CurveFusion: RGBD-based Reconstruction of 3D Thin Structures

Lingjie Liu^{1,2}, Nenglun Chen¹, Duygu Ceylan³, Christian Theobalt⁴, Wenping Wang¹, Niloy J. Mitra²

¹The University of Hong Kong ²University College London ³Adobe Research ⁴Max Planck Institute for Informatics

CurveFusion: RGBD-based Reconstruction of 3D Thin Structures

To reconstruct a 3D tubular model from a sequence of raw RGBD images

Examples of Thin Structures

Related Works: Image-based methods

Patch-based Multi-view Stereo (PMVS) [Furukawa and Ponce 2010], [Tabb 2013], Line3D++ [Hofer et al. 2016], [Usumezbas et al. 2016], [Liu et al. 2017]

- 1) Correspondence problem;
- 2) Low reconstruction quality;
- 3) Sensitivity to camera pose estimation; E.g. [Liu et al. 2017]
- 4) Special image set up. E.g. 40 calibrated cameras used in [Tabb 2013]

Correspondence Problem

Low Reconstruction Quality

Related Works: Failure of Existing Fusion Methods

Input

Volume Fusion^[1]

Kinect Fusion^[2]

Bundle Fusion^[3]

[1] Curless et al. "A volumetric method for building complex models from range images." SIGGRAPH 1996.

[2] Newcombe et al. "KinectFusion: Real-time dense surface mapping and tracking." ISMAR 2011.

[3] Dai et al. "Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration." TOG 2017.

Our Reconstruction Result

Key Challenges in Wire Reconstruction

1) Noisy depth samples and missing thin structures

2) Voxel grid cannot represent thin structures well

Curve Skeleton – A New Fusion Primitive

Extract skeletons from depth images

point cloud

curve skeleton

Scanning Video

System Setup and Assumptions

System Setup:

- Kinect V1 sensor
- ORB SLAM ^[1] for camera pose

Assumptions:

- Sufficient features in background
- Wires of diameter 2 mm and up
- Non-black surface color

Key Issue #1: Data Segmentation

Separating point samples of thin structures from background

Depth samples of the thin structure

Key Issue #2: Data Consolidation

Group depth frames into bundles for data consolidation

Algorithm Pipeline of CurveFusion

Perform segmentation to obtain bundles of depth samples on the thin structure
Extract a partial skeleton from each bundle of depth samples
Fuse all partial skeletons to form the complete skeleton of the whole wire model

Segmentation Procedure

(a) input bundle

(b) fusion result

Segmentation Procedure

Extracting Curve Skeletons: L1 Skeleton^[1]

Bundle Point Cloud

[1] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and Baoquan Chen. 2013. L1-medial Skeleton of Point Cloud. In ACM SIGGRAPH. ACM, New York, NY, USA, Article 65, 8 pages.

Fusing Bundle Skeletons Together

Red: Already Fused Partial Skeleton Blue: New Bundle Skeleton Green: New Partial Skeleton

Fusing Bundle Skeletons Together

Red: Already Fused Partial Skeleton Blue: New Bundle Skeleton

Fusing Bundle Skeletons Together

Results

Results

Evaluation – Different Colors

Black objects cannot be scanned

Scanning setup

Reference image

Aligned point cloud

Evaluation – Different Diameters

Wires of diameter less than 2 mm cannot be captured by Kinect V1

Scanning setup

References

Aligned point cloud

Evaluation – Different Camera Pose Estimations

[1] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian Theobalt. 2017. BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using On the Fly Surface Reintegration. ACM TOG 36, 3, Article 24 (May 2017), 18 pages.

[2] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. 2011. KinectFusion: Real-time Dense Surface Mapping and Tracking. In IEEE ISMAR (ISMAR '11). IEEE Computer Society, Washington, DC, USA, 127–136.

Evaluation – Different Sensors

Comparison with [Liu et al. 2017]

Lingjie Liu, Duygu Ceylan, Cheng Lin, Wenping Wang, and Niloy J. Mitra. 2017. Imagebased Reconstruction of Wire Art. ACM SIGGRAPH 36, 4, Article 63 (July 2017), 11 pages.

Comparison with [Tabb et al. 2013]

Reference Image

A. Tabb. 2013. Shape from Silhouette Probability Maps: Reconstruction of Thin Objects in the Presence of Silhouette Extraction and Calibration Error. In 2013 IEEE Conference on Computer Vision and Pattern Recognition.

Limitations

- 1. Cannot scan black wires or wires of diameter less than 2 mm
- 2. Cannot reconstruct dynamic wires
- 3. Wires are assumed to have a constant radius
- 4. Reconstruction is not real time.

Future Works

- 1. Real time performance
- 2. Thin structures of varying radius or non-circular cross-section
- 3. Hybrid structures

Preliminary result

Acknowledgements

- Thank Hui Huang, Amy Tabb and ZhengWang for their great help with the testing and validation of our work.
- Thank Cheng Lin, Jiatao Gu, Maria Lam, Paul Guerrero for their help.

This work was partially funded by the ERC Starting Grant SmartGeometry (StG-2013-335373), the Research Grant Council of Hong Kong (GRF 17210718), a Google Faculty award, a UCL visiting student program, and gifts from Adobe.

Thank You!

