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Abstract In the context of scene understanding, a va-

riety of methods exists to estimate different information

channels from mono or stereo images, including dis-

parity, depth, and normals. Although several advances

have been reported in the recent years for these tasks,

the estimated information is often imprecise particu-

larly near depth discontinuities or creases. Studies have
however shown that precisely such depth edges carry

critical cues for the perception of shape, and play im-

portant roles in tasks like depth-based segmentation or

foreground selection. Unfortunately, the currently ex-

tracted channels often carry conflicting signals, making

it difficult for subsequent applications to effectively use

them. In this paper, we focus on the problem of obtain-

ing high-precision depth edges (i.e., depth contours and

creases) by jointly analyzing such unreliable informa-

tion channels. We propose DepthCut, a data-driven

fusion of the channels using a convolutional neural net-

work trained on a large dataset with known depth. The

resulting depth edges can be used for segmentation, de-

composing a scene into depth layers with relatively flat

depth, or improving the accuracy of the depth estimate

near depth edges by constraining its gradients to agree

with these edges. Quantitatively, we compare against 18

variants of baselines and demonstrate that our depth

edges result in an improved segmentation performance

and an improved depth estimate near depth edges com-
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pared to data-agnostic channel fusion. Qualitatively, we

demonstrate that the depth edges result in superior seg-

mentation and depth orderings. (Code and datasets will

be made available.)

1 Introduction

A central task in scene understanding is to segment

an input scene into objects and establish a (partial)

depth-ordering among the detected objects. Since pho-

tographs remain the most convenient and ubiquitous

option to capture scene information, a significant body

of research has focused on scene analysis using single

(mono) or pairs of (stereo) images. However, extracting

high-quality information about scene geometry from

such input remains a challenging problem.

Most recent mono and stereo scene estimation tech-

niques attempt to compute disparity, depth or nor-

mals from the input image(s). State-of-the-art methods

largely take a data-driven approach by training different

networks using synthetic (3D rendered) or other ground-

truth data. Unfortunately, the resulting estimates still

suffer from imperfections, particularly near depth discon-

tinuities. Mono depth estimation is imprecise especially

around object boundaries, while stereo depth estimation

suffers from disocclusions and depends on the reliability

of the stereo matching. Even depth scans (e.g., Kinect

scans) have missing or inaccurate depth values near

depth discontinuity edges.

In this work, instead of aiming for precise depth

estimates, we focus on identifying depth discontinuities,

which we refer to as depth edges. Studies (see Chap-

ter 10 in [12] and [4]) have shown that precisely such

depth edges carry critical cues for the perception of

shapes, and play important roles in tasks like depth-
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Fig. 1 We present DepthCut, a method to estimate depth edges with improved accuracy from unreliable input channels,
namely: color images, normal estimates, and disparity estimates. Starting from a single image or pair of images, our method
produces depth edges consisting of depth contours and creases, and separates regions of smoothly varying depth. Complementary
information from the unreliable input channels are fused using a neural network trained on a dataset with known depth. The
resulting depth edges can be used to refine a disparity estimate or to infer a hierarchical image segmentation.

based segmentation or foreground selection. Due to the

aforementioned artifacts around depth discontinuities,

current methods mostly produce poor depth edges, as

shown in Figure 2. Our main insight is that we can ob-

tain better depth edges by fusing together multiple cues,

each of which may, in isolation, be unreliable due to

misaligned features, errors, and noise. In other words, in

contrast to absolute depth, depth edges often correlate

with edges in other channels, allowing information from

such channels to improve global estimation of depth

edge locations.

We propose a data-driven fusion of the channels us-

ing DepthCut, a convolutional neural network (CNN)

trained on a large dataset with known depth. Start-

ing from either mono or stereo images, we investigate

fusing three different channels: color, estimated dispar-

ity, and estimated normals (see Figure 2). The color

channel carries good edge information wherever there

are color differences. However, it fails to differentiate
between depth and texture edges, or to detect depth

edges if adjacent foreground and background colors are

similar. Depth disparity, estimated from stereo or mono

inputs, tends to be more reliable in regions away from

depth edges and hence can be used to identify texture

edges picked up from the color channel. It is, however,

unreliable near depth edges as it suffers from disocclu-

sion ambiguity. Normals, estimated from left image (for

stereo input) or mono input, can help identify large

changes in surface orientation, but they can be polluted

by misclassified textures, etc.

