String Actuated Curved Folded Surfaces

MARTIN KILIAN

University College London, Vienna University of Technology

and
ARON MONSZPART and NILOY J. MITRA
University College London

Fig. 1: The top row shows a crease pattern together with the strings S = {a,b, ¢, d, e} computed by our algorithm and simulation of the
induced, string driven folding motion. The bottom row shows a physical realization of the same crease pattern as a thin aluminum sheet. Each
string is realized as a strand of colored thread. Strings are collected at a single anchor point and folding is driven by pulling the threads.

Curved folded surfaces, given their ability to produce elegant freeform
shapes by folding flat sheets etched with curved creases, hold a special
place in computational Origami. Artists and designers have proposed a wide
variety of different fold patterns to create a range of interesting surfaces.
The creative process, design as well as fabrication, is usually only con-
cerned with the static surface that emerges once folding has completed.
Folding such patterns, however, is difficult as multiple creases have to
be folded simultaneously to obtain a properly folded target shape. We
introduce string actuated curved folded surfaces that can be shaped by
pulling a network of strings thus vastly simplifying the process of cre-
ating such surfaces and making the folding motion an integral part of
the design. Technically, we solve the problem of which surface points
to string together and how to actuate them by locally expressing a de-
sired folding path in the space of isometric shape deformations in terms
of novel string actuation modes. We demonstrate the validity of our ap-

Martin Kilian was supported by the Erwin Schrodinger fellowship J-3678-N25
awarded by the Austrian Science Fund (FWF), ERC StG-2013-335373, and the DFG-
Collaborative Research Center, TRR 109, ‘Discretization in Geometry and Dynamics’
through grant I-706-N26 of FWF. Aron Monszpart was supported by a Google PhD
Fellowship, the ERC Starting Grant SmartGeometry (StG-2013-335373), and Adobe
Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
$15.00

DOI: http://dx.doi.org/10.1145/3015460

proach by computing string actuation networks for a range of well known
crease patterns and testing their effectiveness on physical prototypes. All
the examples in this paper can be downloaded for personal use from
http://geometry.cs.ucl.ac.uk/projects/2017/string-actuated/.

CCS Concepts: «Computing methodologies — Shape modeling;

Additional Key Words and Phrases: curved folding, computational design,
string actuation, folding motion, computational Origami, fabrication

ACM Reference Format:
Kilian, M., Monszpart, A., Mitra, N. J., 2017. String Actuated Curved
Folded Surfaces. ACM Trans. Graph. 36, 3, Article 25 (March 2017), 13

pages.
DOI: http://dx.doi.org/10.1145/3015460

1. INTRODUCTION

Originally popularized by David Huffman [1976], curved folded
shapes continue to capture the interest and imagination of archi-
tects, artists, and hobbyists. The possibility of folding a set of sim-
ple curves, commonly referred to as creases, on a single flat sheet
into a complex freeform surface, without any joining or gluing, is
both intriguing and fascinating.

Artists and designers create such curved folded surfaces by a
combination of prior experience, trial-and-error, and prototyping
with paper or similar materials like felt for example. Instructions
for actually folding such surfaces are difficult to produce. The key
complexity comes from the requirement that multiple creases have

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

2 . Kilian, Monszpart, Mitra

to be folded simultaneously to arrive at the target shape. Otherwise,
the folding process can easily reach a ‘locked’ state where fur-
ther folding is not possible without producing undesirable creases
or damaging the sheet. This is different from classical Origami
employing only straight folds that are folded sequentially. Hence,
curved folding requires significant experience, expertise, and many
folding attempts (see [McArthur 2013]).

In case of architectural and industrial applications, it is highly
desirable to have an automated folding process. Unfortunately, very
little is known in this context. A rare exception is the particular
demonstrations from RoboFold [Epps 2014]. Such robotic folding,
however, strongly limits the type of folded surfaces due to space
required for robotic arm manipulation and also for placing suction
cups on the sheet. This greatly restricts wide spread usage of curved
folding and limits large-scale installations.

In this paper, we introduce string actuated curved folded surfaces
as a versatile yet simple contraption for folding complex curved
folded surfaces starting from their unfolding. We ask the question
of how to fold a given crease pattern (CP) by pulling a network of
strings. Given a CP, this requires answering: (i) what is the folded
shape and what is a corresponding folding motion; and, more im-
portantly, (ii) how to actuate the CP with easy-to-rig networks of
strings.

Our method works in two phases: first, it finds a folding motion
that takes a flat CP to a folded shape via an approximately isomet-
ric deformation; and then discovers a corresponding string network
(i.e., which surface points to connect) that can be actuated to pro-
duce the same folding sequence.

Technically, we introduce the notion of string actuation modes
as deformation vector fields that characterize surface deformations
when pulling a set of strings connecting pairs of surface points. We
then demonstrate how solving for a network of strings amounts to
expressing the desired folding sequence in terms of a minimal set of
time-consistent string actuation modes. The resultant solution gives
the final network of strings, which when pulled folds the flat sheet
to a curved folded surface, see Figure 1.

We demonstrate our approach by computing string actuation net-
works for a set of classical crease patterns and validate them by
physically constructing them. In summary, we introduce a string
actuated curved folded surface as a planar sheet augmented with a
network of strings which when pulled can bring the flat sheet to a
folded shape by simultaneously actuating multiple curved folds to
appropriately fold the surface.

2. RELATED WORK

We briefly survey the research efforts that are closely related to our
problem.

Computational fabrication. In recent years, with growing in-
terest in customized fabrication, various approaches have been pro-
posed for computational design and fabrication. Coros et al. [2013]
and Ceylan et al. [2013] support gear-driven computational rigging
for humanoid characters, Song et al. [2013] support design of self-
supporting reciprocal structures, Deuss et al. [2014] propose con-
struction sequences along with intermediate support structures for
constructing self-supporting structures, Garg et al. [2014] create
freeform surfaces supported by woven wires, Mellado et al. [2014]
explore construction sequences for easy installation of reciprocal
structures, Pérez et al. [2015] support design and fabrication of flex-
ible meshes, while Koo et al. [2016] propose design refinements to
reduce wastage of materials due to offcuts in plank-based furniture.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

More relevant to our work are the following two large scale fab-
rication efforts: Robofold® has been investigating ways to link in-
dustrial design with curved folding to get robots to fold surfaces
starting from flat metal sheets with creases scored using a laser cut-
ter, see www.robofold.com. They have been combining physical
simulation and experience from manually folding with paper to de-
sign actuation forces and folding paths for the suction-based robotic
arms. While the results have been fascinating, such a folding pro-
cedure limits closely folded surfaces and pleats as seen in many
curved folded shapes. The other notable effort is the impressive
case study 99 Failures Pavilion [Obuchi et al. 2013] that realize a
tensegrity structure by balancing torsion and compression forces in
sculptural objects. The project symbolizes a combination of com-
putation design, large scale physical prototyping, and realizing a
beautiful mixed material installation. Motivated by these examples
we propose an algorithm for computing string actuation networks
for given crease patterns.

