pipeline. We render RGB,
semantic segmentation, depth, and scene map, resulting in an unlimited stream
of fully defined training data.

pipeline.

4.3 Evaluation
In the preceding sections we proposed the scene map as a representation for holistic

scene understanding, reasoning that its low dimensionality removes unnecessary

variables from the optimization process compared to dense, pixel-based approaches.

Below, we compare our scene map estimation method with a dense approach that

combines the output of semantic segmentation with depth estimation, both from

single frame RGB input.

4.3.1 Baseline

Semantic segmentation. The semantic segmentation pipeline we use is a version of

[85], using VGG11 [104] as the basis encoder instead of VGG16 (to be comparable

with our pipeline in terms of depth), as well as with the fully connected layers

removed. The final layer has 6 output maps, one for each class (i.e., chair, shelf,

4.3. Evaluation 68

Figure 4.7: Left: generated scene map using our pipeline. Each column represents a spe-
cific class, each row is one sample. Ground truth is represented using cell
color: green grid cells indicate true positives, yellow grid cells indicate false
positives, red grid cells indicate false negatives. Right: scene map generated
using the semantic segmentation + depth estimation baseline.

table, sofa) plus two for the wall and floor. We use a spatial cross-entropy loss,

classifying each pixel individually. This pipeline is trained from scratch on the

same data as our scene map pipeline (see Section 4.2.5).

Depth estimation. Our depth estimation network is similar, but the final layer

outputs just a single map instead of the number of classes as before. We use a log

mean squared error loss on the output [29].

Combining outputs. We convert the output of the above two networks into a scene

map. First, connected components are extracted from the semantic segmentation.

Then, for each component, we find the average depth using the estimated depth

map. Using the known focal length of the camera we then compute the 3D location

of the center of each component, and project this into the scene map.

Performance of networks. By themselves, these networks show high performance

in their respective tasks on this data. On the test models and test textures, the se-

mantic segmentation network shows an accuracy of 96.5%, and the depth network

4.3. Evaluation 69

Table 4.1: Comparison of our method with the semantic segmentation + depth estimation
baseline. TPR is true positive rate, TPR+1 and TPR+2 are true positive rates
when respectively off-by-one and off-by-two errors are allowed. FPR is false
positive rate. Note that as most of the grid is empty, false positive rates are very
low.

Method Model set TPR TPR+1 TPR+2 FPR
Baseline Train 0.03 0.20 0.47 0.0037

Ours Train 0.24 0.66 0.82 0.0029
Baseline Test 0.02 0.19 0.43 0.0043

Ours Test 0.15 0.52 0.71 0.0031

an rMSE of 17cm. These unusually high numbers (for reference, [85] report an

accuracy of 72.5% in the original paper) are in part due to the unlimited amount of

training data our synthetic rendering pipeline provides the network. Moreover, the

data used in [85] likely has higher variability and noise than our data, as they come

from real photographs instead of synthetically rendered scenes, and hence are more

challenging.

4.3.2 Training vs. test

As discussed in Section 4.2.5, all training data is generated synthetically, resulting

in images very unlikely to be seen twice, but the models used for generating the

images are seen many times over. We will evaluate the network both on images

generated using these same models, as well as images generated using the models

in the test set. Both scenarios are plausible: one can imagine the case where the

types of models used in the scene are known in advance, or the case where only the

classes are known.

4.3.3 Comparison

In Figure 4.7, we show the output of our pipeline, as well as the output of the

baseline. Our method shows a clear advantage in performance over the baseline

method. Note that although our method does not always find the perfect location,

in virtually all cases the presence of an object is detected. The baseline sometimes

misses an object entirely, and often activates two cells for a single object.

In Table 4.1 we compare the accuracy of our method with the baseline quan-

4.3. Evaluation 70

titatively. Performance is evaluated on both training models as well as test models.

Aside from the true and false positive rates, we also report the performance when

“one-off” and “two-off” errors are counted as correct (i.e., an object detection one

or two cells away from the ground truth is still counted). Our method significantly

outperforms the baseline on all settings. It is interesting to note that for the baseline

there is not much difference in performance between the training and test models.

For our own method, the decrease in performance from training to test is more sig-

nificant, while still outclassing the baseline by a compelling margin.

4.3.4 Effect of object density

To test our pipeline’s scalability with respect to the number of objects in the scene,

we tested two scenarios where the this number was respectively increased to a range

of 6 to 9 objects, and 10 to 15 objects. These scenarios generate scenes with objects

very close together, making the task of distinguishing objects more difficult. Sample

results can be seen in Figure 4.8. Clearly, the network is having increasingly more

difficulty placing each object at the right location. Moreover, it more often fuses two

objects together, resulting in just a single cell being activated. Table 4.2 shows the

quantitative decrease in performance as the number of objects in the scene increases.

This decrease in performance is not unexpected. Indeed, when only a small

part of given object is visible, identifying it as well as placing it correctly becomes

intrinsically harder. We experience this as humans as well – when objects are heav-

ily occluded we make use of contextual information to make correct inferences

about object identity and placement, something that is missing here, as scenes are

generated randomly. This insight is one of the foundations of the method in Chap-

ter 5, where we use a model of object co-occurrence to guide an indoor scene re-

construction process, resulting in better performance under occlusion.

Table 4.2: Effect of object density on performance of our pipeline. Performance decreases
with increased scene occupation, but does not dwindle as to be unusable.

Number of objects TPR TPR+1 TPR+2 FPR
5-9 0.11 0.42 0.58 0.0044

10-15 0.09 0.32 0.44 0.0053

4.3. Evaluation 71

Figure 4.8: Results with increasingly dense scenes. Ground truth is represented using cell
color: green grid cells indicate true positives, yellow grid cells indicate false
positives, red grid cells indicate false negatives. The precise localization of
objects becomes more difficult, but in general the presence of objects is still
inferred correctly.

4.4. Discussion and Conclusion 72

4.4 Discussion and Conclusion
We have presented a new representation for scene structure called the scene map.

It reduces the number of parameters necessary for representing scene structure to a

minimum, thereby reducing the necessary variables to estimate during optimization.

Although the accuracy of the proposed method is limited by design through the size

of the grid cells, our output can be directly used for a number of tasks, some of

which are detailed below. This is opposed to pixel-wise approaches, which are

designed to output accurate predictions, but whose output necessitates non-trivial

post-processing to become usable in practice, as shown in our evaluation.

Figure 4.9: Result of our method on real data. The disparity between the feature space of
the synthetic training data and that of real photographs unfortunately limits the
efficacy of our method here. Improving domain adaptation and training on a
large set of real training data could mitigate this limitation.

Future work. While we proposed a first pipeline to extract scene maps from single

RGB images, several refinements remain to be explored. As it stands, not enough

real data is available to train our network from scratch. The synthetic pipeline does

not produce accurate results on real images due to the discrepancy between the

4.4. Discussion and Conclusion 73

feature response of synthetic renders and photographs (see Figure 4.9). To extend

our method to real images, a method for domain adaptation between synthetic and

real images (e.g., SUNRGB-D) needs to be devised. Note that the output of the

next chapter’s pipeline can be converted to scene maps, although the problem being

solved is a more complex one. Moreover, comparison with other baseline methods

is possible. For example, in the current baseline the semantic segmentation step

could be replaced by an object detection pipeline (e.g. [94]). Finally, evaluating on

a larger set of classes is needed to show applicability on more varied scenes.

We believe that scene maps extracted from a single image can be directly used

for multiple purposes, as they provide a complete summary of the composition and

structure of the scene. For example, they open the possibility of automatic retrieval

of images with specific scene configurations. In a complementary task, scene maps

can help to automatically extract statistics of space utilization from large image

datasets [102, 106]. Such statistical models could be used for different tasks such

as improved scene synthesis and scene type classification. Finally, when combined

with in-class model retrieval and a pose estimation pipeline, scene mockups can be

potentially generated from scene maps, which in turn can be helpful for architectural

visualization and scene relighting. Such a method is the scope of the next chapter

(Chapter 5).

Chapter 5

Finding Chairs in Indoor Scenes

under Heavy Occlusion using Scene

Statistics

single image scene mockup
Figure 5.1: We propose a method for generating mockups from a single input photograph

of an indoor scene.

5.1 Introduction
Large sets of 3D indoor scenes are useful for purposes ranging from architecture

and product design to virtual reality content and game asset creation. Aside from

being used directly as a resource for rendering or interactive purposes, statistics

extracted from them can be used to gain insight into how objects are commonly

5.1. Introduction 75

used, and how they are commonly placed with respect to each other. However,

such sets are unfortunately hard to come by and expensive to manually create. In

contrast, 2D photographs of such indoor scenes are widely and freely available,

as are large databases of individual 3D models. It makes sense, then, to try and

convert 2D photographs to 3D scenes making use of 3D models. This gives rise to

an essential problem in computer vision and graphics, which we will henceforth call

the mockup problem: given a single 2D photograph and a database of 3D models,

place instances from this database into a 3D scene as to reconstruct the photograph

as accurately as possible.

The problem is inherently ill-posed, as photographs are the result of the pro-

jection of many complex attributes (e.g. geometry, material, illumination). Indeed,

we are faced with reconstructing an entire dimension that was lost when the photo-

graph was taken. Additionally, inter- and intra-object occlusions limit the amount of

visual information available for certain objects, making the reconstruction process

more difficult still. It is possible for computer vision algorithms to make reasonable

inferences from a single natural image by relying on relevant prior knowledge about

the image in question. Even so, the complexity of the problem, together with the

difficulty of gathering large amounts of training data, makes the mockup problem a

highly challenging one.

Recent advances have addressed parts of the goal by looking at simpler prob-

lems, such as object recognition [46], localization [94], and pose prediction [128].

Unfortunately, these techniques are designed for objects that are almost fully vis-

ible, and fail under moderate to severe occlusions, making them useful only for

the simplest of scenes. Moreover, they work on a single object basis, discarding

any more high-level information that might be present. Simply combining these

methods thus yields limited success (see Section 5.4).

In this chapter, we suggest that in order to improve beyond this baseline, we

need to reason about the scene on a more global basis, and inject deeper knowledge

of the domain into the optimization process. Our key insight is that scenes typically

exhibit significant regularity in terms of co-occurrence of objects, which can be

5.1. Introduction 76

Figure 5.2: The chair marked in blue can easily be distinguished as being a chair through
its context, even though most of the object is occluded.

exploited as explicit prior information to make predictions about object identity,

placement and orientation, even when such objects are in highly occluded regions,

and thus single-object based methods fail.

Intuitively, this approach makes sense – it matches the way we as humans

reason under similar noisy conditions. A heavily occluded chair is still easily dis-

tinguishable as such due to the presence of other chairs and a table (see Figure 5.2),

as we have a good understanding of typical chair-table arrangements. By explic-

itly modeling this type of knowledge, we can find placements that would otherwise

carry too little visual information for accurate recognition.

This insight is captured in our method by combining reprojection error of

known keypoints with pairwise object co-occurrence costs in the objective function.

Candidate placements are generated and tested on the one hand based on semantic

keypoint maps from a newly trained deep neural network, and on the other hand

based on the pairwise agreement between instances according to a model of object

5.2. Motivation and overview 77

co-occurrence statistics, gleaned from a database of pre-existing 3D scenes.

We tested our approach quantitatively on 100 hand-annotated images and show

a marked improvement of recognition over baseline methods. Although our current

implementation is focused on the chair class, the method itself is not inherently lim-

ited to this, and could be extended to other classes with appropriate data annotation

effort.