Combining these channels is challenging, since dif-

ferent locations on the image plane require different
combinations, depending on their context. Additionally,

it is hard to formulate explicit rules how to combine

channels. We designed DepthCut to combine these

unreliable channels to obtain robust depth edges. The

network fuses multiple depth cues in a context-sensitive

manner by learning what channels to rely on in different

parts of the scene. For example, in Figure 1-top, Depth-

Cut correctly obtains depth segment layers separating

the front statues from the background ones even though

they have very similar color profiles; while in Figure 1-

bottom, DepthCut correctly segments the book from

the clutter of similarly colored papers. In both examples,

the network produces good results even though the indi-

vidual channels are noisy due to color similarity, texture

and shading ambiguity, and poor disparity estimates

around object boundaries.

We use the extracted depth edges for segmentation,

decomposing a scene into depth layers with relatively

flat depth, or improving the accuracy of the depth es-

timate near depth edges by constraining its gradients

to agree with the estimated (depth) edges. We exten-

sively evaluate the proposed estimation framework, both

qualitatively and quantitatively, and report consistent

improvement over state-of-the-art alternatives. Qualita-

tively, our results demonstrate clear improvements in

interactive depth-based object selection tasks on various
challenging images (without available ground-truth for

evaluation). We also show how DepthCut can produce

qualitatively better disparity estimates near depth edges.

From a quantitative perspective, our depth edges lead to

large improvements in segmentation performance com-

pared to 18 variants of baselines that either use a single

channel or perform data-agnostic channel fusion. On a

manually-captured and segmented test dataset of natu-

ral images, our DepthCut-based method outperforms

all baseline variants by at least 9%.

2 Related Work

Shape analysis. In the context of scene understanding,

a large body of work focuses on estimating attributes

for indoor scenes by computing high-level object fea-

tures and analyzing inter-object relations (see [26] for

a survey). More recently, with renewed interest in deep

neural networks, researchers have explored data-driven

approaches for various shape and scene analysis tasks
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Fig. 2 Our input channels contain various sources of noise and errors: areas of disocclusion, large untextured areas where
stereo matching is difficult, and shadow edges that were incorrectly classified during creation of the channels. The color channel
may also contain strong texture or shadow edges that have to be filtered out. The gradients of these channels do generally not
align well, as shown in the second column from the right. We train DepthCut to learn how to combine color, disparity and
normal channels to generate a cleaner set of depth edges, shown in the last column after a globalization step. In contrast to the
sum of gradients, these depth edges now correspond to the probability of being a true depth contour or crease, giving them a
larger intensity range. The optional globalization we show here only retains the most salient edges.

(cf., [39]). While there are too many efforts to list, rep-

resentative examples include normal estimation [5,10],

object detection [36], semantic segmentation [8,13], local-
ization [32], pose estimation [3,37], and scene recognition

using combined depth and image features from RGBD

input [41], etc.

At a coarse level, these data-driven approaches pro-

duce impressive results, but are often noisy near discon-

tinuities or fine detail. Moreover, the various methods
tend to produce different types of errors in regions of

ambiguity. Since each network is trained independently,

it is hard to directly fuse the different estimated quan-

tities (e.g., disparity and normals) to produce higher

quality results. Finally, the above networks are largely

trained on indoor scene datasets (e.g., NYU dataset)

and do not usually generalize to new object types. Such

limitations reduce the utility of these techniques in ap-

plications like depth-based segmentation or disparity

refinement, which require clean, accurate depth edges.

Our data-driven approach is to jointly learn the error

correlations across different channels in order to produce

robust depth edges from mono or stereo input.

General segmentation. In the context of non-semantic

segmentation (i.e., object-level region extraction without

assigning semantic labels), one of the most widely used

interactive segmentation approaches is GrabCut [30],

which builds GMM-based foreground and background

color models. The state-of-the-art in non-semantic seg-

mentation is arguably the method of Arbeláez et al. [2],

which operates at the level of contours and yields a hier-
archy of segments. Classical segmentation methods that

target standard color images have also been extended

to make use of additional information. For example,

Kolmogorov et al. [20] propose a version of GrabCut

that handles binocular stereo video, Sundberg et al. [35]

compute depth-ordered segmentations using optical flow

from video sequences, and Dahan et al. [9] leverage

scanned depth information to decompose images into

layers. Ren and Bo [28] forgo handcrafted features in

favour of learned Sparse Code Gradients (SCG) for con-

tour detection in RGB or RGBD images. In this vein,

DepthCut leverages additional channels of information

(disparity and normals) that can be directly estimated

from input mono or stereo images. By learning to fuse
these channels, our method performs well even in am-

biguous regions, such as textured or shaded areas, or

where foreground-background colors are very similar. In

Section 8, we present comparisons with state-of-the-art

methods and their variants.