Developable surfaces. In the context of differential geom-
etry, developable surfaces are well understood and there exists
a considerable body of work to integrate them with standard
CAGD techniques [Chu and Squin 2002; Aumann 2003] or using
special representations, such as rectifying developables [Bo and
Wang 2007]. Mesh-based approaches to developable surfaces in-
clude fitting developable surface patches to point clouds [Peternell
2004], minimizing Gaussian curvature for designing developable
Bézier patches [Guoliang and Yanan 2006], constructing a devel-
opable surface from a set of space curves [Rose et al. 2007], La-
guerre minimal surfaces [Pottmann et al. 2008], or creating devel-
opable surfaces from silhouette curves [Jung et al. 2015]. Kilian
et al. [2008] reconstruct scanned paper surfaces as Origami pat-
terns using curved folds, utilizing the reference surface to estimate
ruling directions. Later, Solomon et al. [2012] presented a subdi-
vision based modeling approach involving curved folds assuming
the crease pattern and corresponding crease angles as input. Tang et
al. [2015] encode developability conditions as nonlinear constraints
and solve for curved folded surfaces using a projection-based effi-
cient constraint solver for interactive modeling. These efforts typi-
cally assume access to target shapes, which are analyzed to initial-
ize direction of rulings, estimate the crease angles, or tessellate the
planar domain. Above approaches mainly focus on optimizing the
final folded shapes, rather than designing mechanisms to facilitate
the folding process, as is our goal.

Computational Origami. Origami continues to draw the atten-
tion (and time) of amateurs and skilled designers. In recent years
there has been significant interest in mapping the underlying math-
ematical constraints to computational methods in an effort to create
novel tools for designing new Origami shapes. For example, in the
context of traditional Origami involving straight creases, the widely
used TreeMaker package [Lang 2011] provides computational sup-
port to create classical Origami bases. This has resulted in design
and creation of very intricate folded shapes (see [McArthur 2013]
for many examples).

In the context of design of pleated shapes, i.e., paper sur-
faces exhibiting curved folds that are based on reflections [Mi-
tani and Igarashi 2011], column-shaped structures [Mitani 2012],
and surfaces of revolution [Mitani 2009] have been investi-
gated. Tachi [2010] develop an algorithm to ‘Origamize’ an input
freeform shape into a polyhedral surface that can then be tuck-
folded from a sheet of paper. Li et al. [2010] propose a compu-
tational framework to help create paper popups by allowing cutting
and folding. For a detailed exposition on geometric folding, we re-

String Actuated Curved Folded Surfaces . 3

Fig. 2: A sequence of shapes along the target deformation .S, starting with the planar CP, are shown in the top row. Red crease curves indicate
mountain folds. Boundary curves and creases which have not been given a fold orientation are shown in gray. The bottom row shows a
corresponding string actuated folding sequence. Threads used for actuation are shown in Figure 5, showing the model from below.

fer the reader to the now classic reference [Demaine and O’ Rourke
2007]. Tachi [2013] introduce kinematic Origami by investigating
design exploration governed by the equilibrium of forces from the
elastic bending of each panel. The resultant shapes are intricate and
fascinating, but restricted to particular shape families whose math-
ematical characteristics are directly exploited in these modeling se-
tups. Zhu et al. [2013] develop an interactive system to design and
explore thin-plate forms through fold fields, a generalization of dis-
crete fold graphs in Origami. They first approximate a folded sur-
face by assembling locally folded patches and later refine using a
nonlinear physical simulation. In contrast, beyond efficiently com-
puting a folding sequence from a CP, we focus on designing an
actuation sequence to achieve such a folding path.

Geometric deformation. In the wider context of geometry pro-
cessing, surface modeling and deformation techniques remain ac-
tive research topics. One of the most widely used methods pre-
serves Laplacian coordinates to retain surface details during sur-
face modeling and editing tasks [Sorkine et al. 2004]. The work has
later been generalized to the local-global as-rigid-as-possible sur-
face deformation method developed by Sorkine and Alexa [2007].
Relevant to our goal are methods for constrained modeling and
deformation (e.g., [Yang et al. 2011]) that aim to achieve or pre-
serve certain surface characteristics (see the survey by [Botsch and
Sorkine 2008]). Skouras et al. [2013] investigate physical defor-
mation of elastic shapes by pulling along designed threads using
finite elements to analyze the internal elastic behavior of the (fab-
ricated) models. In other efforts, isometric deformations have been
investigated as geodesics in appropriate shape spaces [Kilian et al.
2007; Wirth et al. 2011], or in the context of bending energies in the
PriMo setup [Botsch et al. 2006]. In our implementation we extend
on the PriMo approach to handle creases and improve treatment of
near isometric deformations. Further, we model the effect of con-
tracting a string network by proposing a variant that captures the
resultant deformation behavior without having to explicitly specify
target handle positions (which are unknown).

Shell models. Algorithms have also been proposed to explic-
itly model shell structures [Grinspun et al. 2003; Burgoon et al.
2006; Heeren et al. 2014]. Recently, modeling deformation behav-
ior of paper in the context of thin shells has been explored by
Narain et al. [2013]. Schreck et al. [2015] propose a hybrid surface
model to support crumpling behavior for interactive paper simula-
tion while explicitly accounting for isometric deformations. How-

ever, such methods do not help in predicting a folded shape start-
ing only from an input crease pattern, as is our goal. Specifically,
since the required folding sequence is also unknown, and hence
nearly impossible to guess what sequence of forces to apply, of-
ten simultaneously involving multiple creases, in order to reach the
final shape. Thus, having access to an accurate deformation model
by itself does not solve our problem. Further, even if the exact force
sequences can be established, they do not necessarily simplify the
manual folding of a physical crease pattern.

3. OVERVIEW

We consider shapes defined by two-dimensional crease patterns
(CP) that exhibit curved and straight creases, such as the ones
shown in the top left of Figures 1 and 2. Given such a pattern, we
compute a sparse string graph on top of the CP such that a physi-
cal realization of the CP (as a sheet of paper, aluminum, or similar
thin sheet material) and the graph (with edges realized as threads
attached to the sheet) lifts the flat sheet to the corresponding three-
dimensional shape when the threads are pulled (Figure 2, bottom).

Our key insight is that the effect of any single string on the de-
formation of the developable surface can be studied independently,
and these deformations can be linearly combined to yield a local es-
timate of how the surface will evolve in time through shape space
under the influence of a network of strings. Since we can a priori
extract the desired trajectory of the surface in space, the nonlinear
deformation due to string contraction can be re-linearized at each
point along that trajectory and solved for a consistent network of
strings across time to realize a desired curved folding.

To this end, we first compute a folding motion S that serves as
the target deformation (Figure 2, top row). Even though this de-
formation is driven by fold angles we only need a valid moun-
tain/valley assignment of folds to compute it, while actual fold an-
gles are determined by the algorithm. Given such a target deforma-
tion sequence, we start from a dense string graph whose vertices
are sampled from the CP. Based on local analysis of the deforma-
tion induced by individual strings — so called actuation modes — we
pick the strings whose combined deformation locally best approx-
imates the given target motion. To arrive at a consistent selection
of strings that can drive the deformation globally, we formulate the
selection process as an £y-sparsity optimization problem.

We realize the computed results as paper or aluminum models.
To make the model fold without buckling, creases are scored or

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

4 . Kilian, Monszpart, Mitra

etched and precreased, a commonly applied technique when fold-
ing Origami tessellations to achieve high quality results. Finally,
threads are fit to the model by punching holes at the computed at-
tachment points.