The contributions of this chapter are:

• a keypoint estimation network for estimating relevant keypoints of multiple

instances of chairs in a single image,

• a pairwise co-occurrence model capturing likelihood of co-occurring chair

instances,

• an end-to-end pipeline for finding chairs in single images that beats the state-

of-the-art,

• a ground-truth dataset of 100 scenes for testing performance of similar meth-

ods.

5.2 Motivation and overview

Ours
SC 3D-INN

Baselines

Figure 5.3: Methods based only on the image quickly fail in the presence of less than ide-
ally visible chairs. Our method deals with this situation much better.

To understand the motivation for our approach, we will consider the problem

from a high level. Summarily spoken, we are constructing a method that converts a

2D photograph to a 3D scene. The most straightforward and classical way of doing

so would be to train some machine learning method on some feature representation

5.2. Motivation and overview 78

No contextGlobal context Local context
Figure 5.4: As humans, our understanding of scenes is heavily predicated on the context.

From left to right, less global information is available, making the classification
of the marked object as “chair” harder

of many examples of 2D photograph / 3D scene pairs and use the resulting clas-

sifier as our mockup black box. Such an approach can be easily constructed from

a combination of existing methods. It turns out, however, that such methods fail

badly when confronted with all but the simplest of scenes. In fact, in our evaluation

(Section 5.4) we compare our method with two baselines that follow this approach.

Foreshadowing some of their results in the left side of Figure 5.3 shows that chairs

that are obviously visible get placed correctly, but any instances that are a little

harder to see fail to be selected.

To understand this failure, and more importantly how to circumvent it, it is

useful to consider how we as humans are capable of understanding these kind of

scenes. Looking at Figure 5.4, we see 2 chairs, one heavily occluded and one clearly

visible, in 3 different conditions. In the first condition, we see the full scene, in the

second only the local context and in the last condition we only see the pixels that

belong to the chair itself. It is clear to see that for the recognition of the unoccluded

chair the environment is not important – the shape of the object is clearly visible,

and we immediately recognize the chair. However, in the heavily occluded case, the

task of recognizing the chair becomes easier as more context gets added. For the

last column, we might hypothesize that the image regions belong to a chair, but we

have no way of confirming this for certain – unless the context is restored.

Clearly, the addition of context gives us extra information in classifying and

5.3. Method 79

posing the objects in a scene. But this is not the whole story. Importantly, the extra

information we are given when seeing the entire image is only useful given prior

knowledge we have built up over previous experiences. In this particular example,

the added context helps us only because we know that chairs often occur together

with other chairs and tables. Given this prior knowledge and the global context of

the object, our recognition efficacy is enhanced.

This insight is what we capture in our approach to the scene mockup problem:

to maximize performance on the mockup task, we need to consider both local in-

formation and the context the objects are placed in. Furthermore, to understand this

context we need to tell the system what usual scenes look like.

We express these notions in our method as follows: we will extract local infor-

mation from the input image using a keypoint detection network (Section 5.3.2),

then model the prior knowledge about how scenes are usually built up (Sec-

tion 5.3.4.1), finally combining this model with the keypoints to find chair instances

from a global perspective (Section 5.3.4.2). This added high level information al-

lows us to push performance past that of the previously mentioned approach of

using only the input data itself (see Figure 5.3, right). In the next section, we will

go through each of these steps in detail.

5.3 Method

Our pipeline (Figure 5.5) takes as input a photograph x and a database of 3D chair

models M , and outputs a mocked up 3D scene S, such that the reprojection of S

with the separately estimated camera C results in an image as similar as possible to

x (see Figure 5.6).

As a preprocessing step, the scene camera C is estimated using an off-the-shelf

technique ([47]), giving us focal length and camera orientation (Section 5.3.1). We

then enter the main pipeline, which consists of three stages. In the first stage, the

image is passed through a keypoint estimation network that outputs a set of keypoint

probability maps, representing at each pixel the probability of the presence of a cer-

tain semantically meaningful keypoint (Section 5.3.2). In the second stage, these

5.3. Method 80

input image

candidate set

keypoint estimation network

camera estimator

estimated keypoints

camera

model database

✓ ✗
object co-occurrence model

candidate generation

scene mockupcandidate selection

input

output

intermediate
result

stage

Figure 5.5: The full pipeline of our method.

input camera view top view

Figure 5.6: Intended working of our method: we take a single image of a structured indoor
scene as input, and output a 3D scene with the constituent chairs recovered in
the right location and pose, as well as the camera parameters that reproject this
scene as close as possible to the original input.

keypoint maps are combined with the estimated camera C to generate candidate ob-

ject placements (Section 5.3.3). In the third stage, a selection is made among these

candidates by optimizing an objective function which combines object-to-keypoint-

map matching with pairwise placement agreement according to a pre-trained object

co-occurrence model (Section 5.3.4). The second and third stages are then iterated,

5.3. Method 81

this time taking into account the previously found objects during candidate genera-

tion as a strong prior (Section 5.3.5). This process is iterated until convergence. We

now discuss each of these stages in turn.

5.3.1 Camera estimation

To convert sets of 2D keypoints to possible 3D locations we need the intrinsic and

extrinsic parameters of the camera with which photo x was taken. Specifically, for

a good reconstruction, we need the orientation of the camera with respect to the

ground plane in the form of rotation matrix CR, the focal length Cf , and a measure

of the scale of the room Cs. However, estimating the scale of the room without prior

information is not possible – even if we know the 2D location of a chair, it still might

be 1 meter or 100 meters tall. There is no way of deciding this without some prior

knowledge about chairs and their dimensions. We thus fix our scale parameter and

only estimate Cf and CR, and replace Cs with individual scale parameters for each

object in the optimization later on. Most methods for camera parameter estimation

indeed focus on Cf and Cr, and to do so rely on automatically estimating vanishing

points (see Figure 5.7). We employ the method from Hedau et al. [47]. In summary,

their method uses structured learning from Tsochantaridis et al. [116] to rank mul-

tiple room layout candidates, which are generated from estimated vanishing points.

We refer to the paper from Hedau et al. for more information.

To complete our camera parameters, we pick meters as unit in our world co-

ordinate system (the same coordinate system used by our model set), and set the

camera’s location Ct as being at eye height (1.8m) on world origin. This altogether

yields our camera C.

5.3.2 Keypoint maps

Our goal is to find location and pose of as many chairs in the scene as possible. We

aim to do this by finding all instances of a predefined set of semantically meaningful

keypoints in the image, and then use the estimated camera together with a 3D chair

template consisting of those same keypoints to reconstruct the 3D location and pose

of the chairs.

5.3. Method 82

VP1 VP2

Figure 5.7: By estimating vanishing points in the image, the camera rotation matrix and
focal length can be detected. Detecting scale a priori is not possible.

We start by defining a set of general keypoint types for the chair object class.

Each keypoint type represents one or more keypoints that should be present in

each (reasonable) chair instance. We selected 8 keypoint types, each of which is

uniquely identifiable on every reasonable chair. These keypoint types are shown in

Figure 5.8.

1
1 1

2

2
2

3
3

34

5 6

4
4

5 5
6 6

7

8

7
78

8

Figure 5.8: Selected keypoint types.

5.3.2.1 Keypoint location map

A keypoint location map is a 2D map whose domain is the input image x, and

represents belief about the presence of a specific keypoint type at a specific pixel

of x. It is represented as a r × r single-channel matrix, with values between 0

and 1. In the case of perfect information, the matrix will have value 0 everywhere

except for those locations where a keypoint of the corresponding type is present,

where it would have value 1. However, as we will employ an L2 loss function, such

step-function keypoint maps would result in an extremely discontinuous error land-

5.3. Method 83

Figure 5.9: To facilitate the training process the keypoints are represented as Gaussian
lobes around their location.

scape, destabilizing the training process. Instead, we represent each keypoint using

a Gaussian lobe centered around its true location, resulting in a much smoother loss

function (see Figure 5.9).

5.3.2.2 Keypoint estimation network

To extract keypoint location maps for each keypoint type from an input image, we

employ a deep learning architecture. This network takes our image x as input and

outputs a set of keypoint location maps m1, . . . ,mNk
, where Nk = 6 is the total

number of predefined semantic keypoints.

The network architecture was selected through experimentation. We tried 2

different architectures:

• The convolutional pose machines (CPM) [124] architecture, whose task of

human pose estimation through keypoint localization closely resembles our

own, and

• ResNet-50 [46], a general purpose network with high performance on a num-

ber of image understanding tasks, such as object detection and semantic seg-

mentation.

In both cases, we trained the network using an L2 loss function on the difference

between the output and ground truth keypoint location maps.

5.3. Method 84

Table 5.1: Performance of the two tried architectures on our task. ResNet-50’s advantage
of being pretrained on ImageNet gives it the edge over CPM.

architecture MSE
ResNet-50 [46] 3.24× 10−5

CPM [124] 1.02× 10−4

Perhaps surprisingly, ResNet-50 resulted in the highest test accuracy (see Ta-

ble 5.1). Although the task that CPM was meant for (keypoint detection) more

closely resembles our own, it cannot compete with the fact that ResNet-50 was

pretrained on ImageNet, the data distribution of which is more similar to ours.

We employed the TensorFlow implementation of ResNet-50. By using an input

image size of 512 × 512 and a bottleneck stride of 8 we get a final keypoint map

size of r = 64. The full architecture can be seen in Table 5.2. The training data we

used is discussed in Section 5.3.8.

Table 5.2: ResNet-50 based architecture used for keypoint estimation.

layer name output size node type

input 512× 512

conv_1 256× 256 7× 7, stride 2

max_pool 128× 128 Max pooling, stride 2

block_1 64× 64 Bottleneck units with shortcuts,


1× 1, 64

3× 3, 64

1× 1, 256

× 3, last 3× 3 stride 2

block_2 64× 64 Bottleneck units with shortcuts,


1× 1, 128

3× 3, 128

1× 1, 512

× 4, all stride 1

block_3 64× 64 Bottleneck units with shortcuts,


1× 1, 256

3× 3, 256

1× 1, 1024

× 6, all stride 1

block_4 64× 64 Bottleneck units with shortcuts,


1× 1, 512

3× 3, 512

1× 1, 2048

× 3, all stride 1

5.3.3 Candidate generation

Now that the camera parameters and keypoint locations have been estimated, we

move on to the candidate generation stage. In this part, predefined object templates

5.3. Method 85

are fit to different subsets of the estimated keypoint locations, and scored by their

agreement with the entire keypoint map. First, we will describe how we get specific

keypoint locations from the estimated keypoint maps. Then, we will discuss how

we construct the object templates from our set of 3D models. Finally, we describe

the actual candidate generation process.

5.3.3.1 Keypoint locations from keypoint location maps

The keypoint estimation network’s output consists of Nk single channel keypoint

location maps m1, . . . ,mNk
. For our candidate generation process, these maps need

to be converted to concrete keypoint locations. We cannot simply take all locations

with a value above a certain threshold, as the maps spread the probability of a found

keypoint across multiple pixels (Figure 5.9). One way of dealing with this is to

find all local maxima in each map. The issue with this is that large regions of very

low probability still have many local maxima. To discount these, we first pass each

map mi through a thresholding operation with threshold τm, discarding all pixels

below that value. Then, we find all 8-neighbourhood local maxima in each map mi,

and store them as our candidate keypoint locations. We denote the found keypoint

locations of type k as Qk, and the full set Q = {Q1, . . . ,QNk
}. See Figure 5.10.

Ground truth keypoints Network output After thresholding Local maxima

Figure 5.10: Keypoint candidate locations are found by thresholding the output of the neu-
ral network and then finding local maxima

5.3.3.2 Object templates

From the keypoint candidates Q, we want to find actual chair candidates. As all

chairs are slightly different in shape, and fitting each chair model in our dataset

individually is prohibitively expensive, we make use of a chair template model.