Layering. Decomposing visual content into a stack of

overlapping layers produces a simple and flexible “2.1D”

representation [27] that supports a variety of interactive

editing operations [24]. Previous work explores various

approaches for extracting 2.1D representations from

input images. Amer et al. [1] propose a quadratic opti-

mization that takes in image edges and T-junctions to
produce a layered result, and later generalize the formu-

lation using convex optimization. More recently, Yu et

al. [40] propose a global energy optimization approach.

Chen et al. [7] identify five different occlusion cues (se-

mantic, position, compactness, shared boundary, and

junction cues) and suggest a preference function to com-

bine these cues to produce a 2.1D representation. Given

the difficulty of extracting layers from complex scenes,
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Fig. 3 Overview of our method and two applications. Starting from a stereo image pair, or a single image for monocular
disparity estimation, we estimate our three input channels using any existing method for normal or disparity estimation.
These channels are combined in a data-driven fusion using our CNN to get a set of depth edges, which are then used in two
applications: segmentation and refinement of the estimated disparity (for the latter, see the supplementary material). For
segmentation, we perform a globalization step that keeps only the most consistent contours, followed by the construction of a
hierarchical segmentation using the gPb-ucm framework [2]. For refinement, we use depth contours only (not creases) and use
them to constrain the disparity gradients.

interactive techniques have also been proposed [16]. We

offer an automatic approach that combines color, dispar-

ity and normal information to decompose input images

into layers with relatively flat depth.

3 Overview

DepthCut estimates depth edges from either a stereo

image pair or from a single image. Depth edges consist

of depth contours and creases that border regions of

smoothly varying depth in the image. They correspond

to approximate depth- or depth gradient discontinuities.

These edges can be used to refine an initial disparity

estimate, by constraining its gradients based on the

depth edges, or to segment an image into a hierarchy of

regions, giving us a depth layering of an image. Regions

higher up in the segmentation hierarchy are separated

by stronger depth edges than regions further down, as

illustrated in Figure 4.

Given an accurate disparity and normal estimate,

depth edges can be found based on derivatives of the

estimates over the image plane. In practice, however,

0.5

ucm

0.1 0.01

glob. depth edges

Fig. 4 Example of a region hierarchy obtained using depth
edges estimated by DepthCut. The cophenetic distance be-
tween adjacent regions (the threshold above which the regions
are merged) is based on the strength of depth edges. The
Ultrametric Contour Map [2] shows the boundaries of regions
with opacity proportional to the cophenetic distance. Thresh-
olding the hierarchy yields a concrete segmentation, we show
three examples in the bottom row.

such estimates are too unreliable to use directly (see

Figures 2 and 5). Instead, we fuse multiple unreliable

channels to get a more accurate estimate of the depth

edges. Our cues are the left input image, as well as a

disparity and normal estimate obtained from the input
images. These channels work well in practice, although

additional input channels can be added as needed. In

the raw form, the input cues are usually inconsistent,

i.e., the same edge, for example, may be present at

different locations across the channels, or the estimates

may contain edges that go missing in the other channels
due to estimation errors.

The challenge then lies in fusing these different un-

reliable cues to get a consistent set of depth edges. The

reliability of such channel features at a given image lo-

cation may depend on the local context of the cue. For

example, the color channel may provide reliable loca-

tions for contour edges of untextured objects, but may
also contain unwanted texture and shadow edges. The

disparity estimate may be reliable in highly textured

regions, but inaccurate at disocclusions. Instead of hand-

authoring rules to combine such conflicting channels, we

train a convolutional neural network (CNN) to provide

this context-sensitive fusion, as detailed in Section 5.

The estimated depth edges may be noisy and are not

necessarily closed. To get a clean set of closed contours

that decompose the image into a set of 2.1D regions, we

adapt the non-semantic segmentation method proposed
by Arbeláez et al. [2] (see Figure 8 to compare result

of using the method directly on the individual chan-

nels or their naive combinations). Details are provided

in Section 6. The individual steps of our method are

summarized in Figure 3.

4 Depth Edges

Depth edges consist of depth contours and creases. These

edges separate regions of smoothly varying depth in an
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ground truth disparity

estimated disparity depth edges depth contours

depth edges depth contours

Fig. 5 Depth edges and contours computed by applying their
definition directly to ground-truth disparities (top row) and
estimated disparities (bottom row). High-order terms in the
definition result in very noisy edges for the disparity estimate.

image, which can be used as segments, or to refine a

disparity estimate. Our goal is to robustly estimate these

depth edges from either a stereo image pair or a single

image.