4. STRING ACTUATED FOLDING

For the time being we assume that we are given a target deforma-
tion, i.e., a folding motion,

S:[0,1]xU — R3
(t,u) — S(t,u)

that assigns each point u € U C R? of the flat sheet its time depen-
dent location S(t, u) in space, see Figure 2 for an example. Details
on how to compute such a deformation sequence are given in Sec-
tion 6. For fixed value of ¢ each S(¢t,u) : U — R3 is a surface
parametrization in the usual sense. We abuse notation by writing
S(t) when referring to the shape at time ¢. For now, assuming ac-
cess to the folding motion .S, we argue in the space of isometric
deformations. First, we show how to solve the local problem of se-
lecting a set of strings that facilitate the transition from S(t) to a
close-by shape S(t + At) for small time steps At along the target
folding motion.

Local analysis. Atevery instant ¢ € [0, 1] of time the infinitesi-
mal deformation of the surface S(t) is described by the vector field

X:[0,1] xU — R?

(t,u) = X (t,u) := (Z—f(t,u),

which assigns every point u € U of the planar sheet its time de-
pendent velocity vector X (¢, u). Again we just write X (¢) to refer
to the vector field at time ¢ as a whole. Considering S as a curve
in the space of developable surfaces, X (t) is the tangent vector to
this curve at time ¢, see Figure 3. This vector field describes the
movement of every surface point during folding.

We decompose X (t) into a finite set of deformation fields X (t)
that correspond to infinitesimal deformations induced by a set of
strings attached to the surface S(t). Note that the term string al-
ways refers to a connection between exactly two surface points. Let
u,;,v; € U be two points to be joined by a string. Attaching this
string to S(¢) yields the line segment s;(¢) = [S(¢,u;), S(¢, v;)].
Tightening this string induces a deformation of S(t). We refer to
the corresponding deformation field X;(¢) as the actuation mode
induced by the string s;(¢). Such a string induced deformation is
consistent with the target deformation if the corresponding mode
X (t) is similar to X (¢). Referring to Figure 3, the tangent vectors
X (t) and X, (t) have to point in the same direction.

In general a single string is not sufficient to approximate the tar-
get deformation reasonably well. Fidelity can be improved by su-
perposing modes of more than one string. Locally, i.e., at time ¢,
tightening such strings should then induce a deformation similar
to the target motion. Hence, at any given time ¢, we are looking
for a set of strings s;(¢) such that the linear superposition of the
corresponding actuation modes X;(¢) approximates the given de-
formation field X (¢) while minimizing the total number of used
strings. To express this goal mathematically, let A(t) = (Xi(t)) be
a vector of weights, one for each mode. To not overload formulas,
we drop the parameter ¢ from notation for now since its value is
fixed during local considerations.

Given a set of candidate strings S = {s; }*,, we formulate the
problem of finding a minimal subset S, of S consistent with the

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

Fig. 3: A folding sequence describes a curve .S in the space of developable
surfaces. We locally decompose the deformation field X (¢) into a set of
modes X;(t), each of which can be realized physically as a contracting
thread attached to the surface S(t).

target deformation at time ¢ as

* __ . _ Y12
A" = argmin |:w||A|0+ X =D NX|] (1)

i=1

with
IX (1) = / /U 1X (£, w)|2 du @

and set S, = {s; € § : X\ # 0}. Ways of initializing S are
described later. The £y-‘norm’ is used to count the number of ac-
tive strings. The weight w controls the trade-off between sparsity
of the solution and fidelity. Note that we have the natural constraint
A; > 0, since strings can only pull but not push. In order to apply
numerical optimization techniques to (1), we model the ¢,-‘norm’
by introducing auxiliary variables &; € [0, 1] as proposed in [Feng
et al. 2013]. Enforcing the complementary conditions A\;§; = O,
we can replace [|A]|o in (1) with >, (1 — &;). In other words, the
value of —¢; indicates whether to use string s; or not. With those
observations problem (1) can now be formulated as

m m

3 _ . — . |2
Iél,l){l W;(l §Z)+HX ;)‘zXzH (3)
subject to
0<& <1, XN&=0, 0<X;, i=1,...,m.

The binary selection vector =& = (—¢;) tells us which strings of S
to pull to get from S(t) to the close-by shape S(t + At).

Global solution. Our goal is to identify a set of strings that can
drive the whole folding motion. Independently computing solutions
at different times ¢;, j = 1,...,n, as outlined in the previous para-
graph, will not yield a globally minimal number of strings, since the
optimization is not coupled across time in any way. Nevertheless,
the idea behind formulation (3) can be extended to achieve such a
coupling. Let X;; := X;(¢;) be the deformation field induced by
S; (t]'), >\ij =)\, (tj) its Welght and

05
7ot
the target deformation field at time ¢;. By construction, the coeffi-
cient vector A as well as the selection vector £ depend on time. This

implies that a string can appear/disappear during folding, which is
physically not possible. Hence, the proper set of time independent

(tj)7 j:I,...,n

Fig. 4: Input strings S to global optimization (top left) and three solutions
obtained by iteratively removing a discovered solution Sx from S and then
rerunning the optimization.

complementary conditions is given as

57;)\2']', i:l,...,m,j:l,...,n, (4)
which means that there is only one selection variable &; for all
strings s;(t;), 7 = 1,...,n, making the vector £ time indepen-

dent. Letting £ and A be the vectors that result from concatenating
all the &; and \;;, leaves us with a total of m + nm variables. The
global problem can now be formulated as

m n

1?1){1 WY (1=&)+ D I1X; = > i X2 (&)
’ i=1 j=1 i=1

subject to

Ogéz < 17)‘7,]52 :0, OS)\ij i:17~"7m7j:17~"7n'
Figure 4 shows the result of global optimization for the sequence
S shown in Figure 2 using n = 3 poses S(0.25), S(0.5), S(0.75)
and the initial set S of m = 66 strings shown in the upper left
corner. The solution S, = {a, b} of (5) corresponding to w = 0.1
are the two strings shown in #1. Note that solutions will only grow
when reducing w since the best strings are picked first by the least
squares fitting term. In order to further explore the space of solu-
tions we reran the optimization with & = S — S, as initial set
of strings, i.e., we removed the current solution from the search
space. Optimization yields the solution shown in #2. A final run
with §” = & — S results in the strings shown in #3. The multi-
tude of extracted solutions illustrates the non-uniqueness of a valid
stringing. The bottom row of Figure 2 shows the string actuated
folding motion corresponding to solution #1, Figure 5 shows the
corresponding physical rigging.

A note on symmetry. Note that we obtain symmetric solutions
without explicit symmetry terms in (5). This behavior, favoring
symmetric solutions, was also observed in later experiments (Sec-
tion 5). Since this is only empiric evidence, formulation (5) can be
explicitly biased towards symmetric solutions by adjusting the se-
lection vector £ appropriately: Once symmetries in the pattern are
detected, using e.g. [Mitra et al. 2006], £ is contracted such that all
symmetric modes use the same entry of £ as their selection vari-
able. Intuitively this means that using a mode that is symmetric to
an already active mode comes at no cost.

Initialization. In order to solve (5) we need to specify the set S
of candidate strings. Since the optimization is responsible for the

String Actuated Curved Folded Surfaces . 5

Fig. 5: Rigging a CP. Holes are punched at actuation point locations. All
threads are collected at an anchor point (hole in the plexiglass pane). Actu-
ation point locations may be reinforced with metal eyelets as shown.

actual selection of strings, we only need to generate a reasonable
sampling of all possible strings. We refer to the endpoints of a string
as actuation points. While it is possible to use a uniform sampling .A
of the sheet as actuation points and then consider the set of all such
pairs as candidate strings S, it is more efficient to start with a more
conservative choice that is motivated by practical considerations.