Specifically, we create this chair template model by fitting a Principal Com-

5.3. Method 86

ponent Analysis (PCA) basis to the 3D coordinates of all 8 keypoints of all chair

models in our database M . By analysing the cumulative percentage of variance

of each resulting PCA dimension, we conclude that the top 3 PCA dimensions are

responsible for > 85% of variance in the shape of all chairs. These top 3 PCA

dimensions represent our chair template model T , and the deviation from the mean

p ∈ R3 represents a variable for our optimization. See Figure 5.11.

PCA dimension 1 PCA dimension 2 PCA dimension 3

Figure 5.11: Visualization of the top 3 PCA dimensions of our chair template, with respect
to the mean chair. They approximately correspond to respectively chair width,
back height and chair depth.

We define T (p) as the reprojection of PCA parameters p to 3D world space,

i.e. the instantiated coordinates of one particular instance of the chair template.

5.3.3.3 Candidate keypoint sets

Finally, we will fit the generated chair template T to the found keypoint locations

Q. Unfortunately, we do not have any correspondences between the keypoint lo-

cations of different types – for example, we do not know which “top-left” keypoint

belongs with which “front-right-leg” keypoint. As such, we generate the exhaus-

tive set of candidates by fitting a candidate chair placement to each minimum set of

2D keypoint locations that results in a well-defined fitting problem. A single key-

point correspondence is not enough, as any candidate placement can then be rotated

around its up-axis indiscriminately. As we know the camera and thus the ground

plane, and work under the assumption that the chair models can change only scale

5.3. Method 87

and azimuth (i.e. are placed flat on the ground), we can suffice with 2 keypoint cor-

respondences. Although this does leave some ambiguities due to overlap between

the scale dimension and the template parameters, due to regularization on both of

these parameter sets the resulting problem is well-defined. We thus create our set of

2D keypoint candidate pairs as

K =
⋃

Qi∈Q

⋃
Qj∈Q\Qi

Qi ×Qj,

where × represents the Cartesian product.

5.3.3.4 Template fitting

t

θ

p

Transform parameters

Template parameters

scale s

Camera
origin

Figure 5.12: Parameters estimated during the candidate fitting process.

Then, we will generate one candidate chair placement for each Ki ∈ K by

finding the optimal parameters that yield a reprojection of the template’s keypoints

in line with Ki, as well as the full keypoint location maps m. These parameters

consist of:

• a 2D translation across the ground plane t,

• 1D azimuth θ,

• 1D scale s,

• 3D chair template parameters p.

5.3. Method 88

See Figure 5.12 for clarification. This optimization is split into two stages. In the

first stage, we will optimize specifically for the reprojection of the 3D keypoints

corresponding to ku, kv ∈ Ki. In the second stage, we will incorporate our knowl-

edge of the other keypoint location maps in m and further finetune the parameters

to match with them as closely as possible as well. We now describe each stage in

turn.

First stage – optimization w.r.t. 2 keypoints In the first stage, we find the optimal

parameters such that the reprojection of the chair template’s keypoints line up with

Ki. We define the reprojection zi of each keypoint ki, i ∈ {u, v} as

zi = P (R(s[T (t)]i, θ) + t, C),

where R represents rotation, and P represents camera projection.

The objective function is then simply the summed mean squared error of these

reprojections w.r.t. the data:

L =
∑

i∈{u,v}

||zi − ki||2

We initialize the parameters as t = 0, θ = 0, s = 1,p = 0. Furthermore, we

add an L2 regularization term to both the norm of the template parameters p as well

as the scale s. This non-linear least squares optimization problem is then solved

using Ceres [3].

Second stage – optimization w.r.t. all keypoints Now that the parameters have

been optimized w.r.t. our keypoint pair Ki, we finetune the parameters by also tak-

ing into account the other keypoint location maps in m. Note that we now go

back to using the keypoint location maps themselves instead of the extracted local

maxima – we do not optimize for exact location anymore, and allow the final re-

projection to deviate from the maxima in each individual keypoint location map.

Instead, we maximize the total probability over all keypoint location maps. Our

5.3. Method 89

objective function thus becomes:

L =
∑

i∈{1,...,Nk}

||1−mi(zi)||2,

where mi(zi) represents the value of keypoint location map mi at reprojected key-

point zi. The same L2 regularizations as in the first stage apply, and we again solve

our problem using Ceres [3].

If the final loss of the second stage is lower than a threshold τu we add the

final parameters as a candidate placement to our candidate placement set O. This

candidate placement set is then passed on to the candidate selection stage.

5.3.4 Candidate selection

In the final stage of our pipeline, we incorporate the key insight of this method, as

discussed in the introduction, which states that we need to use higher level scene

statistics to maximize our mockup performance. Specifically, we take the candidate

placements O from the previous stage and employ a combination of the keypoint

location maps and a model of object co-occurrence statistics to select the final subset

of chairs that constitutes our scene mockup.

5.3.4.1 Scene statistics

To model these higher level scene statistics, we employ a pairwise object co-

occurrence model. It models the probability of two chairs occurring at a given

relative orientation and translation from each other. To create this model, we fit a

Gaussian Mixture Model over the relative orientation δθ and translation δt of pairs

of chairs in the synthetic scene dataset PBRS (see Section 5.3.8). We only take into

account chairs that are within a distance δr = 1.5m from each other, reasoning that

chairs that are farther apart are more likely to belong to entirely different groups

of chairs, making it imprudent to base our reconstruction on their relationship. See

Figure 5.13 for clarification.

Fitting the GMM was done using Expectation-Maximization. As the models

in PBRS tend to be aligned exactly, we regularize the resulting mixture model by

adding a small bias (0.01) to the diagonal of the fitted covariance matrices. The

5.3. Method 90

θ1

θ2

δt

δθ = θ1 − θ2

Scene

Relative transform

Figure 5.13: We extract relative transformations of pairs of chairs from the PBRS dataset
and fit a GMM to these datapoints.

Rotation of 1.5πRotation of 0.5π

Data and mixture Visualization Data and mixture Visualization

GMM(,)

Figure 5.14: A visualization of two of the mixture components resulting from fitting the
GMM to the relative transformations of pairs of chairs in the PBRS dataset.
The means and standard deviational ellipses are plotted in green.

number of mixture components Nm was found by experimentation, and was set to

5. A visualization of some of the resulting mixture components can be found in

Figure 5.14.

5.3.4.2 Graph optimization

We now need to prune our over-complete set of candidate placements using the

trained object co-occurrence model. We represent this task as a graph labeling

problem. Each candidate placement represents a node in the graph, and takes on a

binary label representing whether or not that candidate placement is present in the

5.3. Method 91

positive pairwise cost

negative pairwise cost

unary cost

Figure 5.15: We model our candidate selection problem as a graph labeling problem, where
the unary costs are based on the keypoint location maps, and the pairwise costs
on the scene statistics GMM.

final mockup. Unary costs for each label stem from the keypoint location maps, and

pairwise costs stem from the scene statistics GMM. See Figure 5.15.

Unary cost To compute the unary score of a candidate placement oi ∈ O, we gen-

erate the keypoint location map n of oi (in the same way we would do for creating

a ground truth keypoint map) and compare it with the keypoint location map m of

the input image x. As we do not expect a single placement to explain the entire

keypoint location map, we setup the score as a multiplicative one, with the value

only being dependent on the agreement of the actual keypoints the placement oi

exhibits:

ui =
||n�m||F

n� n
,

where || · ||F represents the Frobenius norm, and � represents the Hadamard

5.3. Method 92

product.

The normalization factor ensures that a candidate that perfectly matches the

keypoint location map of our input image x gets a score of 1. Finally, for a specific

candidate oi ∈ O, interpreting ui as a probability we get unary costs based on the

log odds of ui:

Ui(0) = 0 (5.1)

Ui(1) = − log(
uα
i

1− uα
i

) (5.2)

where α is a scaling parameter to set the sensitivity of optimization to the value in

the keypoint maps. Our choice for the log odds means that a (scaled) score of higher

than 0.5 results in a candidate unary cost that decreases the score of the total cost

when selected, and otherwise increases it.

Pairwise cost The pairwise cost is based entirely on the fitted GMM. We extract the

relative translation δt and orientation δθ, and evaluate the trained GMM to get our

raw pairwise score:

pij = GMM(oi, oj)

The final pairwise score is then again based on the log odds corresponding to pij . It

only applies when two objects co-occur:

Pij(0, 0) = Pij(1, 0) = Pij(0, 1) = 0 (5.3)

Pij(1, 1) = − log(
pβij

1− pβij
) (5.4)

with β a scaling parameter similar to α.

Finally, we add an infinite pairwise cost to all candidate placement pairs that

intersect. These intersections are precomputed based on triangle-triangle intersec-

tions.

We solve the final problem setup using OpenGM [5] by converting it to a linear

program and feeding it to CPLEX [2].

5.3. Method 93

5.3.5 Iterative optimization

After the optimization from Section 5.3.4 is complete, we could stop and pass on

the candidate placements with label 1 to the model selection stage (Section 5.3.6).

However, now that some objects have been definitely placed, we can use this infor-

mation to improve our candidate generation step, and by extension our candidate

selection step. In other words, we iterate the process of candidate generation and

selection, using the newly selected candidates in each iteration as a strong prior for

the candidate generation process of the next generation.

5.3.5.1 Added pairwise cost in generation step

To take into account the already selected placements during the candidate genera-

tion phase, we keep our original non-linear least squares optimization, but to the

loss function of each stage of the two stage process (see Section 5.3.3.4) we add a

term that represents the GMM. Incorporating all mixture components in this term

is hard, as it is challenging to define a well-behaved objective function to minimize

that represents them. As noted by Olson et al. [86], the structure of the negative

log-likelihood (NLL) of a GMM does not lend itself to non-linear least squares

optimization. Instead, they propose to approximate the NLL of the full GMM by

considering it as a Max-Mixture, reducing the NLL to the weighted distance to the

closest mixture mean (see Figure 5.16 and [86] for details). In fact, in our case it

makes sense to only optimize with respect to the closest mean, and not all means: a

chair should either be encouraged to be next to another chair, or opposite, but never

both. This replaces the original GMM likelihood function

pGMM(δ) =
∑
i

wiN(µi,Σi)

with the Max-Mixture likelihood function

pMax(δ) = max
i

wiN(µi,Σi),

where δ =

δt
δθ

 is the relative translation and orientation of the new candidate

5.3. Method 94

Gaussian Mixture Model
Max Mixture Model

X

P
D

F(
X

)

Figure 5.16: We approximate the GMM using a Max-Mixture Model from Olson et al.,
2013 [86]. Due to the simplified negative log likelihood of this model we can
then use it in our non-linear least squares optimization.

w.r.t. the already placed object, and wk is the weight of the kth mixture in the model.

Taking the negative log likelihood gives

− log(pMax(δ)) = min
k

1

2
(δ − µk)

TΣ−1
k (δ − µk)− log(wkηk),

where N(µ,Σ) represents the normal distribution, and ηk is the Gaussian nor-

malization factor for the kth mixture. At optimization time, during each step we find

the mixture component k∗ that minimizes this function, and then optimize w.r.t. the

negative log likelihood of the Gaussian of that component alone, resulting in the

following term to be added to the objective function:

1

2
(δ − µk∗)

TΣ−1
k∗ (δ − µk∗)

By decoupling the component selection from the optimization step, we’ve re-

stored the nice properties of the single Gaussian negative log likelihood. This term

is added for each already placed object.