We start with a more formal definition of depth

edges. Given a disparity image as continuous function

D(u, v) over locations (u, v) on the image plane, a depth

contour is defined as a C0 discontinuity of D. In our

discrete setting, however, it is harder to identify such

discontinuities. Even large disparity gradients are not
always reliable as they are also frequently caused by

surfaces viewed at oblique angles. Instead, we define the

probability Pc of depth contour on the positive part of

the Laplacian of the gradient:

Pc(u, v) := σα
(
(∆‖∇D‖)+(u, v)

)
,

where ‖∇D‖ is the gradient magnitude of D, ∆ is the

Laplace operator, (f)+ denotes the positive part of a

function, and σ is a sigmoid function centered at α

that defines a threshold for discontinuities. We chose

a logistic function σα(x) = 1/(1 + e−10(x/α−1)) with a

parameter α = 1.

Creases of 3D objects are typically defined as strong

maxima of surface curvature. However, we require a
different definition, since we want our creases to be

invariant to the scale ambiguity of objects in images;

objects that have the same appearance in an image

should have the same depth creases, regardless of their

world-space size. We therefore take the normal gradient

of each component of the normal separately over the

image plane instead of the divergence over geometry

surfaces. Given a normal image N(u, v) ∈ R3 over the

image plane, we define the probability Pr of depth creases

on gradient magnitude of each normal component:

Pr(u, v) := σβ
(
(‖∇Nx‖+ ‖∇Ny‖+ ‖∇Nz‖)(u, v)

)
,

where Nx, Ny and Nz are the components of the normal,

and σ is the logistic function centered at β = 0.5. The

combined probability for a depth edge Pe(u, v) is then

given as:

Pe(u, v) :=
(
1− (1− Pc)(1− Pr)

)
(u, v).

This definition can be computed directly on reliable

disparity and normal estimates. For unreliable and noisy

estimates, however, the high-order derivatives amplify

the errors, as shown in Figure 5. In the next section,
we discuss how DepthCut estimates the depth edges

using unreliable disparity and normals.

5 Depth Edge Estimation

We obtain disparity and normal estimates by applying

state-of-the-art estimators either to the stereo image

pair, or to the left image only. Any existing stereo or

mono disparity, and normal estimation method can be

used in this step. Later, in Section 8, we report perfor-

mance using various disparity estimation methods.

The estimated disparity and normals are usually

noisy and contain numerous errors. A few typical exam-

ples are shown in Figure 2. The color channel is more

reliable, but contains several other types of edges as

well, such as texture and shadow edges. By iteself, the
color channel alone provides insufficient information to

distinguish between depth edges and these unwanted

types of edges.

Our key insight is that the reliability of individual

channels at each location in the image can be estimated

from the full set of channels. For example, a short color

edge at a location without depth or normal edges is likely

to be a texture edge, or edges close to a disocclusion

are likely to be noise if there is no evidence for an edge

in the other channels. It would be hard to formulate

explicit rules for these statistical properties, especially

since they may be dependent on the specific estimator

used. This motivates a data-driven fusion of channels,

where we avoid hand-crafting explicit rules in favor of

training a convolutional neural network to learn these

properties from data. We will show that this approach

gives better depth edges than a data-agnostic fusion.

5.1 Model

Deep networks have a large capacity to learn a context-

sensitive fusion of channels based on different cues for

their local reliability. We use a convolutional neural net-

work (CNN), a type of network that has shown remark-

able performance on a large range of image processing

tasks [21,33]. The image is processed through a series

of successive non-linear filter banks called layers, each

operating on the output of the previous layer. The out-

put of each layer is a multi-channel image x ∈ Rw×h×c,
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Fig. 6 CNN architecture for depth edge estimation. The orange boxes are layer input/output multi-channel images, colored
disks are layers. Starting from a set of input channels, the encoder extracts a set of features of increasing abstraction while
downsampling the feature maps. The decoder uses these abstracted features to construct the depth edges. Skip connections let
information flow around the bottleneck between encoder and decoder.

where w and h are the width and height of the image

and c corresponds to the number of filters in the layer:

L : Rw × h × c → Rw
′× h′× c′ .

Each output channel can be understood as a feature

map extracted from the input by one of the filters.
We base our network on the encoder-decoder archi-

tecture [15,18]. This architecture encodes image patches

into a set of latent features, and then decodes the de-

sired output from these latent features. In a network of

n layers, the first n/2 layers act as an encoder, where
consecutive layers extract features of increasing abstrac-

tion from the input. The remaining n/2 layers act as

decoder, where the features are used to construct the

depth edge probability image. Figure 6 illustrates the

architecture.

The input to the first layer is composed of the color

channels I of the input image with size W × H × 3,

the disparity estimate D̃, and the xyz channels of the

normal estimate Ñ , giving a total size of W ×H × 7.