We distinguish between three types of potential actuation points:
(i) crease curve intersection points, (ii) arbitrary points on crease
curves, and finally (iii) all surface points. The main difference
among these points is the amount of force that can be applied be-
fore unwanted wrinkles form and the paper starts to crumple. Arbi-
trary surface points are the most undesirable choice as the surface
is prone to buckle when applying force at such a point. Hence we
restrict the search for actuation points to types (i) and (ii) only. In
practice, we obtain actuation points by sampling crease curves ac-
cording to a prescribed sampling strategy. In the examples shown in
the paper, we worked with equidistant crease sampling and iterative
midpoint sampling. Further, we always included crease endpoints
and intersection points in the sampling.

Given the set A of actuation points we set S = A x A. Fig-
ure 4 shows the input strings S when sampling crease curves at their
midpoints. Since we know the target deformation, the set S can be
further pruned. Specifically, during folding some strings might in-
tersect the surface and hence become invalid. We remove all such
invalid strings before computing a solution to (5). Note that strings
may also collide with each other during folding. Although this can
be detected before running the optimization we do not remove such
strings from S since this would restrict the search space unnecessar-
ily. Instead we check the extracted solutions for such problem and
discard solutions if necessary. Most of the times one can get around
string-string collision by correctly layering the strings during rig-
ging, although we do not explicitly model this in our optimization.
The set S is conveniently stored as a graph G with vertex set A.
The value of &; can then be interpreted as a binary edge weight.

Rigging. While the vector £ gives a ‘yes/no’” answer on whether
to use a string at all, the vector A; = (A;;)72, tells us about the
relative importance of a string s; at time ¢;. This information can
be used to define a global schedule of string activation, i.e., when
and how much to pull a given string. One option is to seek multi-
ple actuations to pull the strings individually at different rates, but
would require an elaborate mechanical setup. Instead we aim for
the minimal number of loose thread ends a user has to pull with-
out thinking of any scheduling. Although we aim for a minimal
number of strings, using a separate physical thread for each actu-
ation mode can be cumbersome in practice. In order to reduce the
number of such threads we connect adjacent strings to obtain a set
of loops £ = {L}. Each such loop is defined as an ordered set
of strings and realized by a single thread traversing the strings in

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

6 . Kilian, Monszpart, Mitra

Initialization

tesselate domain U
compute folding motion S

Sampling
S;=58(t;),j=1,...,n
X; =X(tj),j=1,...,n
sample U ~ A, § = A%, m := S|
compute X;;j,i=1,...m, 5=1,...,n

Optimization
(€, A) = argmin (5)

Extract Solution
S*:{siES:gi:O}

Failure

reduce w

Rigging
connect strings to loops L
simulate folding ~» S, and detect props

Fig. 6: Main steps to compute a stringing that drives the folding of a planar
sheet according to a given crease pattern. The optimization loop terminates
once a given number of solutions is extracted or after repeated failure.

the given order. Referring to Figure 4 solution #1 consists of two
loops Ly = {a} and Ly = {b}, each comprising of one string.
Solution #2 forms a single loop L, = {¢, d, e, f}. Solution #3 con-
sists of two loops Ly = {g, h, 4,5} and Ly = {k,l,m,n}, each of
which comprises of four strings. Note that a loop does not need to
be closed in the sense that it starts and ends at the same actuation
point, i.e., the polyline of strings can be open. All threads are col-
lected at anchor points, any open loop is closed at such an anchor,
see Figure 5. We extract loops by tracing strings, starting at an actu-
ation point until all actuation points are visited. At actuation points
of valence greater than two the successor string is chosen randomly
among all adjacent strings that have not been visited. Whenever the
folded shape sits on a plane we use a single anchor point located
beneath the model, realized as a hole in that plane. For better visu-
alization we used a plastic tube to collect the strings in Figures 1
and 10. The tube is not moving when pulling and its tip acts as
anchor point.

Defining the actuation mode of a loop is straight forward and can
be handled seamlessly in our optimization. Nonetheless we do not
consider loops during global optimization to avoid combinatorial
explosion (we would have to consider all possible loops contained
in the initial set S) and rather introduce them in a post process-
ing step. As mentioned earlier, when combining strings into loops
we can no longer exploit the know actuation weights)\;;. Instead
we check in a simulation step whether the surface’s resistance to
bending can be used for implicit scheduling as described next.

Simulation. Since the rigging, including the loops, was derived
from local analysis, we next simulate the induced string driven fold-

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

ing motion to validate the solution. If the simulation fails, the spar-
sity weight w in (5) is reduced to allow for more strings. We deter-
mine success of folding visually. The decision process could be au-
tomated by computing the Hausdorff distance [Hausdorff 1957] be-
tween shapes of the target motion and the simulated folding motion
at corresponding times and rejecting a solution if a given threshold
on the shape distance is exceeded. During simulation, instead of
considering lengths of each individual string, we consider the to-
tal length [;, of each loop L; € L since we do not have control
over those lengths when realizing a loop as a single thread. Simu-
lation is driven by prescribing the length of each loop. Specifically,
starting from the actual length [{ of a loop in the unfolded posi-
tion, we model its contraction with a shortening parameter Alj.
The prescribed length is iteratively defined as I} = i — Al.
In the shown examples we set Aly, = 0.01 - 19, i.e., the length of
a loop is reduced by 1% of its initial length in each iteration. The
value of Al roughly corresponds to how fast the corresponding
thread is pulled. Figure 1 shows simulation results as well as actual
string based folding where all the strings are realized as individual
threads.

Props. Simulation of string based folding results in a folding
sequence S(t). We can compare the length progression of a string
s; € S, in both sequences by looking at the trajectories of the line
segments [S(¢,u;), S(¢,v;)] and [S(¢, u;), S(¢, v;)]. To faithfully
reproduce the target deformation S the progression of correspond-
ing string lengths should be roughly equal in both deformations. If,
relative to the deformation S(¢), the length of a string s; becomes
shorter than it should be according to S(¢), we need to realize a
length constraint for the thread segment that corresponds to s;. For
manual actuation we only compare string lengths at time ¢t = 1.
In this simplified situation a length constraint can be realized by
enclosing the corresponding thread segment in a thin plastic tube
during the physical rigging process that prevents the segment from
becoming too short, see Figure 8 for an example. Note that this is
different from slack that might accumulate in a string segment. As
long as segments do not become too short in the final pose, slack is
automatically reeled in during actuation.

Finally, Figure 6 gives a high level overview of the processing
pipeline described in this section. Details on mode computation,
optimization and simulation can be found in Section 6.

5. RESULTS

We tested our algorithm on a number of freely available crease pat-
terns. After computing the strings we used paper and aluminum
sheets to realize the models. In the case of paper the crease curves
were either scored manually or by using a laser cutter. In either
case, they are manually precreased after scoring. Precreasing means
folding each crease once according to fold orientation and then un-
folding again. Since precreasing is done one fold at a time, no co-
ordinated folding of several creases is required. While practition-
ers do this to achieve high folding accuracy, weakening the pa-
per along creases in this way is necessary to facilitate foldability
in our setting. Preparing the CP in this way was not possible for
the aluminum sheets due to material fatigue. Aluminum can only
be brought into a folded shape once; further interaction, such as
unfolding, splits the sheet along crease curves. For this reason we
laminated the aluminum sheet after scoring and before precreasing.

Actuation points are realized by punching holes in the CP. Eye-
lets can be used to reinforce actuation points, reduce the wear on
the sheet and increase the durability of the model, see Figure 5.
Threads were realized using colored floss and nylon twine. While

we did not experience problems with friction, the use of eyelets
makes actuation very smooth.