5.3. Method 95

5.3.5.2 Added unary cost in selection step

As the already selected placements are not part of the optimization during later

iterations, the influence of the GMM on a new candidate placement w.r.t. already

selected placements becomes a unary cost. So, for each candidate placement in

the second iteration, we add a term to Ui(1) w.r.t. each of the already selected

placements:

− log(
GMM(oi, o

∗
j)

β

1−GMM(oi, o∗j)
β
)

With these modifications, the candidate generation step and candidate selection

step are iterated until convergence, i.e. until no new objects are added to the scene.

5.3.6 Model selection

The set of all selected placements still only consist of template parameters, not

actual chair models. As a final step, we find the chair g∗ in our database M that

best fits the template. To do so, we reproject the 3D keypoint coordinates of each

chair in the database to the PCA coordinate space, and find the chair whose PCA

coordinates are closest to the PCA coordinates of our template:

g∗ = arg min
g∈M
||[PCA(g)]30 − p||2,

where p are the PCA coordinates of the candidate’s template.

The resulting chair models together with their transform constitute our final

scene mockup.

5.3.7 Hyper parameters

Our optimization pipeline depends on a number of hyper parameters. We optimized

these using HyperOpt [56], which employs a Tree of Parzen Estimators (Bergstra et

al., 2013 [11]). As our objective function we used the PercCorrectFull measure (see

Section 5.4.2). As ground truth data we used 10 scenes we annotated specifically

for this purpose, in the same way as the data used for evaluation (see Section 5.4.1).

See Table 5.3 for a list of resulting hyper parameter values.

5.3. Method 96

Table 5.3: Hyper parameters of optimization, found by HyperOpt [56]

Name Description Value
α Sensitivity of keypoint maps 0.61
β Sensitivity to object co-occurrence model 0.14
τm Lower threshold of keypoint location map 0.25
τu Maximum cost for selecting candidate 0.21

Figure 5.17: Example images from our scraped HOUZZ dataset.

5.3.8 Data

5.3.8.1 Image data

For purposes of qualitative evaluation, we scraped the interior design website [1]

for the top 1000 results of the search query “dining room”. We denote this dataset

HOUZZ. These images are high quality and represent difficult but fair scenarios on

which we expect our method to perform well. Some examples of these images can

be seen in Figure 5.17.

5.3.8.2 Network training data

Traditionally, training a deep neural network requires a large amount of training

data. To our knowledge, there is no known large dataset of photographs accurately

annotated with object keypoints. As such, we resort to creating our own training

data. Ideally, the training data should be from the same distribution as our intended

testing data, i.e. photographs of indoor scenes. However, creating a large-scale

dataset of this type is extremely time-consuming and expensive. On the other hand,

synthetic data in the form of realistic 3D indoor scenes along with physically-based

renders is already available in high numbers [138]. Still, despite the high quality of

the renders, there is still a significant discrepancy between the feature distribution

of the renders and that of the photographs. As such, we augment the synthetic

5.3. Method 97

Figure 5.18: For the training setup of our network with synthetic data, we use renders from
the PBRS dataset [138], which provides±45K houses with±400K high qual-
ity renders. Figure from [138].

dataset with a subset of real photographs from HOUZZ annotated through Amazon

Mechanical Turk. We now discuss each data type in turn.

Synthetic data The dataset provided by Zhang et al. [138] provides 45K realistic

indoor scenes, and 400K physically-based renders of these scenes (see Figure 5.18).

We denote this dataset as PBRS. These scenes consist of a fixed set of 2500 differ-

ent models across 60 classes. Among these models there are ±250 chairs. We took

a subset of 100 of these chairs and annotated them with our previously selected

keypoint types. We then took all renders that contain at least 1 of the annotated

chairs and reprojected the keypoint locations into these renders, yielding one im-

age/keypoint map pair as training data per render. This resulted in a set of ±8000

image/keypoint map pairs in total.

Real data Unfortunately, the synthetic data alone does not result in good perfor-

mance on real data. Two distinct reasons can be identified. First, even though the

renders in PBRS are of high quality, their feature distribution is both distinct from

real photographs as well as less diverse. Secondly, at the time of writing, the set of

renders and the set of scenes available for PBRS had some discrepancies between

them, resulting in a small but significant set of renders that do not agree with the

automatically generated keypoint maps.

To address both of these issues, we annotated a subset of 500 images from

the HOUZZ dataset through Amazon Mechanical Turk. We asked 3 workers per

5.3. Method 98

Figure 5.19: The Amazon MTurk interface we used to annotate 500 photographs with key-
points.

image to annotate all keypoints in the image through a drag-and-drop interface (see

Figure 5.19), and averaged the resulting 3 keypoint maps per image. This resulted

in a training set of 500 hand-annotated photographs, which was then used to train

our keypoint estimation network.

Final training set We experimented with 3 different training setups. In the first

setup, we trained the network only with synthetic data. In the second setup, we only

trained the network with real data. Finally, in the third setup, we first trained the

network until convergence with the synthetic data, and then finetuned the network

using the smaller set of real data.

Surprisingly, the best performance on the test set resulted from setup 2, i.e.

training only with the real data. Apparently, the shortcomings of the synthetic data

mentioned above were of higher importance than expected. One likely explanation

is the fact that training the network with the synthetic data first steers away the

network weights from those that were the result of the ImageNet pretraining, which

already encompass a high general understanding of real photographs. The numbers

show that this initial information is more valuable than the extent of the synthetic

5.4. Evaluation 99

data as well as its structural similarity to our test data.

5.3.8.3 Model data

The models annotated for the purpose of generating synthetic network training data

also immediately function as our model set M .

5.4 Evaluation

We thoroughly evaluated our method, investigating the importance of each part of

our pipeline as well as comparing our results with other methods. We will first

discuss the creation of a set of ground truth annotated scenes for the purpose of

quantitative evaluation (Section 5.4.1). We then define a set of diverse performance

measures (Section 5.4.2), after which we introduce two baseline methods for com-

parison purposes (Section 5.4.3). We evaluate our method with the ground truth

set, and compare the numbers with two distinct baseline methods (Section 5.4.4).

Finally, we perform an ablation study to show the influence of each on the final per-

formance (Section 5.4.5). Both quantitative and qualitative results will be shown

along the way.

5.4.1 Ground truth annotation

In order to quantitatively measure the performance of both the baseline methods

and our own, we need a set of ground truth annotated scenes, i.e. images for which

all objects have been placed manually. We setup an application in which an object

can be placed by clicking and dragging, as well as by annotating a number of key-

points of the object and optimizing for its location and scale. Moreover, objects can

be copied and translated along their local coordinate axes, allowing for quick and

precise annotation (see Figure 5.20). We use the automatically estimated camera

parameters, making sure we discard any scenes for which the camera estimation is

completely off. We used this tool to fully annotate 100 scenes, which were ran-

domly selected from our HOUZZ dataset of 1000 images.

5.4. Evaluation 100

Figure 5.20: We created a ground truth annotation tool for quickly creating ground truth
scene mockup examples.

5.4.2 Performance measures

A scene mockup method can be quantitatively evaluated in many different ways. As

no single measure tells the full story, we have opted for a number of different ones.

Notation We will use the concept of “source” and “target” to denote the two scenes

between which some measure is computed. We specifically do not use “result

scene” and “ground truth scene”, because they can act as either source or target

scene in most measures. We denote the objects in the source and target scene as

oS ∈ S, oT ∈ T respectively. J3(oS, oT) and J2(oS, oT) represent the Jaccard index

or intersection-over-union (IoU) of the bounding boxes of oS and oT in 3D world

space and 2D screen space respectively (see Figure 5.21). Finally, given an object

oS we define the “J∗
i correspondence” with T as the object in T with the maximum

Jaccard index with oS:

J∗
i (oS,T) = arg max

oT∈T
Ji(oS, oT)

5.4. Evaluation 101

A

B

IoU =

A ∪ B

A ∩ B

Figure 5.21: Visualization of the intersection-over-union measure in 2D.

Intuitively, this returns, for a given object, the "best matching" object from the other

scene in terms of overlap.

Average Max IoU This measure takes a source scene and a target scene, and

records the accuracy with which the volumes of the objects in the source

scene agree with the objects in the target scene. Specifically, for each object

in the source scene, we record the IoU of the object with its MaxIoU corre-

spondence. This measure is averaged over all objects in the source scene to

produce the final measure.

AvgMaxIoU(S, T) =
1

|S|
∑
oS∈S

J3(oS, J
∗
3 (oS,T))

We measure in both directions, i.e. with the ground truth as source and result

as target, as well as vice versa. The former can be thought of as a form of

“recall” and the latter as a form of “precision”. This measure is angle-agnostic

and captures the location similarity of objects in the source scene w.r.t. those

in the target scene.

Percentage correct location This measure takes a source scene and a target scene,

and records the percentage of objects in the source scene that have a J∗
3 cor-

5.4. Evaluation 102

respondence over a certain threshold τJ . To define it, we first set

CorrectLoc(S,T) = {oS ∈ S | J3(oS, J∗
3 (oS,T)) > τJ}.

Then,

PercCorrectLoc(S,T) =
|CorrectLoc(S,T)|

|S|
.

We again measure in both directions, yielding recall (ground truth is source,

result is target) and precision (vice versa) measures.

Percentage correct As the previous measure, but with the added constraint that the

angle difference is under a threshold τθ. So,

CorrectFull(S,T) = {oS ∈ CorrectLoc(S,T) | ∠(oS, J∗
3 (oS,T)) < τθ}.

Then,

PercCorrectFull(S,T) =
|CorrectFull(S,T)|

|S|
.

Angle difference This measures the average angle difference for the objects that

have correct location. This measure is symmetrical.

AngleDiff(S,T) =
1

|CorrectLoc(S,T)|
∑

oS∈CorrectLoc(S,T)

∠(oS, J
∗
3 (oS,T))

Average Max 2D IoU This measures the average maximum IoU of the bounding

boxes of each projected object in the source scene with the bounding boxes

of the projected objects in the target scene.

AvgMax2DIoU(S,T) =
1

|S|
∑
oS∈S

J2(oS, J
∗
2 (oS,T))

5.4.3 Baseline methods

We compare our method with two baselines from the literature. As the exact prob-

lem formulation we employ has to our knowledge not been attempted, we convert

5.4. Evaluation 103

the output of each baseline (in both cases 3D pose but 2D, image space locations of

chairs) to the 3D scene mockup format that our method produces.

Seeing Chairs [6] 3D-INN [128]

Figure 5.22: Example of raw output of the two baseline methods.

Seeing chairs [6] This method from Aubry et al. finds chairs by matching so-called

“discriminative visual elements” or DVEs from a set of rendered views of 1000+

chair models with the input image. These DVEs are linear classifiers over HOG

features [25] learnt from the rendered views in a discriminative fashion. They are

learned at multiple scales, and only the most discriminative ones are kept for match-

ing purposes. At test time, a patch-wise matching process finds the best-matching

image patch/rendered patch pairs, and then finds sets of pairs that come from the

same rendered view (see Aubry et al.’s paper for details [6]).

This method outputs scored image space bounding boxes together with a spe-

cific chair model and pose. See Figure 5.22, left. For the 3D performance measures

(Section 5.4.2) we need the output in the form of a 3D scene. To this end we con-

vert each set of bounding box, pose, and chair model to a 3D scene. As the camera

is known (Section 5.3.1), we can optimize the location (in the X-Z plane) of the

3D model without changing its pose, such that the 2D bounding box of the pro-

jected model matches as closely as possible with the detected bounding box. This

can be formulated as a least-squares optimization problem, which we solve using

Ceres [3].