The output of the last layer is the estimated probability

P̃e for a depth edge over the image:

P̃e :=
(
D1(pd1) ◦ · · · ◦ Dn(pdn) ◦ En(pen) ◦ · · · ◦ E1(pe1)

)
(X),

where X is the concatenation of I, D̃, and Ñ into a single

multi-channel image, while E and D are encoder and

decoder layers with parameters pei and pdi , respectively.

Encoder. An encoder layer is defined as:

E(X | p) =
(
g2 ◦ σ ◦ bn ◦ cv(p)

)
(X),

where cv is a convolution layer with parameters p, bn

denotes batch normalization [17], and gn denotes sub-

sampling by a factor of n. For the activation function σ,

we choose a ‘leaky’ versions of the traditional Rectified

Linear Unit (ReLU), that has been shown [14] to reduce

the well-known problem of inactive neurons due to the

vanishing gradient of ReLUs.

The the subsampling factor, the spatial extent of

the filter kernels in cv, and the number of enoder layers

determine the size of the image patches used to construct

the latent features, with larger patches capturing more

global properties. DepthCut comprises of 8 encoder

layers with a subsampling factor if 2, each with a kernel

size of 4× 4, for a patch size of 256× 256 pixels.

Decoder. A decoder layer upsamples the input and is

defined analogous to a decoder layer as:

D(X | p) =
(
σ ◦ bn ◦ cv(p) ◦f2

)
(X),

where fn denotes upsampling by a factor of n. We set

the upsampling factor equal to the subsampling factor

of the encoder layers, so that chaining an equal amount

of encoder and decoder layers results in an output of
the same size. The last layer of the decoder replaces the

Leaky ReLU activation function with a sigmoid function

to clamp the output to the [0, 1] range of depth edge

probabilities.

Skip connections. The latent features in the bottleneck

of our network contain a more abstract representation

of each patch at the cost of a reduced spatial resolution.

However, our output depth edges need to be spatially
aligned to the fine details of the input channels. Similar

to U-Net [29], we compensate the loss of spatial resolu-

tion by adding skip connections between encoder- and

decoder layers of the same resolution. The output of

the encoder layer is appended as additional channels

to the input of the decoder layer before the activation

function. This provides the decoder with the needed

spatial information.

5.2 Loss and Training

We trained our model by comparing our output to

ground-truth depth edges. In our experiments, the mean

squared error performed best among various well-known

loss functions. We did find, however, that comparisons

in our datasets were biased to contain more loss from

false negatives due to errors or inaccuracies of the dis-

parity estimate (i.e., ground-truth depth edges that were

missing in the output because they were not present

in the disparity estimate), than false positives due to
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texture or shadow edges (i.e., depth edges in the out-

put due to texture or shadow edges that are not in the

ground-truth). To counteract this bias, we multiply the

loss at color channel edges that do not coincide with
depth edges by a factor of 10. Thus, we have

E(P̃e, Pe,M) =
1

n
‖M � (P̃e − Pe)‖2FRO,

where P̃e and Pe are the estimated and ground-truth

depth edges, respectively, M is a mask that takes on the

value 10 at color edges that do not coincide with depth

edges and 1 everywhere else, � denotes element-wise

multiplication, and ‖X‖2FRO is the squared Frobenius

norm of X.

We train the model using the Adam optimizer [19].

To combat overfitting, we randomly sample patches of

size 256 × 256 from the input images during training

and add an L2 regularization term λ‖p‖22 to the loss,

where p are the parameters of our model and the scaling

λ is set to 10−5, effectively eliminating overfitting on

our validation set. Figure 7 shows typical loss curve. In

our experiments, we trained with a batch size of 5 input

patches. For high resolution images, our patch size only
covers a relatively small fraction of the image, giving our

model less global information to work with. To decrease

the dependence of our network on image resolution, we

downsample high-resolution images to 800 pixel width

while maintaining the original aspect ratio.

6 Segmentation

Since depth edges estimated by DepthCut separate

regions of smoothly varying depth in the image, as a first

application we use them towards improved segmentation.

Motivated by studies linking depth edges to perception

of shapes, it seems plausible that regions divided by

depth edges typically comprise simple shapes, that is,

shapes that can be understood from the boundary edges

only. Intuitively, our segmentation can then be seen as

an approximate decomposition of the scene into simple

shapes.
The output of our network typically contains a few

small segments that clutter the image (see Figure 6,

for example). This clutter is removed in a globalization

0 1000

0

0.04

training loss per batch
training loss over 10 batches

training loss per epoch
validation loss per epoch

epoch

lo
ss

Fig. 7 Typical loss curve when training our model. Notice
that the validation and training loss are nearly identical,
suggesting little overfitting to the training set.

stage, where boundary segments are connected to form

longer boundaries and remaining segments are removed.