Please note for all the figures that the meaning of mountain and
valley folds is reversed when viewing the sheet from below. It is
only important that all red curves fold in the same direction and
all blue curves fold the other way — absolute fold orientation is not
essential. If not mentioned otherwise we used n = 10 poses along
the target folding motion.

Asimov Chair. The Asimov chair concept (Figure 8) is based
on a CP designed by Benjamin Spoth and owned by Joris Laarman
Lab. The top row of Figure 8 shows the set S of 210 initial strings
as well as two solutions that were extracted using the iterative pro-
cedure described in Section 4. In #1 we have two loops L; = {a}
and Ly = {b}, each consisting of a single string; while in #2 all
strings are connected to form a single loop L = {c,d, e, f, g}. The
second row shows the target shape S(1) as well as the final poses of
simulated string actuated folding. Comparing the target shape with
the simulated results reveals rather large deviations. The simulation
results are confirmed by rigging the CP accordingly: For solution
#1 the blue and orange thread were collected in front of the chair
in a plastic tube that acts as an anchor point (this is not a prop), in
case of #2 threads were collected at the point marked A at the base
of the chair. Comparison of string lengths indicates that the ratio of
lengths of strings a and b of solution #1 is different from the target
value. Strings c, g of solution #2 became too short in comparison
with the lengths of strings e, d, f. Since #1 consists of two sepa-
rate loops we can either insert props or just stop pulling once the
proper lengths are reached. The result when inserting props of the
proper length is shown in Figure 8.1. For #2 we added props of the
appropriate length around thread segments ¢ and g. Corresponding
folding results are shown in Figure 8.2 and 8.3. Finally, Figure 7
shows the full folding simulation according to solution #2. Com-
putationally props are realized as length constraints on the strings
c and g. The bottom row shows snapshots along the string actuated
folding motion using the props shown in 8.3.

Apricot. The Apricot CP is based on a design by Jun Mitani.
Figure 9 shows the computed target deformation (top row). The ini-
tial set S of 120 strings and three solutions are shown in Figure 11.
Note that the final shape of stringing #3 is given by S(0.75). At
this time the flaps touch and the distance of actuation points cannot
be shortened any more by pulling the strings without damaging the
sheet. The reason for considering stringing #3 is explained below.

String Actuated Curved Folded Surfaces . 7

Each solution can be realized as a single loop L = {a, b, ¢, d, e}.
Figure 10 shows a simulation of string actuated folding when us-
ing a single thread to realize solution #1. The simulated behavior is
reproduced by the physical model. This rather large deviation from
the target deformation illustrates the effect of using a single thread
without control over individual string lengths versus using a sepa-
rate thread for each string. Using one thread for each string results
in the expected deformation behavior, see Figure 1. To make the CP
fold such that the base of the apricot ends up sitting on the table-
top as shown in Figure 9 we use the stringing as shown in the top
right images of Figure 11, i.e., solution #1 (orange) and solution
#3 (blue) together. This is necessary because of the interaction of
the CP with the tabletop. The actuation points of solution #3 need
to slide on the table in order for the flaps to move underneath the
model. This cannot be achieved with solution #1 or #2 since the ac-
tuating thread will slide on the table when pulling downwards and
the points A, B, C, D, E move well below this level during folding
(Figure 11, third row), i.e., the tabletop blocks the CP from folding.
We use solution #3 to make the points A, B, C, D, E slide on the
table and #1 to finish the folding process.

Nautilus. The Nautilus shape, see Figure 12, is based on a
sphere CP, i.e., a pattern that folds to a spherical shape with parts
bordered by curved folds mapping to globe gores. The rectangular
sphere CP is warped to a trapezoid as shown in Figure 13. The
warped pattern folds to a spiral shape instead of a sphere. This
CP contains a lot of repetition, hence, for efficient computation,
we analyzed the deformation behavior on a section of 6 consecu-
tive segments, where a segment is defined as the region between
two consecutive mountain folds, see Figure 13. The complete CP
(Figure 12) consists of 15 such segments. The target deformation
of such a section of the CP is shown in Figure 13. The set S of
325 candidate strings is shown in Figure 14 together with the ex-
tracted solution. Note, that we show the strings in a folded pose
since a lot of them would be hard to see in the unfolded position
as they are parallel to edges of the CP. The strings connecting the
end points of valley folds (blue) as proposed in solution #1 are not
fit for actual fabrication, considering that the complete CP is a pa-
per strip about 2 meters long. We removed those long edges from
S to arrive at solution #2 that can easily be adapted to any num-
ber of segments. Figure 13 shows the string driven folding result
employing solution #2. All strings a; and a; have been realized
as individual threads whereas the strings b; and b; are connected to

Fig. 7: The top row shows the result of simulated string actuated folding employing a length constraint on strings ¢ and g. We realized those
length constraints by enclosing the corresponding thread segments in plastic tubes of the appropriate length. The folding result without props
is shown in Figure 8, third row, right.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

8 . Kilian, Monszpart, Mitra

form two loops L = {by,bs,...}and L = {by, b, ... }. The com-
plete model (Figure 12) was rigged using a total of 4 threads cor-
responding to the loops {a1,as, ...}, {@1,a2,...}, {b1,b2,...},
and {b1, b, ... }. Using only 4 threads we cannot ensure uniform
contraction of strings. This partly explains the difference in tar-
get deformation and string folded deformation. Additionally, such
a model has a considerable self weight, even if only made of paper.

6. IMPLEMENTATION DETAILS

In the following sections, we present our approach to discretize the
concepts introduced in Section 4.

6.1 Global Optimization

Presenting problems (3) and (5) directly to a constrained solver re-
quires a good initialization of the A;; (one can set §; = 0). Since
such an initialization is not available, considering a sequence of re-
laxed problems provides good convergence properties (see [Feng
et al. 2013]). To this end, we replace the complementary conditions

—e< &N <e¢ (6)

with € > 0 and gradually reduce the value of ¢ starting from 0.1.
Since the actual values of \;; are not used, it is much easier to in-

Fig. 8: Initial string graph S for the Asimov chair concept and two solu-
tions. Starting from the left, the second row shows the target shape and the
simulated string driven folding results using #1 and #2, respectively. Actual
folding results confirm the simulation (third row). The fourth row shows
final folding results and how props are used for the stringing of #1 and #2.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

terpret the parameter w in (5) when all the deformation fields are
normalized. Intuitively, normalized modes correspond to uniformly
contracting strings. In that case the maximum approximation error
for each time ¢; is || X ;|| = 1 and the maximum global approxima-
tion error equals n. Hence, depending on the desired sparsity of the
solution we used values of w € (0, 1].

6.2 Deformation Model

Isometric deformations of triangle meshes are characterized by
rigidly transforming triangles. Such deformations are referred to
as as-rigid-as-possible transformations [Sorkine and Alexa 2007].
We start from a planar mesh with faces Ay and define isomor-
phic 3-dimensional shapes in terms of rigid face transformations
T}.. Transformed vertex coordinates are recovered by averaging as

pi=— Z Ti(py), mi={k:ic A}l Q)

n;
Y ke

In the following sections, any triangle related properties, such as
vertices, normals, edges, etc. that carry a superscript k refer to prop-
erties of the triangle Ay.