FasterRCNN [94] + 3D-INN [128] This baseline is a combination of a convolu-

tional neural network (CNN) trained for object detection (FasterRCNN) and an-

other CNN trained for 3D object interpretation (3D-INN). We use FasterRCNN to

5.4. Evaluation 104

extract bounding boxes of chairs from the input image, and then feed these regions

of interest to 3D-INN, which produces a templated chair model consisting of a set

of predefined 3D keypoints as well as a pose estimate (azimuth and elevation). See

Figure 5.22, right. The set of keypoint types we have chosen for our method is

a subset of the keypoints produced by 3D-INN, and thus we can use the candidate

generation part of our pipeline (see Section 5.3.3) to convert the extracted keypoints

to a 3D chair.

5.4.4 Comparison

Table 5.4: Quantitative performance of our method vs. the two baseline methods. We
outperform the baseline significantly across all measures.

AvgMaxIoU (precision) AvgMaxIoU (recall) AvgMaxIoU (F1)
3D-INN [128] + FasterRCNN [94] 0.316 0.150 0.198

SeeingChairs [6] 0.195 0.128 0.149
Ours 0.386 0.250 0.293

PercCorrect (precision) PercCorrect (recall) PercCorrect (F1)
3D-INN [128] + FasterRCNN [94] 0.263 0.124 0.165

SeeingChairs [6] 0.071 0.043 0.052
Ours 0.298 0.167 0.207

PercCorrectFull (precision) PercCorrectFull (recall) PercCorrectFull (F1)
3D-INN [128] + FasterRCNN [94] 0.04 0.015 0.021

SeeingChairs [6] 0.013 0.007 0.009
Ours 0.285 0.161 0.198

AvgMax2DIoU (precision) AvgMax2DIoU (recall) AvgMax2DIoU (F1) AngleDiff (in degrees)
3D-INN [128] + FasterRCNN [94] 0.526 0.336 0.401 55.8

SeeingChairs [6] 0.372 0.325 0.341 11.4
Ours 0.628 0.470 0.525 7.3

We ran our pipeline and the two baseline methods on the full ground truth an-

notated scene set (Section 5.4.1). A sampling of results can be seen in Figure 5.23.

The same visualization for all 100 scenes in our ground truth set can be found in

Appendix B.

The baseline methods perform well when there is no occlusion in the scene.

Chairs that are clearly visible are reconstructed reliably, as the visual information

directly available is enough for these methods to make a reasonable inference about

the object’s pose and identity. However, when a chair is partly occluded, these

methods break down quickly. In contrast, our method is more often able to recover

from these situations, due to the incorporation of the object co-occurrence model.

This difference in performance is also reflected in the quantitative results. We

extracted the performance measures listed in Section 5.4.2 from each method, and

list them in Table 5.4. Our method outperforms the baselines on all counts. More-

5.4. Evaluation 105

over, in Figure 5.24 we show how the PercCorrectFull measure changes under vary-

ing thresholds of IoU and angle (see Section 5.4.2).

5.4.5 Ablation study

Finally, we evaluated the importance of each of our pipeline’s optional steps to

the final performance. Specifically, we ran our pipeline on the full test set under

two weakening conditions. In the first condition, we disable all pairwise costs, and

run the entire pipeline based solely on the keypoint location maps. In the second

Ours SC 3D-INN

C
a
m

e
ra

 v
ie

w

Ours SC 3D-INN

To
p
 v

ie
w

Ours SC 3D-INN

C
a
m

e
ra

 v
ie

w

Ours SC 3D-INN

To
p
 v

ie
w

Ours SC 3D-INN

C
a
m

e
ra

 v
ie

w

Ours 3D-INN

To
p
 v

ie
w

Ours SC 3D-INN

C
a
m

e
ra

 v
ie

w

SCOurs 3D-INN

To
p
 v

ie
w

Ours SC 3D-INN

C
a
m

e
ra

 v
ie

w

SCOurs 3D-INN

To
p
 v

ie
w

SC

Figure 5.23: Qualitative results for our method vs. the baseline methods.

(a) Performance under varying τθ (b) Performance under varying τJ

Figure 5.24: Changes in performance under varied angle and IoU thresholds.

5.5. Discussion 106

Table 5.5: Ablation study showing the importance of using scene statistics and multiple
iterations for best performance.

AvgMaxIOU (precision) AvgMaxIOU (recall) AvgMaxIOU (F1) PercCorrectFull (precision) PercCorrectFull (recall) PercCorrectFull (F1)
Full pipeline 0.386 0.250 0.293 0.285 0.161 0.198

No scene stats 0.296 0.265 0.267 0.174 0.151 0.154
Single iteration 0.421 0.190 0.251 0.346 0.123 0.175

condition, we only run the second and third stage once, removing the possibility of

the candidate generation stage benefiting from previously placed objects. Results

are found in Table 5.5.

There are some things to note. First, although AvgMaxIOU recall increases

when disabling scene statistics, the precision goes down significantly. This makes

sense, as the pairwise costs by themselves do not propose new objects – they only

make output mockups more precise by pruning objects that do not agree with others.

Second, using only a single iteration increases precision, but recall takes a signifi-

cant hit. Again, this is logical, as in later iterations the keypoint location maps have

decreased influence relative to the pairwise costs. This means that objects with

weaker keypoint response get found more easily, but also that false positives are

somewhat more likely. Overall, the combined AvgMaxIOU F1 measure is highest

for the full pipeline, and perhaps most importantly the PercCorrectFull F1 measure

as well.

5.5 Discussion
We proposed a method for automatically finding chairs in a photograph of a struc-

tured scene. Our key insight which gives us an advantage over other methods is

the incorporation of higher level scene statistics, allowing us to reason more accu-

rately about objects that are highly occluded. Through quantitative and qualitative

evaluation, we have shown a considerable increase in performance across multiple

measures. Nevertheless, some limitations of our method remain:

• Our method is currently only suited to chairs. However, this is not a limitation

of the method, and with a proper data annotation effort it could be extended

to arbitrary other classes. Note that adding more classes will likely improve

the accuracy of finding chairs by themselves as well, as there will be more

5.5. Discussion 107

scene information to draw from.

• The keypoint network is currently trained with 500 sample images. This is a

very small set of data, and the performance of the network has clear room for

improvement through the addition of more training data. However, gathering

such data is expensive. Finding a better way to incorporate large amounts

of synthetic training data into the pipeline is an interesting avenue for future

work.

• After candidate selection, we do not reoptimize the position and orientation

of each object. As we now have the added information of the location of the

other objects, this could result in more accurate object placements.

• We do not explicitly model style. Although the use of the chair template does

have some influence on the outer shape of the chair being used, there are

many more properties that could be modelled for a more convincing mockup.

Chapter 6

Discussion and Future Work

In this thesis, three distinct methods regarding the analysis of uncontrolled visual

data, or “in-the-wild” visual data, were discussed. Working our way from iconic im-

ages and 3D models to photographs of indoor scenes and their resulting 3D scene

mockups, we showed a number of ways in which we can combine 2D and 3D infor-

mation to beat single-modal methods. Through thorough evaluation of each method,

we showed significant improvement over such baseline approaches on all accounts.

6.1 Summary
In Chapter 3 we looked at the problem of retrieving and exploring collections of

2D iconic images and 3D models. We started from the fact that typical 3D model

collections and 2D iconic image collections have significantly different intrinsic

properties – 2D collections are usually of much higher quality than 3D collections,

while 3D collections implicitly provide viewing angle and shape information. Our

insight was that these differences can be used to improve or enable tasks in each

dimensionality by analyzing the collections jointly. Specifically, by exploiting the

advantages of each dimensionality concurrently, we improved retrieval performance

of the 3D collection, reducing the number of false positives, while enabling explo-

ration through pose and shape of the 2D collection. Through quantitative and qual-

itative evaluation we demonstrated clear improvement of each stage of our pipeline

over standard baseline methods.

Next, in Chapter 4, we shifted our focus to images of indoor scenes. Using a

6.1. Summary 109

deep neural network, we extract so-called scene maps from single images of indoor

scenes – single channel maps that specify a top-down view of the location of differ-

ent types of objects in scene coordinates. To offset the lack of existing training data,

we incorporated a 3D scene generation and rendering step into the pipeline based

on the clean model sets extracted in Chapter 3, supplying the training process with

a virtually infinite amount of training data. On synthetic data, we showed signifi-

cant improvements over baseline methods based on depth estimation and semantic

segmentation. We also showed that under severe occlusion this method does not

perform well, as in this case the visual data alone is too ambiguous to perform any

reasonable inference.

In the final Chapter 5 we took this issue into account while expanding the

objective into the full scene mockup problem: given a single image, find as many

objects as possible in the image including their 3D location and pose, such that

when reprojecting these objects into 2D with the separately estimated camera we

get an image that’s close to the input. We approached this in three stages, first

extracting semantic keypoints using a deep neural network, then fitting a learned

object template to all possible minimum sets of these keypoints, and finally pruning

this candidate set using a learned object co-occurrence model. The use of keypoints

and the object co-occurrence model allows us to make inferences about objects that

are heavily occluded, by not requiring all keypoints to be visible for making an

inference, and by relying on the contextual information provided by the pose and

location of more clearly visible objects. By splitting up the reconstruction into a

candidate generation and candidate selection phase, we kept the problem tractable,

and by iterating these two phases we optimally made use of information as it became

available. We compared our method with two separate baseline techniques and

showed increased performance on all benchmarks, as well as the importance of

each stage of our pipeline.

6.2. Future work 110

6.2 Future work

There are still many interesting avenues of research in cross-dimensional in-the-

wild analysis that are left unexplored. Here we identify several key challenges that

remain, and specify the long-term aspirations of this growing field.

An interesting addition to the problems tackled in Chapter 3 would be to not

only sort and filter, but also to synthesize or edit properties in each dimensionality

using information gleaned from the other. Indeed, we could imagine a system where

the appearance and shape distributions learned over the “table” class assist the user

in modifying a photograph of a 2D table in a geometrically meaningful way. In

the other direction, the much richer material information of the 2D domain could

be used for the automatic material assignment of the models in the 3D collection.

Some work in this domain has already been done (i.e. Chen et al., 2015 [19]), but

automating this process fully would constitute a valuable new addition to the 3D

model creation toolkit.

Expanding the problem of joint 2D iconic image and 3D model retrieval and

exploration, one interesting yet lofty goal is to unify their representation. A feature

space in which both these cross-dimensional data types co-exist would allow for

seamless exploration and retrieval of 2D images and 3D models, unifying all steps

in Chapter 3 into one “basis-changing” operation. One could even imagine such a

space to assist in the synthesis of new 3D models based on 2D images in this joint

feature space, or vice versa.

In the context of indoor scene mockups, possible future research spans multi-

ple orthogonal directions. As a first clear follow-up to Chapter 5 the pipeline can be

extended to multiple classes. The resulting scene mockups will be richer and use-

ful in themselves for multiple purposes, including game asset creation and virtual

reality. Moreover, the accuracy of the method will increase with each added class,

as ever more contextual information becomes available. Furthermore, it would be

interesting to go beyond pose and location and infer other properties, such as object

material, object style and scene lighting. Our hypothesis is that the added properties

will again help each other: it is more than conceivable that the style of the chairs in

6.2. Future work 111

a room have some influence on the probability of the tables’ materials. The statis-

tical models that are needed to capture the relationships of these object properties

could be useful for more than just this task – product designers and architects could

look at these models directly to learn their audience’s preferences, such as favored

modes of room structure conditioned on object style.

On multiple occasions in this thesis we dealt with co-occurring synthetic im-

ages and real photographs. A reoccurring problem is the stark difference in feature

space between the two types of images. An exciting and extremely useful research

direction would be the development of a general domain adaptation method that

mitigates this difference. Such a method would be of essential importance for many

research directions where lack of real training data is the current main obstacle,

including our work in Chapter 4.