To construct a segmentation from these globalized

depth edges, we connect edge segments to form closed

contours. The OWT-UCM framework introduced by Ar-

beláez et al. [2] takes a set of contour edges and creates a

hierarchical segmentation, based on an oriented version

of the watershed transform (OWT), followed by the

computation of an Ultrametric Contour Map (UCM).

The UCM is the dual of a hierarchical segmentation; it

consists of a set of closed contours with strength cor-

responding to the probability of being a true contour

(please refer to the original paper for details). A con-
crete segmentation can be found by merging all regions

separated by a contour with strength lower than a given

threshold (see Figure 4).

The resulting UCM correctly separates regions based

on the strength of our depth edges, i.e., the DepthCut

output is used to build the affinity matrix. We found

it useful to additionally include a term that encourages

regions with smooth, low curvature boundaries. Please

see the supplementary material for details.

7 Depth Refinement

As a second application of our method, we can refine

our initial disparity estimates. We train our network to

output depth contours as opposed to depth edges, i.e.,

a subset of the depth edges. Due to our multi-channel

fusion, the depth contours are usually considerably less

noisy than the initial disparity estimate. They provide

more accurate spatial locations for strong disparity gra-

dients. In addition to depth contours, we also train to

output disparity gradient directions as two normalized

components d̃u and d̃v, which provide robust gradient

orientations at depth contours. However, we do not ob-

tain the actual gradient magnitudes. Note that getting

an accurate estimate of this magnitude over the entire

image would be a much harder problem, since it would

require regressing the gradient magnitude instead of

classifying the existence of a contour.

We obtain a smooth approximation of the gradient

magnitude from the disparity estimate itself and only

use the depth contours and disparity directions to decide

if a location on the image plane should exhibit a strong

gradient or not, and to constrain the gradient orientation.

The depth refinement can then be computed by solving

a linear least squares problem, where strong gradients

in the disparity estimate are optimized to be located

at depth edges and to point in the estimated gradient

directions. For details and results, please refer to the

supplementary material.
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Fig. 8 Hierarchical segmentations based on depth edges. We compare directly segmenting the individual channels, performing
a data-agnostic fusion, and using our data driven fusion on either a subset of the input channels, or all of the input channels.
Strongly textured regions in the color channel make finding a good segmentation difficult, while normal and disparity estimates
are too unreliable to use exclusively. Using our data-driven fusion gives segmentations that better correspond to scene objects.

8 Results and Discussion

To evaluate the performance of our method, we compare

against several baselines. We demonstrate that fusing

multiple channels results in better depth edges than

using single channels by comparing the results of our

method when using all channels against our method
using fewer channels as input. (Note that the extra

channels used in DepthCut are estimated from mono

or stereo image inputs, i.e., all methods have the same

source inputs to work with.) To support our claim that a

data-driven fusion performs better than a data-agnostic

fusion, we compare to a baseline using manually defined

fusion rules to compute depth edges. For this method, we

use large fixed kernels to measure the disparity or normal

gradient across image edges. We also test providing the
un-fused channels directly as input to a segmentation,

using the well-known gPb-ucm [2] method, the ucm part

of which we use for our segmentation application, as

well. Finally, we compare against the method of Ren

and Bo [28], where Sparse Code Gradient (SCG)-based

representations of local RGBD patches have been trained

to optimize contour detection.

For each of these methods we experiment with dif-

ferent sets of input channels, including the color image,

normals, and 3 different disparity types from state-of-

the-art estimators: the mc-cnn stereo matcher [38], disp-

nets [23] and a monocular depth estimate [6], for a total

of 18 baseline variations. More detailed sementation
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Fig. 9 Quantitative comparison to all baselines on our camera-dataset. We show precision vs. recall over thresholds of
the segmentation hierarchy. Note that depth edges from monocular disparity estimates (finely dotted lines) work with less
information than the other two disparity estimates and are expected to perform worse. The depth edge estimates of our
data-driven fusion, shown in red, consistently perform better than other estimates.

results and all results for depth refinement are provided

as supplementary materials, while here we present only

the main segmentation results.