To penalize the distortion of transformed triangles we want the
Tk (pf) in (7) to be as close as possible before averaging. We
achieve this by penalizing the gap between neighboring triangles
A; and A;. We parametrize edges as e (u) = (1 — u)p’ + uq’
and let

A= [(T @) a®

which can be considered as the energy stored in an elastic strip
that joins both triangles. Deformations that minimize the weighted
sum Y a;; A;; subject to a sparse set of boundary conditions on
some transformations 7T} result in as-rigid-as-possible deforma-
tions without any smoothness properties. This idea can be general-
ized to model the bending energy of a sheet by enclosing the faces
of the initially flat mesh within a thin layer of prisms, see [Botsch
et al. 2006]. Each face of the mesh gives rise to such a prism by
extruding it along its normal (in both directions), see Figure 15.
The corresponding face transformation acts on the face’s prism, in-
troducing a gap between prism faces that were perfectly aligned in
the planar state. To measure this gap, we parameterize a prism face
along the edge (p?, q') € A; as
Fi(u,0) = (1 =) ((1 - wp’ +uq’)
- ©
+ v((l —u)pl + uqﬂr)

with pi. = p® & hn’, n® the normal of A; and h the height of the
prism. Analogous to (8) we define

Ei; = //[0’1]2 (Ti(Fi(U> v)) — Tj(F9 (u, v)))2dudv. (10)

The value of Ej;; can be interpreted as the energy stored inside
an elastic material that joins adjacent prism faces. The energy
E =) w;;E;; penalizes both stretching and bending. For our
application, penalizing stretching is more important while we use
bending mainly as a regularizer. For this reason we use

A ((Tw) = Zaiinj + /\ZwijEm Aefo,1) db

as our global surface energy functional. We use the values proposed
in [Botsch et al. 2006] for a,; and w;; along with A = 0.1.

We consider two main drivers during folding: (i) fold angles
along crease curves, when computing the target deformation S’; and
(ii) by prescribing the length of a thread that is attached to certain
surface points during simulation S. Both formulations use (11) as
surface bending energy. For angle-based folding, we modify the
prism face defining normal vectors along crease edges, while for
string actuation we add a thread length term to (11). The effect of
precreasing, i.e., weakening the sheet along creases, is modeled by
reducing the value of h at crease edges of the mesh.

Quadratic optimization. Given a sparse set of constrained
faces or vertices, we compute the per-face transformations 7}, by
converting the non-linear problem of minimizing

fA((Tk)) = ZaijAz‘j + /\Zquij (12)

to a sequence of quadratic problems using instantaneous kinemat-
ics [Pottmann et al. 2002]. Specifically, in each iteration, we ap-
proximate the action of T}, in the next iteration as,

T, ' (p) = T}.(p) + ¢}, x Ti(p) + €. (13)

Substituting (13) into (8) and (10) converts (12) into a quadratic
function of the form f3((ci,c;)) in the unknowns (ci,ci),
which are computed by solving the linear system V2 fi(0) - ¢ =

String Actuated Curved Folded Surfaces . 9

—V f1(0). Having solved for (cj,,c},), we compute a correspond-
ing helical motion R}, [Pottmann and Wallner 2001] and update the
face transformation as Tyt = Ri o T}.

Computing a folding sequence. To model the process of fold-
ing along crease edges we use the prism-based deformation model
described above to prescribe fold angles in a least squares fashion.
Let €' = (p’,q’) € A; be oriented such that A; is to the left of
the edge, and x® be the unit vector parallel to g° — p* of the same
orientation. We define the crease angle across e’ with respect to the
coordinate system (n® x x*,n?) by replacing n* with

n‘(a) = cos(a)n® — sin(a)(n® x x?) (14)

when evaluating (9). The modified normal defines a mountain (val-
ley) fold for positive (negative) values of «, see Figure 15. In prac-
tice, we use a more symmetric approach and incline the normal
vectors on both sides of the edge by «/2. In all the presented ex-
amples, we started from oo = 0 and increased « in 1° steps.

While other thin shell deformation models like [Grinspun et al.
2003] can be used, we chose to base our implementation on [Botsch
et al. 2006] because fold angles and varying paper thickness —
needed to model precreasing — can easily be integrated.

Fig. 9: Folding the Apricot. The target deformation is shown in the top row. String acuated folding (bottom row) employs solutions #1 and
#3 as shown in the top right images of Figure 11. The two nylon threads are pulled downwards through a hole in the tabletop.

Fig. 10: Simulation of string actuated folding and corresponding physical deformation. We use a single thread, i.e., one loop, to realize
solution #1. Folding is not only guided by the thread but also by the interaction of the CP with itself until it locks into place. Compare with
Figure 1 where we used 5 loops, i.e., one thread per string of solution #1.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

10

Kilian, Monszpart, Mitra

Fig. 11: Initial string graph (top left) and three solutions. In all cases the
stringing is given as {a, b, ¢, d, e}. The top right shows the rigged CP and
the partially folded CP viewed from below. The last row shows the different
planes in which the strings of solution #1 and #3 move during folding.

String actuated deformation. We encode a stringing as a
graph G. Edges of G that define the loop L, are labeled with the
integer v. Extracting those edges gives rise to a subgraph G,. The
length of the loop L, is then given as the sum of the edge lengths of
G,,. We achieve shortening of the corresponding thread by prescrib-
ing a length value [,,. However, instead of setting thread lengths as
equality constraints, we use the terms

Lo (@) = ((X Ioe-pil)-1)" a9

(4,5)€Gv

Note that in contrast to (11) the expression Lg, is not quadratic
when substituting (13). Therefore we replace it with its second or-
der Taylor expansion. This results in a system of the form,

(V213(0) + V2Lg, (0))e = = (V/3(0) + VL, (0) (16)

that is solved in each iteration. We use IPOPT [Wichter and Biegler
2006] with PARDISO [Kuzmin et al. 2013] as solvers.

Mode computation. Given a partially folded CP, i.e., face
transformations (7)) and actuation points p;, q; we compute the
corresponding mode by considering the string length term

L) = (Ipe —ail) ~ 1)

where I; = ||p; — q;|| — Al; is the new target length and Al; the
amount of length reduction. The deformation mode X; is obtained
as the solution of the corresponding linear system (16).

Handling self-collision. We detect self collisions during fold-
ing as follows. If a collision occurs, i.e., a vertex p; penetrates a
face Ay we add a barrier hyperplane defined by the plane of the
triangle Ay. In terms of triangle transformations this plane corre-
sponds to the zy-plane under the transformation of Aj. With b*
the barycenter of Ay, we add one of the following linear inequality

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

constraints

rﬁ%m—b%{ig a”
for each p] in the right hand side of (7) depending on which side
of A}, the vertex p; was before collision. Note that n* and bF*
get transformed by T}, (respectively (cg, Cx)) like vertices of Ay,
cf. (13). Since n” is a vector only the rotation part of T}, (repre-
sented by cy) is relevant.

6.3 Meshing

We use a triangle mesh as the underlying representation of the
deforming sheet. The crease curves defined by the CP are rep-
resented as edge polylines of this mesh. We initialize the planar
mesh by computing a constrained Delaunay triangulation of the set
C = {C;} of crease curves [Shewchuk 1996]. The straight line
graph that is used as input is generated by equidistantly sampling
the curves C; according to some sampling distance €. We use € as
a hint for the desired edge length throughout the mesh. After com-
puting the constrained Delaunay triangulation, we run a remeshing
step that terminates once all the edge lengths conform to the length
hint. Specifically, we encode the edge length information as a sizing
field [Bossen and Heckbert 1996] in the form of symmetric positive
definite matrices @) assigned to vertices v of the mesh. The matri-
ces () are update during deformation using curvature information
(see e.g. [Narain et al. 2012]) and remeshing is applied as described
in the next paragraph.