Considering all these directions together reaffirms the main insight on which

this dissertation is built, and expands it further: analyzing the visual data in our

world and making its information content accessible can benefit from not only

cross-dimensional links but from cross-modal ones in general. As we want to ex-

tract more information from the 2D photographs and 3D models and scenes we pro-

duce on a daily basis, it will be useful to consider these problems in a joint fashion.

We have shown this maxim to be true for one subset of problems, and are looking

forward to the exciting applications that will result from its continued exploration.

Appendix A

Full Results for Chapter 3

Results start on next page.

113

Figure A.1: First 100 models in original 3D set for class “airplane”.

Figure A.2: First 100 models in resorted and realigned 3D set for class “airplane”.

114

Figure A.3: First 100 images in original 2D set for class “airplane”.

Figure A.4: Top 6 images for 5 view classifiers of class “airplane”. Each column represents
one view classifier.

115

Figure A.5: First 100 models in original 3D set for class “bicycle”.

Figure A.6: First 100 models in resorted and realigned 3D set for class “bicycle”.

116

Figure A.7: First 100 images in original 2D set for class “bicycle”.

Figure A.8: Top 6 images for 5 view classifiers of class “bicycle”. Each column represents
one view classifier.

117

Figure A.9: First 100 models in original 3D set for class “car”.

Figure A.10: First 100 models in resorted and realigned 3D set for class “car”.

118

Figure A.11: First 100 images in original 2D set for class “car”.

Figure A.12: Top 6 images for 5 view classifiers of class “car”. Each column represents
one view classifier.

119

Figure A.13: First 100 models in original 3D set for class “couch”.

Figure A.14: First 100 models in resorted and realigned 3D set for class “couch”.

120

Figure A.15: First 100 images in original 2D set for class “couch”.

Figure A.16: Top 6 images for 5 view classifiers of class “couch”. Each column represents
one view classifier.

121

Figure A.17: First 100 models in original 3D set for class “helicopter”.

Figure A.18: First 100 models in resorted and realigned 3D set for class “helicopter”.

122

Figure A.19: First 100 images in original 2D set for class “helicopter”.

Figure A.20: Top 6 images for 5 view classifiers of class “helicopter”. Each column repre-
sents one view classifier.

123

Figure A.21: First 100 models in original 3D set for class “house”.

Figure A.22: First 100 models in resorted and realigned 3D set for class “house”.

124

Figure A.23: First 100 images in original 2D set for class “house”.

Figure A.24: Top 6 images for 5 view classifiers of class “house”. Each column represents
one view classifier.

Appendix B

Full Results for Chapter 5

Results start on next page.

126

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

127

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

128

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

129

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

130

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

131

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

132

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

133

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

134

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

135

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

136

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N
Topview

O
u
rs

S
C

3
D

-I
N

N

137

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

138

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N
Top view

O
u
rs

S
C

3
D

-I
N

N

139

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N
Top view

O
u
rs

S
C

3
D

-I
N

N

140

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

141

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

142

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Topview

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

143

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

144

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Topview O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

145

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

146

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view
O

u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N
Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Topview

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

147

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Topview

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Camera view

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

148

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Cameraview

O
u
rs

S
C

3
D

-I
N

N

Top view

O
u
rs

S
C

3
D

-I
N

N

Appendix C

List of publications

The work in this thesis appears in the following publications:

• HUETING, M., OVSJANIKOV, M., AND MITRA, N. J. Crosslink: joint un-

derstanding of image and 3d model collections through shape and camera

pose variations. Proc. ACM/SIGGRAPH Asia 34, 6 (2015), 233

• HUETING, M., PĂTRĂUCEAN, V., OVSJANIKOV, M., AND MITRA, N. J.

Scene structure inference through scene map estimation. In Proc. Vision,

Modeling & Visualization (2016)

Bibliography

[1] houzz.

urlhttps://www.houzz.co.uk/.

[2] IBM ILOG CPLEX Optimizer.

urlhttp://www-01.ibm.com/software/integration/optimization/cplex-

optimizer/.

[3] AGARWAL, S., MIERLE, K., AND OTHERS. Ceres solver. http://

ceres-solver.org.

[4] AGRAWAL, P., CARREIRA, J., AND MALIK, J. Learning to see by moving.

In Proc. International Conference on Computer Vision (2015), pp. 37–45.

[5] ANDRES, B., BEIER, T., AND KAPPES, J. OpenGM: A C++ library for

discrete graphical models. CoRR abs/1206.0111 (2012).

[6] AUBRY, M., MATURANA, D., EFROS, A. A., RUSSELL, B. C., AND SIVIC,

J. Seeing 3d chairs: Exemplar part-based 2d-3d alignment using a large

dataset of CAD models. In Proc. Conference on Computer Vision and Pattern

Recognition (2014), pp. 3762–3769.

[7] AUBRY, M., RUSSELL, B. C., AND SIVIC, J. Painting-to-3d model align-

ment via discriminative visual elements. ACM Trans. Graph. 33, 2 (2014),

14:1–14:14.

[8] AVERKIOU, M., KIM, V. G., AND MITRA, N. J. Autocorrelation descriptor

for efficient co-alignment of 3d shape collections. Computer Graphics Forum

35, 1 (2016), 261–271.

http://ceres-solver.org
http://ceres-solver.org

Bibliography 151

[9] AVERKIOU, M., KIM, V. G., ZHENG, Y., AND MITRA, N. J. Shapesynth:

Parameterizing model collections for coupled shape exploration and synthe-

sis. Computer Graphics Forum 33, 2 (2014), 125–134.

[10] BANSAL, A., RUSSELL, B., AND GUPTA, A. Marr revisited: 2d-3d align-

ment via surface normal prediction. In Proc. Conference on Computer Vision

and Pattern Recognition (2016).

[11] BERGSTRA, J., YAMINS, D., AND COX, D. Making a science of model

search: Hyperparameter optimization in hundreds of dimensions for vi-

sion architectures. In Proc. International Conference on Machine Learning

(2013), pp. 115–123.

[12] BLANZ, V., AND VETTER, T. A morphable model for the synthesis of 3d

faces. Proc. ACM/SIGGRAPH (1999), 187–194.

[13] BOSCAINI, D., MASCI, J., MELZI, S., BRONSTEIN, M. M., CASTELLANI,

U., AND VANDERGHEYNST, P. Learning class-specific descriptors for de-

formable shapes using localized spectral convolutional networks. Proc. Sym-

posium on Geometry Processing 34, 5 (2015), 13–23.

[14] BOTTOU, L. Online learning and stochastic approximations. In Online

Learning in Neural Networks. Cambridge University Press, 1998, ch. 2,

pp. 9–42.

[15] BOUREAU, Y., PONCE, J., AND LECUN, Y. A theoretical analysis of feature

pooling in visual recognition. In Proc. International Conference on Machine

Learning (2010), pp. 111–118.

[16] CARNEIRO, G., CHAN, A. B., MORENO, P. J., AND VASCONCELOS, N.

Supervised learning of semantic classes for image annotation and retrieval.

Proc. Pattern Analysis and Machine Intelligence 29, 3 (2007), 394–410.

[17] CGTRADER. CGTrader, 2017.

Bibliography 152

[18] CHEN, D., TIAN, X., SHEN, Y., AND OUHYOUNG, M. On visual similarity

based 3d model retrieval. Computer Graphics Forum 22, 3 (2003), 223–232.

[19] CHEN, K., XU, K., YU, Y., WANG, T., AND HU, S. Magic decorator: auto-

matic material suggestion for indoor digital scenes. Proc. ACM/SIGGRAPH

Asia 34, 6 (2015), 232.

[20] CHEN, L., PAPANDREOU, G., KOKKINOS, I., MURPHY, K., AND YUILLE,

A. L. Semantic image segmentation with deep convolutional nets and fully

connected crfs. Arxiv abs/1412.7062 (2014).

[21] CHEN, L.-C., PAPANDREOU, G., KOKKINOS, I., MURPHY, K., AND

YUILLE, A. L. Deeplab: Semantic image segmentation with deep convo-

lutional nets, atrous convolution, and fully connected crfs. arXiv preprint

arXiv:1606.00915 (2016).

[22] CHEN, W., WANG, H., LI, Y., SU, H., TU, C., LISCHINSKI, D., COHEN-

OR, D., AND CHEN, B. Synthesizing training images for boosting human

3d pose estimation. Arxiv abs/1604.02703 (2016).

[23] CORSINI, M., DELLEPIANE, M., PONCHIO, F., AND SCOPIGNO, R.

Image-to-geometry registration: a mutual information method exploiting

illumination-related geometric properties. Computer Graphics Forum 28,

7 (2009), 1755–1764.

[24] CORTES, C., AND VAPNIK, V. Support-vector networks. Machine Learning

20, 3 (1995), 273–297.

[25] DALAL, N., AND TRIGGS, B. Histograms of oriented gradients for human

detection. In Proc. Conference on Computer Vision and Pattern Recognition

(2005), pp. 886–893.

[26] DAMBREVILLE, S., SANDHU, R., YEZZI, A. J., AND TANNENBAUM, A.

Robust 3d pose estimation and efficient 2d region-based segmentation from

Bibliography 153

a 3d shape prior. In Proc. European Conference on Computer Vision (2008),

pp. 169–182.

[27] DATTA, R., JOSHI, D., LI, J., AND WANG, J. Z. Image retrieval: Ideas,

influences, and trends of the new age. ACM Computing Surveys 40, 2 (2008).

[28] DENG, J., DONG, W., SOCHER, R., LI, L., LI, K., AND LI, F. Imagenet:

A large-scale hierarchical image database. In Proc. Conference on Computer

Vision and Pattern Recognition (2009), pp. 248–255.

[29] EIGEN, D., AND FERGUS, R. Predicting depth, surface normals and seman-

tic labels with a common multi-scale convolutional architecture. In Proc.

International Conference on Computer Vision (2015), pp. 2650–2658.

[30] EITZ, M., RICHTER, R., BOUBEKEUR, T., HILDEBRAND, K., AND

ALEXA, M. Sketch-based shape retrieval. Proc. ACM/SIGGRAPH 31, 4

(2012), 31:1–31:10.

[31] EVGENIOU, T., AND PONTIL, M. Regularized multi–task learning. In Proc.

ACM/SIGKDD (2004), pp. 109–117.

[32] FELZENSZWALB, P. F., GIRSHICK, R. B., MCALLESTER, D. A., AND

RAMANAN, D. Object detection with discriminatively trained part-based

models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 9 (2010), 1627–1645.

[33] FELZENSZWALB, P. F., MCALLESTER, D. A., AND RAMANAN, D. A

discriminatively trained, multiscale, deformable part model. In Proc. Con-

ference on Computer Vision and Pattern Recognition (2008), pp. 1–8.

[34] FISHER, M., RITCHIE, D., SAVVA, M., FUNKHOUSER, T., AND HAN-

RAHAN, P. Example-based synthesis of 3d object arrangements. Proc.

ACM/SIGGRAPH Asia (2012).

[35] FISHER, M., SAVVA, M., LI, Y., HANRAHAN, P., AND NIESSNER, M.

Activity-centric scene synthesis for functional 3d scene modeling. Proc.

ACM/SIGGRAPH 34, 6 (2015), 179.

Bibliography 154

[36] GIRDHAR, R., FOUHEY, D. F., RODRIGUEZ, M., AND GUPTA, A. Learn-

ing a predictable and generative vector representation for objects. Arxiv

abs/1603.08637 (2016).

[37] GODARD, C., MAC AODHA, O., AND BROSTOW, G. J. Unsupervised

monocular depth estimation with left-right consistency. In CVPR (2017).

[38] GOLDFEDER, C., AND ALLEN, P. Autotagging to improve text search for 3d

models. In Proc. ACM/IEEE-CS joint conference on Digital libraries (2008),

ACM, pp. 355–358.