8.1 Datasets

We use two datasets to train our network, the Middle-
bury 2014 Stereo dataset [31] and a custom synthetic

indoor scenes dataset we call the room-dataset. We

cannot use standard RGBD datasets typically captured

with noisy sensors like the Kinect, because the higher-

order derivatives in our our depth edge definition are

susceptible to noise (see Figure 5). Even though the Mid-

dlebury dataset is non-synthetic, it has excellent depth

quality. It consists of 23 images of indoor scenes con-

taining objects in various configurations, each of which

was taken under several different lighting conditions and

with different exposures. We perform data-augmentation

by randomly selecting an image from among the expo-

sures and lighting conditions during training and by

randomizing the placement of the 256 × 256 patch in

the image, as described in Section 5.2.

The room-dataset consists of 132 indoor scenes that

were obtained by generating physically plausible ren-

ders of rooms in the scene synthesis dataset by Fisher

et al. [11] using a light tracer. Since this is a syn-

thetic dataset, we have access to perfect depth. Re-

cently, several synthetic indoor scene datasets have been

proposed [25,34] that would be good candidates to ex-

tend the training set of our method; we plan to explore

this option in future work. The ground-truth on these

datasets is created by directly applying the depth edge

definition in Section 4 to the ground-truth disparity.

Please see the supplementary material for details.

Our network performs well on these two training

datasets, as evidenced by the low validation loss shown

in Figure 7, but to confirm the generality of our trained

network, we tested the full set of baselines on an unre-

lated dataset of 8 images (referred to as the camera-

dataset) taken manually under natural (non-studio) con-

ditions, for a total of 144 comparisons with all baselines.

These images were taken with three different camera

types: a smartphone, a DSLR camera (hand-held or

on a tripod), and a more compact handheld camera.

They contain noise, blur, and the stereo alignment is

not perfect. For these images, it is difficult to get accu-

rate ground truth depth, so we generated ground-truth
depth edges by manually editing edge images obtained

from the color channel, adding missing depth edges, and

removing texture- and shadow edges, as well as edges
below a threshold. We only keep prominent depth edges

vital to a good segmentation to express a preference

towards these edges (see the supplementary materials

for this ground truth). For a future larger dataset, we

could either use Mechanical Turk to generate the ground

truth, or use an accurate laser scanner; although the
latter would make the capturing process slower, limiting

the number of images we could generate.

In addition to this dataset, we test on a dataset of

four Kinect RGBD images (referred to as the kinect-

dataset). Unlike for the other disparity types, our net-

work was not specifically trained for Kinect disparity;

thus, we expect lower quality results than for the other

disparity types. However, a performance above data-

agnostic methods is an indication that our data-driven

channel fusion can generalize to some degree to previ-

ously unseen disparity types.

8.2 Segmentation

In the segmentation application, we compute a hiearar-

chical segmentation over the image. This segmentation

can be useful to select objects from the image, or to

composite image regions, where our depth edges allow

for correct occlusion at region boundaries. For our seg-

mentation application, we provide both qualitative and

quantitative comparisons of the hierarchical segmenta-

tion on both the camera- and the kinect-datasets.

Qualitative comparisons on three images of the camera-

dataset are shown in Figure 8. For each image, the

hierarchical segmentation of all 21 methods (including

our 3 results) is shown in 3× 7 tables. The four images
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Fig. 10 Comparison to all baselines on the kinect-dataset. Precision vs. recall is shown on the left and a qualtitative
comparison is given on the right. Arrows highlight some important differences and errors. Even though DepthCut was not
trained specifically on this disparity type, it still performs better than other methods, although with a smaller advantage.

in the kinect-dataset are shown in Figure 10. The

large labels on top of the figure denote the method,

while the smaller labels on top of the images denote the

input channels used to create the image. ‘Dispnet’ and

‘mc-cnn’ denote the two stereo disparity estimates and

‘mono’ the monocular disparity estimate. Red lines show

the UCM, stronger lines indicate a stronger separation

between regions.

As is often the case in real-world photographs, these

scenes contain a lot of strongly textured surfaces, mak-

ing the objects in these scenes hard to segment without

relying on additional channels. This is reflected in the

methods based on color channel input that fail to consis-

tently separate texture edges from depth edges. Another

source of error are inaccuracies or errors in the esti-

mates. This is especially noticeable in the normal and

monocular depth estimates, where contours only very

loosely follow the image objects. Methods with fewer

input channels have less information to correct these

errors and have therefore generally less accurate and less

robust contours. Using multiple channels without proper

fusion does not necessarily improve the segmentation,

as is especially evident in the multi-channel input of

the un-fused method in lower-left corner of Figure 8,

and to a lesser extent in the more error-prone edges

of the data-agnostic fusion. In Kinect disparities, the

main errors are due to missing disparity values near

contours and corners, and on non-diffuse surfaces. Many

estimates therefore contain false positives that are in

some cases even preferred over true positives, in particu-

lar for methods with fewer channels and simpler fusion,

as shown in Figure 10. DepthCut can correct errors

in the individual channels giving us more robust region

boundaries that are better aligned to depth edges, as

shown in the right-most column.

