
Assistive Visual Content Creation
Tools via Multimodal Correlation

Analysis

James W. Hennessey

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Engineering

of

University College London.

Department of Computer Science

University College London

March 31, 2018

Dedicated to my parents.

Declaration

I, James W. Hennessey, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

James W. Hennessey

Abstract

Visual imagery is ubiquitous in society and can take various formats: from 2D

sketches and photographs to photorealistic 3D renderings and animations. The cre-

ation processes for each of these mediums have their own unique challenges and

methodologies that artists need to overcome and master. For example, for an artist

to depict a 3D scene in a 2D drawing they need to understand foreshortening effects

to position and scale objects accurately on the page; or, when modeling 3D scenes,

artists need to understand how light interacts with objects and materials, to achieve

a desired appearance.

Many of these tasks can be complex, time-consuming, and repetitive for con-

tent creators. The goal of this thesis is to develop tools to alleviate artists from some

of these issues and to assist them in the creation process. The key hypothesis is that

understanding the relationships between multiple signals present in the scene being

created enables such assistive tools.

This thesis proposes three assistive tools. First, we present an image degrada-

tion model for depth-augmented image editing to help evaluate the quality of the

image manipulation. Second, we address the problem of teaching novices to draw

objects accurately by automatically generating easy-to-follow sketching tutorials

for arbitrary 3D objects. Finally, we propose a method to automatically transfer 2D

parametric user edits made to rendered 3D scenes to global variations of the original

scene.

v

Acknowledgements

I’d like to sincerely thank my advisor Niloy Mitra for his mentorship during my

masters and doctoral studies. Over the last six years I have learnt countless things

from Niloy. While the many technical skills I’ve learnt will be very useful, it will

be the lessons learned on choosing research topics, problem solving and collabo-

rating with others, that will be most valuable. I really thank him for his optimism,

encouragement to aim high and ongoing support.

I’d like to extend my gratitude to Holger Winnemöeller, Mira Dontcheva,

Wilmot Li, Bryan Russell and Eli Shechtman who mentored me during two in-

ternships at Adobe Research. Having the opportunity to collaborate which such a

varied group of respected researchers, helped with my own researcher development.

They all made significant contributions to various parts of the research presented in

this thesis. I’d particularly like to thank Bryan for his career and research advice

beyond my internship. I’d like to express my thanks to Han Liu who collaborated

on the How2Sketch project.

I’d like to show my appreciation to past and present members of the Smart

Geometry Group for their advice and encouragement: Melinos, Bongjin, Nicolas,

Martin, Chi-Han, Moos, Aron, Paul, Tom, Dan, Carlo, Robin, Tuanfeng and Yu-

Shiang. I’d particularly like to thank Paul Guerrero for his help with user studies

and useful discussions when working late at night. I’d also like to thank the VECG

group, along with my friends and colleagues at Adobe Research and Disney Re-

search. All of them parted various bits of wisdom to me over the years and I’ve

really enjoyed the great discussions on research and current affairs. I’d like to thank

the ‘VEIV Fun Group’ - Kelvin, Drew, Lucy, Sebastian, Jacob, David, Maria and

Acknowledgements viii

Theo - for always making me laugh and seeing the funnier side of the EngD process.

I’d like to thank my friends - Thom, Joe, Kieran, Nicola, Jamie, Sam, Fred,

Hettie, Walkies, Josh, Thomas, Campo, Will, Alex, James, Clarissa, Georgina and

the extended Southend-on-Sea gang - for always reminding me that there are more

important things to life than SIGGRAPH deadlines.

Most importantly I’d like to acknowledge my family: my siblings Tom and

Kate, and my parents Mary and John. I’d like to thank them for giving me a loving

upbringing and always supporting me with anything I’ve chosen to do in life. They

have all been a pillars of support throughout the last five years, particularly during

all of the paper rejections, without them I wouldn’t have started or finished this

thesis.