Remeshing. Given the @, we employ the remeshing algorithm
described in [Bossen and Heckbert 1996] that consists of three ba-
sic steps: (i) vertex relocation, (ii) vertex deletion, and (iii) edge
splits. After each basic operation the local neighborhood of the af-
fected vertex is retriangulated using the Delaunay edge flip con-
dition relative to the sizing field. Sizing field values for newly in-
serted vertices are computed as an average of neighboring values.
Additionally, we take special care at the crease edges and crease
vertices: A crease edge may never be flipped. Further, if a crease
edge is split, the new vertex is projected onto the crease. Crease
vertices are allowed to move only along the corresponding crease,
while crease intersection points are not allowed to move at all.

Figure 16 shows the change over time of the sizing field and the
corresponding mesh for the example of Figure 2. Unit balls with re-
spect to the metric defined by @), are shown as ellipses. The mesh
stays isotropic in the center, which remains planar during defor-
mation, while all other triangles change their shape and orientation
according to curvature. In this way we maintain mesh quality while
avoiding unnecessarily dense meshes.

7. CONCLUSION

We presented string actuated curved folded surfaces as crease pat-
terns rigged with networks of strings, which when pulled lift the
planar sheets to freeform shapes. The results are computational
mechanisms to facilitate folding of crease patterns, a process that
has so far been largely restricted to manual folding. This opens
up possibilities to realize movable lightweight large-scale freeform
surfaces without requiring complex manual or robotic actuation. As
key technical enabler, we introduced the notion of string actuation
modes, and used them to select actuation points and decide how to
string these points together.

Limitations. Not every curved folded shape is foldable using
strings. Depending on the folding motion there might be no set of

String Actuated Curved Folded Surfaces . 11

Fig. 12: Target deformation of the Nautilus CP (top row) and string driven folding motion induced by extending solution #2 (Figure 14) of
a 6 segment section to the complete pattern consisting of 15 segments. The paper model is made from 5 sheets of A3 drawing paper. Each
sheet holds 3 segments, sheets are joined along the boundary mountain folds using masking tape (yellow).

CE - X

\.\
-

Fig. 15: Notation for surface energy and crease angles. In the above a de-
fines a valley fold once prism faces are aligned.

Fig. 13: Target folding motion for a 6 segment section of the Nautilus crease
pattern. The bottom row shows a rigged paper model of the pattern.

Fig. 16: Visualizing the sizing field used during remeshing as ellipses,
which correspond to the unit ball in the metric defined by the matrices Q- .
The left hand image shows the initial isotropic meshing of the CP at time
t = 0, while the right hand side shows the mesh at time ¢t = 1.

actuating strings that does not intersect the partially folded shape
at some point. In other words, such a shape cannot be folded using
only tensile forces.

Our simulation does not consider gravity, i.e, the self-weight of
the shape. Hence there are no strings to counter balance self weight.
This limitation is most notable for the Nautilus (Figure 12) which is
the biggest and also heaviest prototype that we built. The inclusion

Fig. 14: Initial set S of strings for the Nautilus CP and the computed solu-
tions. Please refer to the text for details.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

12 e Kilian, Monszpart, Mitra

of weight balancing threads would require a generalization of the
concept of anchor points and to enclose the model inside a cage to
attach those balancing threads.

Future Work. An interesting future direction will be to con-
sider staged folding sequences, where the flat surface can be physi-
cally ‘animated’ by cycling through a set of predefined ‘keyframe’
surfaces. A possible approach will be to design a set of string
networks that are to be activated in sequential order to progres-
sively create the curved surfaces. Based on recent tiny robotic
Origami [Miyashita et al. 2015], it will be fascinating to explore ac-
tuation of curved folds using other mechanism like sheets of PVC
and laser-cut layers of polystyrene and paper with a magnet in-
side it. At a large scale, in spirit with efforts from Robofold [Epps
2014], it will be interesting to realize string actuated curved folds
using stiffer materials and wires (instead of threads). However, fric-
tion then needs to be accounted for explicitly in the computation.
Finally, it will be worth exploring multiple actuations to control
the strings individually or in bunches, instead of actuating them all
together.

REFERENCES

Giinter Aumann. 2003. A Simple Algorithm for Designing Developable
Bézier Surfaces. Comput. Aided Geom. Des. 20, 8-9 (2003), 601-619.

Pengbo Bo and Wenping Wang. 2007. Geodesic-Controlled Developable
Surfaces for Modeling Paper Bending. Computer Graphics Forum
(2007).

Frank Bossen and Paul S. Heckbert. 1996. A Pliant Method for Anisotropic
Mesh Generation. In 5th International Meshing Roundtable. 63-74.

Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt. 2006. PriMo:
Coupled Prisms for Intuitive Surface Modeling. In Proceedings of the
Fourth Eurographics Symposium on Geometry Processing (SGP ’06).
11-20.

Mario Botsch and Olga Sorkine. 2008. On Linear Variational Surface De-
formation Methods. [EEE Transactions on Visualization and Computer
Graphics 14, 1 (Jan. 2008), 213-230.

Robert Burgoon, Eitan Grinspun, and Zo&¢ Wood. 2006. Discrete Shells
Origami. In Proceedings of Computers And Their Applications. 180-187.

Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark
Pauly. 2013. Designing and Fabricating Mechanical Automata from Mo-
cap Sequences. ACM SIGGRAPH Asia 32,6 (2013), 11.

C.-H. Chu and C.H. Squin. 2002. Developable Bézier patches: properties
and design. Computer-Aided Design 34 (2002), 511-527.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda,
Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel.
2013. Computational Design of Mechanical Characters. ACM SIG-
GRAPH 32, 4, Article 83 (2013), 12 pages.

Erik Demaine and Joseph O’ Rourke. 2007. Geometric Folding Algorithms:
Linkages, Origami, Polyhedra. Cambridge University Press.

Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block,
Olga Sorkine-Hornung, and Mark Pauly. 2014. Assembling Self-
supporting Structures. ACM SIGGRAPH Asia 33, 6, Article 214 (2014),
10 pages.

Gregory Epps. 2014. Made by Robots: Challenging Architecture at a Larger
Scale. Wiley.

Mingbin Feng, John E. Mitchell, Jong-Shi Pang, Xin Shen, and Andreas
Wichter. 2013. Complementary formulations of lo-norm optimization
problems. Technical Report. Department of Mathematical Sciences,
Rensselaer Polytechnic Institute, Troy, NY.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan
Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design.
ACM SIGGRAPH 33, 4, Article 66 (2014), 12 pages.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schroder.
2003. Discrete Shells. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’03).
Eurographics Association, 62-67.

Mo Guoliang and Zhao Yanan. 2006. Designing Bézier Surfaces Min-
imizing the Gaussian Curvature. In Proc. International Conference on
Robotics, Control and Manufacturing Technology. 271-276.

Felix Hausdorff. 1957. Set Theory. American Mathematical Soc.

Behrend Heeren, Martin Rumpf, Peter Schroder, Max Wardetzky, and
Benedikt Wirth. 2014. Exploring the Geometry of the Space of Shells.
Computer Graphics Forum 33, 5 (2014), 247-256.

D.A. Huffman. 1976. Curvature and Creases: A Primer on Paper. /IEEE
Trans. Comput. 25, 10 (1976), 1010-1019.