[39] GONG, B., SHI, Y., SHA, F., AND GRAUMAN, K. Geodesic flow kernel for

unsupervised domain adaptation. In Proc. Conference on Computer Vision

and Pattern Recognition (2012), pp. 2066–2073.

[40] GOOGLE. Google Official Blog, 2010.

[41] GOOGLE. Project Tango, 2014.

[42] GOULD, S., AND HE, X. Scene understanding by labeling pixels. Commu-

nications of the ACM 57, 11 (2014), 68–77.

[43] GUPTA, S., ARBELÁEZ, P. A., GIRSHICK, R. B., AND MALIK, J. Aligning

3d models to RGB-D images of cluttered scenes. In Proc. Conference on

Computer Vision and Pattern Recognition (2015), pp. 4731–4740.

[44] HANDA, A., PATRAUCEAN, V., BADRINARAYANAN, V., STENT, S., AND

CIPOLLA, R. Scenenet: Understanding real world indoor scenes with syn-

thetic data. Arxiv abs/1511.07041 (2015).

[45] HARTLEY, R., AND ZISSERMAN, A. Multiple view geometry in computer

vision. @Cambridge university press, 2003.

[46] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for

image recognition. In Proc. Conference on Computer Vision and Pattern

Recognition (2016), pp. 770–778.

Bibliography 155

[47] HEDAU, V., HOIEM, D., AND FORSYTH, D. A. Recovering the spatial

layout of cluttered rooms. In Proc. International Conference on Computer

Vision (2009), pp. 1849–1856.

[48] HOUGEN, D. R., AND AHUJA, N. Estimation of the light source distribution

and its use in integrated shape recovery from stereo and shading. In Proc.

International Conference on Computer Vision (1993), pp. 148–155.

[49] HU, R., VAN KAICK, O., WU, B., HUANG, H., SHAMIR, A., AND ZHANG,

H. Learning how objects function via co-analysis of interactions. Proc.

ACM/SIGGRAPH 35, 4 (2016), 47.

[50] HUANG, Q., SU, H., AND GUIBAS, L. J. Fine-grained semi-supervised la-

beling of large shape collections. Proc. ACM/SIGGRAPH Asia 32, 6 (2013),

190:1–190:10.

[51] HUANG, Q., WANG, F., AND GUIBAS, L. J. Functional map networks for

analyzing and exploring large shape collections. Proc. ACM/SIGGRAPH 33,

4 (2014), 36:1–36:11.

[52] HUANG, Q., WANG, H., AND KOLTUN, V. Single-view reconstruction via

joint analysis of image and shape collections. Proc. ACM/SIGGRAPH Asia

34, 4 (2015), 87.

[53] HUANG, S., SHAMIR, A., SHEN, C., ZHANG, H., SHEFFER, A., HU, S.,

AND COHEN-OR, D. Qualitative organization of collections of shapes via

quartet analysis. Proc. ACM/SIGGRAPH 32, 4 (2013), 71:1–71:10.

[54] HUETING, M., OVSJANIKOV, M., AND MITRA, N. J. Crosslink: joint

understanding of image and 3d model collections through shape and camera

pose variations. Proc. ACM/SIGGRAPH Asia 34, 6 (2015), 233.

[55] HUETING, M., PĂTRĂUCEAN, V., OVSJANIKOV, M., AND MITRA, N. J.

Scene structure inference through scene map estimation. In Proc. Vision,

Modeling & Visualization (2016).

Bibliography 156

[56] HYPEROPT. HyperOpt, 2017.

[57] INFOTRENDS. How long does it take to shoot 1 trillion photos?, 2016.

[58] INTEL. RealSense, 2017.

[59] IOFFE, S., AND SZEGEDY, C. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In Proc. International

Conference on Machine Learning (2015), pp. 448–456.

[60] IZADINIA, H., SHAN, Q., AND SEITZ, S. M. IM2CAD. CoRR

abs/1608.05137 (2016).

[61] JAIN, A., THORMÄHLEN, T., RITSCHEL, T., AND SEIDEL, H. Material

memex: automatic material suggestions for 3d objects. Proc. ACM/SIG-

GRAPH Asia 31, 6 (2012), 143.

[62] JARRETT, K., KAVUKCUOGLU, K., RANZATO, M., AND LECUN, Y. What

is the best multi-stage architecture for object recognition? In Proc. Interna-

tional Conference on Computer Vision (2009), pp. 2146–2153.

[63] JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG, J., GIR-

SHICK, R. B., GUADARRAMA, S., AND DARRELL, T. Caffe: Convolutional

architecture for fast feature embedding. In Proc. ACM International Confer-

ence on Multimedia (2014), pp. 675–678.

[64] KIM, V. G., LI, W., MITRA, N. J., CHAUDHURI, S., DIVERDI, S., AND

FUNKHOUSER, T. A. Learning part-based templates from large collections

of 3d shapes. Proc. ACM/SIGGRAPH 32, 4 (2013), 70:1–70:12.

[65] KLEIMAN, Y., FISH, N., LANIR, J., AND COHEN-OR, D. Dynamic maps

for exploring and browsing shapes. Proc. Symposium on Geometry Process-

ing 32, 5 (2013), 187–196.

[66] KOENDERINK, J. J., AND PONT, S. C. Irradiation direction from texture.

Journal of the Optical Society of America 20, 10 (2003), 1875–1882.

Bibliography 157

[67] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classifi-

cation with deep convolutional neural networks. In Proc. Advances in Neural

Information Processing Systems (2012), pp. 1106–1114.

[68] LEARNED-MILLER, E. G. Data driven image models through continu-

ous joint alignment. Proc. Pattern Analysis and Machine Intelligence 28,

2 (2006), 236–250.

[69] LEE, D. C., HEBERT, M., AND KANADE, T. Geometric reasoning for sin-

gle image structure recovery. In Proc. Conference on Computer Vision and

Pattern Recognition (2009), pp. 2136–2143.

[70] LI, B., LU, Y., LI, C., GODIL, A., SCHRECK, T., AONO, M.,

BURTSCHER, M., CHEN, Q., CHOWDHURY, N. K., FANG, B., FU, H.,

FURUYA, T., LI, H., LIU, J., JOHAN, H., KOSAKA, R., KOYANAGI, H.,

OHBUCHI, R., TATSUMA, A., WAN, Y., ZHANG, C., AND ZOU, C. A

comparison of 3d shape retrieval methods based on a large-scale benchmark

supporting multimodal queries. Computer Vision and Image Understanding

131 (2015), 1–27.

[71] LI, Y., SU, H., QI, C. R., FISH, N., COHEN-OR, D., AND GUIBAS, L. J.

Joint embeddings of shapes and images via CNN image purification. Proc.

ACM/SIGGRAPH Asia 34, 6 (2015), 234:1–234:12.

[72] LI, Y., ZHENG, Q., SHARF, A., COHEN-OR, D., CHEN, B., AND MITRA,

N. J. 2d-3d fusion for layer decomposition of urban facades. In Proc. Inter-

national Conference on Computer Vision (2011), pp. 882–889.

[73] LIM, J. J., PIRSIAVASH, H., AND TORRALBA, A. Parsing IKEA objects:

Fine pose estimation. In Proc. International Conference on Computer Vision

(2013), pp. 2992–2999.

[74] LIU, Z., ZHANG, Y., WU, W., LIU, K., AND SUN, Z. Model-driven indoor

scenes modeling from a single image. In Proc. Graphics Interface Confer-

ence (2015), pp. 25–32.

Bibliography 158

[75] LOPEZ-MORENO, J., GARCES, E., HADAP, S., REINHARD, E., AND

GUTIERREZ, D. Multiple light source estimation in a single image. Proc.

Eurographics 32, 8 (2013), 170–182.

[76] LOPEZ-MORENO, J., SUNDSTEDT, V., SANGORRIN, F., AND GUTIERREZ,

D. Measuring the perception of light inconsistencies. In Proc. Symposium

on Applied Perception in Graphics and Visualization (2010), pp. 25–32.

[77] MANDAL, D., CHAUDHURY, K. N., AND BISWAS, S. Generalized semantic

preserving hashing for n-label cross-modal retrieval. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (July 2017).

[78] MASCI, J., BRONSTEIN, M. M., BRONSTEIN, A. M., AND SCHMIDHU-

BER, J. Multimodal similarity-preserving hashing. Proc. Pattern Analysis

and Machine Intelligence 36, 4 (2014), 824–830.

[79] MASSA, F., RUSSELL, B. C., AND AUBRY, M. Deep exemplar 2d-3d detec-

tion by adapting from real to rendered views. Arxiv abs/1512.02497 (2015).

[80] MICROSOFT. Microsoft Kinect, 2013.

[81] MIN, P., KAZHDAN, M. M., AND FUNKHOUSER, T. A. A comparison of

text and shape matching for retrieval of online 3d models. Proc. Research

and Advanced Technology for Digital Libraries (2004), 209–220.

[82] MITRA, N. J., WAND, M., ZHANG, H., COHEN-OR, D., AND BOKELOH,

M. Structure-aware shape processing. In Eurographics 2013 State of the Art

Reports (2013), pp. 175–197.

[83] MONSZPART, A., MELLADO, N., BROSTOW, G. J., AND MITRA, N. J.

Rapter: rebuilding man-made scenes with regular arrangements of planes.

Proc. ACM/SIGGRAPH 34, 4 (2015), 103.

[84] NGUYEN, C. H., RITSCHEL, T., MYSZKOWSKI, K., EISEMANN, E., AND

SEIDEL, H. 3d material style transfer. Proc. Eurographics 31, 2 (2012),

431–438.

Bibliography 159

[85] NOH, H., HONG, S., AND HAN, B. Learning deconvolution network for se-

mantic segmentation. In Proc. International Conference on Computer Vision

(2015), pp. 1520–1528.

[86] OLSON, E., AND AGARWAL, P. Inference on networks of mixtures for ro-

bust robot mapping. I. J. Robotics Res. 32, 7 (2013), 826–840.

[87] OVSJANIKOV, M., LI, W., GUIBAS, L. J., AND MITRA, N. J. Exploration

of continuous variability in collections of 3d shapes. Proc. ACM/SIGGRAPH

30, 4 (2011), 33.

[88] PEREIRA, J. C., COVIELLO, E., DOYLE, G., RASIWASIA, N., LANCK-

RIET, G. R. G., LEVY, R., AND VASCONCELOS, N. On the role of cor-

relation and abstraction in cross-modal multimedia retrieval. Proc. Pattern

Analysis and Machine Intelligence 36, 3 (2014), 521–535.

[89] PICARD, R., GRACZYK, C., MANN, S., WACHMAN, J., PICARD, L., AND

CAMPBELL, L. Vistex texture dataset. http://vismod.media.mit.

edu/vismod/imagery/VisionTexture/vistex.html, 1995.

Accessed: 2016-05-01.

[90] PLATT, J. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. In Advances in large margin classifiers.

MIT Press, 1999, ch. 5, pp. 61–74.

[91] POWELL, M. W., SARKAR, S., AND GOLDGOF, D. B. A simple strategy

for calibrating the geometry of light sources. Proc. Pattern Analysis and

Machine Intelligence 23, 9 (2001), 1022–1027.

[92] PRISACARIU, V. A., AND REID, I. D. PWP3D: real-time segmentation

and tracking of 3d objects. International Journal of Computer Vision 98, 3

(2012), 335–354.

http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

Bibliography 160

[93] RAFIEE, G., DLAY, S. S., AND WOO, W. L. A review of content-based im-

age retrieval. In Proc. International Symposium on Communication Systems

Networks and Digital Signal Processing (2010), pp. 775–779.