Quantitative comparisons were performed with all base-

lines images of the camera-dataset. We compare to the

ground-truth using the Boundary Quality Metric [22]

that computes precision and recall of the boundary pix-

els. We use the less computationally expensive version

of the metric, where a slack of fixed radius is added to

the boundaries to not overly penalize small inaccuracies.

Since we have hierarchical segmentations, we compute

the metric for the full range of thresholds and report

precision vs. recall.

Results for the camera-dataset are shown in Fig-

ure 9. The four plots show precision versus recall for

each method, averaged over all images. The f1 score,
shown as iso-lines in green, summarizes precision and

recall into a single statistic where higher values (to-

wards the top-right in the plots) are better. Monocular

depth estimates that operate with less information than

stereo estimates are expected to perform worse. Note

that our fusion generally performs best, only the monoc-

ular depth estimates have a lower score than the stereo

estimates of some other methods.

Figure 10 show results for the kinect-dataset. Recall

that our method is trained specifically for each type of

disparity estimate to identify and correct typical errors

in this estimate with the help of additional channels.

Somewhat suprisingly, applying DepthCut trained only

on ‘dispnet’ disparities to Kinect disparities still gives an

advantage over data-agnostic fusion. This suggests that

our method is able to partially generalize the learned

channel fusion to other disparity types. The advantage

over fewer input channels is also evident.
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9 Conclusions

We present a method that produces accurate depth edges

from mono or stereo images by combining multiple un-

reliable information channels (color images, estimated

disparity, and estimated normals). The key insight is

that the above channels, although noisy, suffer from

different types of errors (e.g., in texture or depth dis-

continuity regions), and a suitable context-specific filter

can fuse the information to yield high quality depth

edges. To this end, we trained a CNN using ground-

truth depth data to perform this multi-channel fusion,

and our qualitative and quantitative evaluations show

significant improvement over alternative methods.

We see two broad directions for further exploration.

From an analysis standpoint, we have shown that data-

driven fusion can be effective for augmenting color in-

formation with estimated disparity and normals. One

obvious next step is to try incorporating even more in-

formation, such as optical flow from input videos. While

this imposes additional constraints on the capture pro-

cess, it may help produce even higher quality results.

Another possibility is to apply the general data-driven fu-

sion approach to other image analysis problems beyond

depth edge estimation. The key property to consider

for potential new settings is that there should be good
correlation between the various input channels.

Another area for future research is in developing

more techniques that leverage estimated depth edges.

We demonstrate how such edges can be used to refine

disparity maps and obtain a segmentation hierarchy

with a partial depth-ordering between segments. While
our work already demonstrates how such edges can be

used to refine disparity maps, we feel there are opportu-

nities to further improve depth and normal estimates.

The main challenge is how to recover from large depth

errors, as our depth edges only provide discontinuity

locations rather than the gradient magnitudes. It is also

interesting to consider the range of editing scenarios

that could benefit from high quality depth edges. For

example, the emergence of dual camera setups in mobile

phones raises the possibility of on-the-fly, depth-aware

editing of captured images. In addition, it may be pos-

sible to support a class of pseudo-3D edits based on the

depth edges and refined depth estimates within each

segmented layer.
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Holger Winnemöller received
his MSc from Rhodes Univer-
sity in South Africa, and his
PhD from Northwestern Uni-
versity in the USA, investigat-
ing perceptual aspects of Non-
photorealistic Rendering. Cur-
rently, Holger is a principal sci-
entist with Adobe Research, work-
ing on tools to support casual
creativity for novices. In addi-
tion to his academic work, Hol-
ger has published several pop-
ular iOS creativity apps.

Wilmot (Wil) Li is a Prin-
cipal Scientist at Adobe Research.
He joined Adobe in 2008 after
completing his PhD in Com-
puter Science in the Graphics
and Imaging Lab at the Uni-
versity of Washington. Wils re-
search lies at the intersection of
computer graphics and human-
computer interaction, and in re-
cent years, he has focused on
performance-based 2D anima-
tion and design tools for vector

graphics and fabrication.

Niloy Mitra is a Professor of
Geometry Processing in the De-
partment of Computer Science,
University College London. His
research interests include shape
analysis, computational design
and fabrication, and data-driven
geometry processing. He received
an ACM Siggraph Significant
New Researcher Award, a BCS
Roger Needham award, and cur-
rently holds an ERC Starting
Grant.