Amaury Jung, Stefanie Hahmann, Damien Rohmer, Antoine Begault, Lau-
rence Boissieux, and Marie-Paule Cani. 2015. Sketching Folds: Devel-
opable Surfaces from Non-Planar Silhouettes. In ACM Transactions on
Graphics. Article 75.

Martin Kilian, Simon Flory, Zhonggui Chen, Niloy J. Mitra, Alla Shef-
fer, and Helmut Pottmann. 2008. Curved Folding. In ACM SIGGRAPH
2008 Papers (SIGGRAPH '08). ACM, New York, NY, USA, Article 75,
9 pages.

Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. 2007. Geometric
Modeling in Shape Space. ACM SIGGRAPH 26, 3 (2007), #64, 1-8.

B. Koo, J. Hergel, S. Lefebvre, and N. Mitra. 2016. Towards Zero-Waste
Furniture Design. [EEE Transactions on Visualization and Computer
Graphics 99 (2016).

A. Kuzmin, M. Luisier, and O. Schenk. 2013. Fast Methods for Computing
Selected Elements of the Greens Function in Massively Parallel Nano-
electronic Device Simulations. In Euro-Par 2013 Parallel Processing,
F. Wolf, B. Mohr, and D. Mey (Eds.). Lecture Notes in Computer Sci-
ence, Vol. 8097. Springer Berlin Heidelberg, 533-544.

Robert J. Lang. 2011. Origami Design Secrets: Mathematical Methods for
an Ancient Art. A K Peters.

Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju, and Shi-Min Hu.
2010. Popup: automatic paper architectures from 3D models. ACM
Transactions on Graphics 29, 4 (2010), 111:1-9.

Meher McArthur. 2013. Folding Paper: The Infinite Possibilities of
Origami. Tuttle Publishing.

Nicolas Mellado, Peng Song, Xiaoqi Yan, Chi-Wing Fu, and Niloy J. Mitra.
2014. Computational Design and Construction of Notch-free Reciprocal
Frame Structures. (2014).

Jun Mitani. 2009. A Design Method for 3D Origami Based on Rotational
Sweep. Computer-Aided Design and Applications 6, 1 (2009), 69-79.
Jun Mitani. 2012. Column-shaped Origami Design Based on Mirror Re-
flections. Journal for Geometry and Graphics 16, 2 (2012), 185-194.
Jun Mitani and Takeo Igarashi. 2011. Interactive Design of Planar Curved
Folding by Reflection. In Pacific Graphics Short Papers, Bing-Yu Chen,
Jan Kautz, Tong-Yee Lee, and Ming C. Lin (Eds.). The Eurographics As-

sociation.

N.J. Mitra, L. Guibas, and M. Pauly. 2006. Partial and Approximate Sym-
metry Detection for 3D Geometry. ACM Transactions on Graphics (SIG-
GRAPH) 25, 3 (2006), 560-568.

Shuhei Miyashita, Steven Guitron, Marvin Ludersdorfer, Cynthia R. Sung,
and Daniela Rus. 2015. An Untethered Miniature Origami Robot that
Self-folds, Walks, Swims, and Degrades. In Proc. Int. Conf. on Robotics
and Automation.

Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and Crum-
pling Adaptive Sheets. ACM Trans. Graph. 32, 4, Article 51 (July 2013),
8 pages.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive
Anisotropic Remeshing for Cloth Simulation. ACM Transactions on
Graphics 31,6 (Nov. 2012), 147:1-10. Proceedings of ACM SIGGRAPH
Asia 2012, Singapore.

Yusuke Obuchi and others. 2013. 99 Failures Pavilion. Technical Report.
Digital Fabrication Lab, The University of Tokyo.

Jesus Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A.
Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fab-
rication of Flexible Rod Meshes. ACM SIGGRAPH 34, 4, Article 138
(2015), 12 pages.

Martin Peternell. 2004. Developable Surface Fitting to Point Clouds. Com-
put. Aided Geom. Des. 21, 8 (2004), 785-803.

Helmut Pottmann, Philipp Grohs, and Niloy J. Mitra. 2008. Laguerre Mini-
mal Surfaces, Isotropic Geometry and Linear Elasticity. J. Comput. Appl.
Math. 31, 4 (2008), 391-419.

Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. 2002. Simul-

taneous registration of multiple views of a 3D object. In Intl. Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Vol. XXX1V, Part 3A, Commission III. 265-270.

Helmut Pottmann and Johannes Wallner. 2001. Computational Line Geom-
etry. Springer Verlag.

Kenneth Rose, Alla Sheffer, Jamie Wither, Marie-Paule Cani, and Boris
Thibert. 2007. Developable Surfaces from Arbitrary Sketched Bound-
aries. In Eurographics Symposium on Geometry Processing. Eurograph-
ics.

Camille Schreck, Damien Rohmer, Stefanie Hahmann, Marie-Paule Cani,
Shuo Jin, Charlie C. L. Wang, and Jean-Francis Bloch. 2015. Nons-
mooth Developable Geometry for Interactively Animating Paper Crum-
pling. ACM Trans. Graph. 35, 1, Article 10 (Dec. 2015), 18 pages.

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Qual-
ity Mesh Generator and Delaunay Triangulator. In Applied Computa-
tional Geometry: Towards Geometric Engineering, Ming C. Lin and Di-
nesh Manocha (Eds.). Lecture Notes in Computer Science, Vol. 1148.
Springer-Verlag, 203-222. From the First ACM Workshop on Applied
Computational Geometry.

Meélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and
Markus Gross. 2013. Computational Design of Actuated Deformable
Characters. ACM SIGGRAPH 32,4 (2013), 82:1-82:10.

Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012.
Flexible Developable Surfaces. Comp. Graph. Forum 31, 5 (Aug. 2012),
1567-1576.

Peng Song, Chi-Wing Fu, Prashant Goswami, Jianmin Zheng, Niloy J. Mi-
tra, and Daniel Cohen-Or. 2013. Reciprocal Frame Structures Made Easy.
ACM SIGGRAPH 32,4 (2013), 10.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Model-
ing. In Symposium on Geometry Processing. 109—116.

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, and H.-P. Seidel.
2004. Laplacian Surface Editing. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing (SGP ’04).
ACM, New York, NY, USA, 175-184.

Tomohiro Tachi. 2010. Origamizing Polyhedral Surfaces. [EEE Trans-
actions on Visualization and Computer Graphics 16, 2 (March 2010),
298-311.

Tomohiro Tachi. 2013. Interactive Form-Finding of Elastic Origami. In
Proc. of IASS.

Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann.
2015. Interactive design of developable surfaces. ACM Trans. Graphics
(2015). to appear.

String Actuated Curved Folded Surfaces . 13

A. Wichter and L.T. Biegler. 2006. On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming. Mathematical Programming 1, 106 (2006), 25-57.

Benedikt Wirth, Leah Bar, Martin Rumpf, and Guillermo Sapiro. 2011. A
Continuum Mechanical Approach to Geodesics in Shape Space. Interna-
tional Journal of Computer Vision 93, 3 (2011), 293-318.

Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra.
2011. Shape Space Exploration of Constrained Meshes. ACM Trans-
actions on Graphics 30, 6, Article 124 (2011), 12 pages.

Lifeng Zhu, Takeo Igarashi, and Jun Mitani. 2013. Soft Folding. Comp.
Graph. Forum 32,7 (Oct. 2013).

ACM Transactions on Graphics, Vol. 36, No. 3, Article 25, Publication date: March 2017.