[94] REN, S., HE, K., GIRSHICK, R. B., AND SUN, J. Faster R-CNN: towards

real-time object detection with region proposal networks. In Proc. Advances

in Neural Information Processing Systems (2015), pp. 91–99.

[95] ROTHER, C. A new approach to vanishing point detection in architectural

environments. Image Vision Computing 20, 9-10 (2002), 647–655.

[96] RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S., MA,

S., HUANG, Z., KARPATHY, A., KHOSLA, A., BERNSTEIN, M. S., BERG,

A. C., AND LI, F. Imagenet large scale visual recognition challenge. Inter-

national Journal of Computer Vision 115, 3 (2015), 211–252.

[97] RUSSELL, B. C., SIVIC, J., PONCE, J., AND DESSALES, H. Automatic

alignment of paintings and photographs depicting a 3d scene. In Proc. Inter-

national Conference on Computer Vision (2011), pp. 545–552.

[98] SAUNDERS, C., GAMMERMAN, A., AND VOVK, V. Ridge regression learn-

ing algorithm in dual variables. In Proc. International Conference on Ma-

chine Learning (1998), pp. 515–521.

[99] SHAO, T., MONSZPART, A., ZHENG, Y., KOO, B., XU, W., ZHOU, K.,

AND MITRA, N. J. Imagining the unseen: stability-based cuboid arrange-

ments for scene understanding. Proc. ACM/SIGGRAPH 33, 6 (2014), 209:1–

209:11.

[100] SHILANE, P., MIN, P., KAZHDAN, M. M., AND FUNKHOUSER, T. A. The

princeton shape benchmark. In Proc. International Conference on Shape

Modeling and Applications (2004), pp. 167–178.

Bibliography 161

[101] SHRIVASTAVA, A., MALISIEWICZ, T., GUPTA, A., AND EFROS, A. A.

Data-driven visual similarity for cross-domain image matching. Proc.

ACM/SIGGRAPH Asia 30, 6 (2011), 154.

[102] SILBERMAN, N., HOIEM, D., KOHLI, P., AND FERGUS, R. Indoor seg-

mentation and support inference from RGBD images. In Proc. European

Conference on Computer Vision (2012), pp. 746–760.

[103] SILBERMAN, N., SONTAG, D., AND FERGUS, R. Instance segmentation

of indoor scenes using a coverage loss. In Proc. European Conference on

Computer Vision (2014), pp. 616–631.

[104] SIMONYAN, K., AND ZISSERMAN, A. Very deep convolutional networks

for large-scale image recognition. CoRR abs/1409.1556 (2014).

[105] SKETCHFAB. Sketchfab, 2017.

[106] SONG, S., LICHTENBERG, S. P., AND XIAO, J. SUN RGB-D: A RGB-

D scene understanding benchmark suite. In Proc. Conference on Computer

Vision and Pattern Recognition (2015), pp. 567–576.

[107] SONG, S., AND XIAO, J. Sliding shapes for 3d object detection in depth

images. In Proc. European Conference on Computer Vision (2014), pp. 634–

651.

[108] STATISTA. Number of smartphone users worldwide from 2014 to 2020,

2017.

[109] SU, H., HUANG, Q., MITRA, N. J., LI, Y., AND GUIBAS, L. J. Estimating

image depth using shape collections. Proc. ACM/SIGGRAPH 33, 4 (2014),

37:1–37:11.

[110] SU, H., QI, C. R., LI, Y., AND GUIBAS, L. J. Render for CNN: viewpoint

estimation in images using cnns trained with rendered 3d model views. In

Proc. International Conference on Computer Vision (2015), pp. 2686–2694.

Bibliography 162

[111] TANGELDER, J. W., AND VELTKAMP, R. C. A survey of content based

3d shape retrieval methods. Multimedia tools and applications 39, 3 (2008),

441.

[112] THRUN, S., BURGARD, W., AND FOX, D. Probabilistic Robotics. MIT

Press, 2005.

[113] TIELEMAN, T., AND HINTON, G. E. Lecture 6.5—RmsProp: Divide the

gradient by a running average of its recent magnitude. COURSERA: Neural

Networks for Machine Learning, 2012.

[114] TOME, D., RUSSELL, C., AND AGAPITO, L. Lifting from the deep: Con-

volutional 3d pose estimation from a single image. In Proc. Conference on

Computer Vision and Pattern Recognition (July 2017).

[115] TRIMBLE. 3D Warehouse, 2017.

[116] TSOCHANTARIDIS, I., JOACHIMS, T., HOFMANN, T., AND ALTUN, Y.

Large margin methods for structured and interdependent output variables.

Journal of machine learning research 6, Sep (2005), 1453–1484.

[117] TURBOSQUID. Turbosquid, 2017.

[118] VAN GEMERT, J. C., GEUSEBROEK, J., VEENMAN, C. J., AND SMEUL-

DERS, A. W. M. Kernel codebooks for scene categorization. In Proc. Euro-

pean Conference on Computer Vision (2008), pp. 696–709.

[119] VICENTE, S., CARREIRA, J., AGAPITO, L., AND BATISTA, J. Reconstruct-

ing PASCAL VOC. In Proc. Conference on Computer Vision and Pattern

Recognition (2014), pp. 41–48.

[120] WANG, F., KANG, L., AND LI, Y. Sketch-based 3d shape retrieval using

convolutional neural networks. In Proc. Conference on Computer Vision and

Pattern Recognition (2015), pp. 1875–1883.

Bibliography 163

[121] WANG, K., HE, R., WANG, L., WANG, W., AND TAN, T. Joint feature

selection and subspace learning for cross-modal retrieval. IEEE transactions

on pattern analysis and machine intelligence 38, 10 (2016), 2010–2023.

[122] WANG, Y., GONG, M., WANG, T., COHEN-OR, D., ZHANG, H., AND

CHEN, B. Projective analysis for 3d shape segmentation. Proc. ACM/SIG-

GRAPH Asia 32, 6 (2013), 192.

[123] WEI, L., HUANG, Q., CEYLAN, D., VOUGA, E., AND LI, H. Dense human

body correspondences using convolutional networks. Arxiv abs/1511.05904

(2015).

[124] WEI, S., RAMAKRISHNA, V., KANADE, T., AND SHEIKH, Y. Convolu-

tional pose machines. In Proc. Conference on Computer Vision and Pattern

Recognition (2016), pp. 4724–4732.

[125] WESTON, J., BENGIO, S., AND USUNIER, N. WSABIE: scaling up to

large vocabulary image annotation. In Proc. International Joint Conference

on Artificial Intelligence (2011), pp. 2764–2770.

[126] WILSON, S. Dwelling Size Survey, 2010.

[127] WU, B., YANG, Q., ZHENG, W.-S., WANG, Y., AND WANG, J. Quantized

correlation hashing for fast cross-modal search. In IJCAI (2015), pp. 3946–

3952.

[128] WU, J., XUE, T., LIM, J. J., TIAN, Y., TENENBAUM, J. B., TORRALBA,

A., AND FREEMAN, W. T. Single image 3d interpreter network. In Euro-

pean Conference on Computer Vision (2016), pp. 365–382.

[129] WU, Z., SONG, S., KHOSLA, A., YU, F., ZHANG, L., TANG, X., AND

XIAO, J. 3d shapenets: A deep representation for volumetric shapes. In Proc.

Conference on Computer Vision and Pattern Recognition (2015), pp. 1912–

1920.

Bibliography 164

[130] XIE, J., DAI, G., ZHU, F., AND FANG, Y. Learning barycentric representa-

tions of 3d shapes for sketch-based 3d shape retrieval. In Proc. Conference

on Computer Vision and Pattern Recognition (July 2017).

[131] XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND CHENG, Z.

Style-content separation by anisotropic part scales. Proc. ACM/SIGGRAPH

Asia 29, 6 (2010), 184.

[132] XU, K., MA, R., ZHANG, H., ZHU, C., SHAMIR, A., COHEN-OR, D.,

AND HUANG, H. Organizing heterogeneous scene collections through con-

textual focal points. ACM Trans. Graph. 33, 4 (2014), 35:1–35:12.

[133] XU, K., ZHENG, H., ZHANG, H., COHEN-OR, D., LIU, L., AND XIONG,

Y. Photo-inspired model-driven 3d object modeling. Proc. ACM/SIGGRAPH

30, 4 (2011), 80.

[134] YÜMER, M. E., CHAUDHURI, S., HODGINS, J. K., AND KARA, L. B.

Semantic shape editing using deformation handles. Proc. ACM/SIGGRAPH

34, 4 (2015), 86.

[135] YÜMER, M. E., AND KARA, L. B. Co-constrained handles for deforma-

tion in shape collections. Proc. ACM/SIGGRAPH Asia 33, 6 (2014), 187:1–

187:11.

[136] ZHANG, L., AND RUI, Y. Image search—from thousands to billions

in 20 years. ACM Trans. Multimedia Comput. Commun. Appl. 9, 1s (2013),

36:1–36:20.

[137] ZHANG, Y., BAI, M., KOHLI, P., IZADI, S., AND XIAO, J. Deepcontext:

Context-encoding neural pathways for 3d holistic scene understanding. Arxiv

abs/1603.04922 (2016).

[138] ZHANG, Y., SONG, S., YUMER, E., SAVVA, M., LEE, J., JIN, H., AND

FUNKHOUSER, T. A. Physically-based rendering for indoor scene under-

Bibliography 165

standing using convolutional neural networks. In Proc. Conference on Com-

puter Vision and Pattern Recognition (2017).

[139] ZHAO, Y., AND ZHU, S. Scene parsing by integrating function, geometry

and appearance models. In Proc. Conference on Computer Vision and Pattern

Recognition (2013), pp. 3119–3126.

[140] ZHOU, W., AND KAMBHAMETTU, C. Estimation of illuminant direction

and intensity of multiple light sources. In Proc. European Conference on

Computer Vision (2002), pp. 206–220.

[141] ZHU, J., LEE, Y. J., AND EFROS, A. A. Averageexplorer: interactive ex-

ploration and alignment of visual data collections. Proc. ACM/SIGGRAPH

33, 4 (2014), 160:1–160:11.

	Introduction
	Related Work
	Image and shape retrieval
	Image and shape analysis
	Scene understanding

	CrossLink: Joint Understanding of Image and 3D Model Collections through Shape and Camera Pose Variations
	Introduction
	Overview
	Input and Data Representation
	Rendering of the models
	Feature extraction

	3D Model Collection Filtering
	3D model alignment

	Image Collection Organization
	Camera pose estimation
	Modeling of classifier weights
	2D repository re-sorting by shape

	Evaluation
	3D repository filtering using 2D
	3D model alignment
	2D repository view sorting
	2D view classifier modeling
	2D repository shape sorting

	Exploring Image and 3D Model Collections
	Conclusions and Future Work

	Scene Structure Inference through Scene Map Estimation
	Introduction
	Method
	Scene Map
	Scene Map Inference Overview
	Network
	Non-maximum suppression
	Rendering pipeline

	Evaluation
	Baseline
	Training vs. test
	Comparison
	Effect of object density

	Discussion and Conclusion

	Finding Chairs in Indoor Scenes under Heavy Occlusion using Scene Statistics
	Introduction
	Motivation and overview
	Method
	Camera estimation
	Keypoint maps
	Candidate generation
	Candidate selection
	Iterative optimization
	Model selection
	Hyper parameters
	Data

	Evaluation
	Ground truth annotation
	Performance measures
	Baseline methods
	Comparison
	Ablation study

	Discussion

	Discussion and Future Work
	Summary
	Future work

	Appendices
	Full Results for Chapter 3
	Full Results for Chapter 5
	List of publications
	Bibliography