Contents

Declaration iv

Abstract v

Acknowledgements vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Assistive Tools . 2

1.3 Multimodal Correlation Analysis 3

1.4 Contributions . 4

1.5 Organisation . 5

2 Related Work 7

2.1 Image Manipulation . 7

2.2 Sketching and Sketch-based Interfaces 9

2.3 Edit and Style Transfer . 12

3 An Image Degradation Model for Depth-augmented Image Editing 15

3.1 Introduction . 16

3.2 Overview . 17

3.3 Method . 19

Contents x

3.3.1 Scene Decomposition and Completion 19

3.3.2 Image Degradation Model 24

3.3.3 Novel view synthesis . 25

3.4 Results . 26

3.5 Closing Remarks . 29

4 Generating Easy-To-Follow Tutorials for Sketching 3D Objects 31

4.1 Introduction . 32

4.2 Learning How to Sketch . 35

4.3 Generating Sketch Sequences . 37

4.3.1 Generating Primitives and Inter-part Relations 38

4.3.2 Creating Candidate Primitives 39

4.3.3 Selecting Candidate Primitives 41

4.3.4 Implementation details . 44

4.4 Presenting Sketch Sequences . 46

4.5 Results and Discussion . 49

4.6 Evaluation . 51

4.7 Closing Remarks . 57

5 Transferring Image-based Edits for Multi-Channel Compositing 58

5.1 Introduction . 59

5.2 System Overview . 63

5.3 Transferring Parameterized Edits 64

5.3.1 Augmented Render Channels 64

5.3.2 Mask Synthesis via Adaptive Image Analogies 65

5.3.3 Finding Edit-Dependent Weights 67

5.3.4 Adjustment Parameter Transfer 68

5.3.5 Implementation Details . 70

5.4 Interface . 72

5.4.1 Render Channel Selection For Editing 72

5.4.2 Parameterized Adjustments 75

Contents xi

5.5 Results . 75

5.5.1 Limitations . 77

5.5.2 Baseline Comparisons . 80

5.5.3 User Study . 82

5.6 Closing Remarks . 86

6 Conclusion 88

6.1 Summary . 88

6.2 Future Work . 90

Appendices 92

A How2Sketch Tutorials 92

B Derivation of Optimal Channel Selection 101

C Renderer Specific Augmented Render Channels 103

D Adjustment Parameters Implementation Details 105

E Scene, Edit and Transfer Descriptions 107

Bibliography 112

List of Figures

2.1 Related Work: Interactive Images 8

2.2 Related Work: The Drawing Assistant 10

2.3 Related Work: Image Analogies 12

3.1 Image Degradation Model: Example Input 17

3.2 Image Degradation Model: Method Overview 18

3.3 Image Degradation Model: Scene Decomposition 20

3.4 Image Degradation Model: Image Completion 23

3.5 Image Degradation Model: Degradation Model 24

3.6 Image Degradation Model: Novel View Synthesis 26

3.7 Image Degradation Model: Degradation Model Results 27

3.8 Image Degradation Model: Depth of Field Effect 29

3.9 Image Degradation Model: Failure Case 30

4.1 How2Sketch: Tutorials Overview 32

4.2 How2Sketch: Example Tutorial 34

4.3 How2Sketch: Sketching Guides 36

4.4 How2Sketch: System Overview 38

4.5 How2Sketch: Primitives and Relations 39

4.6 How2Sketch: Candidate Generation 40

4.7 How2Sketch: Selection from Candidates 43

4.8 How2Sketch: User Ability . 46

4.9 How2Sketch: Guide Lifetime . 47

4.10 How2Sketch: Results . 48

List of Figures xiii

4.11 How2Sketch: Model Deformations 50

4.12 How2Sketch: User Ratings . 53

4.13 How2Sketch: User Study Sketches 54

4.14 How2Sketch: Mechanical Turk Results 54

4.15 How2Sketch: Scaffold Accuracy 56

5.1 Edit Transfer: Example Edit Transfer 59

5.2 Edit Transfer: Problem Overview 61

5.3 Edit Transfer: System Overview 63

5.4 Edit Transfer: Sampling Strategy 69

5.5 Edit Transfer: Adjustment Parameter Transfer 70

5.6 Edit Transfer: Channel Selection 73

5.7 Edit Transfer: Results . 76

5.8 Edit Transfer: Testing Viewpoint Change Limits 78

5.9 Edit Transfer: Baseline Comparison 79

5.10 Edit Transfer: Comparison with Transfusive Image Manipulation . . 80

5.11 Edit Transfer: Comparison using Object Mask 81

5.12 Edit Transfer: Quantitative evaluation 83

5.13 Edit Transfer: User Study Quality vs. Time Scatterplot 85

A.1 How2Sketch Mixer Tutorial Experience Setting Novice Part 1 . . . 92

A.2 How2Sketch Mixer Tutorial Experience Setting Novice Part 2 . . . 93

A.3 How2Sketch Mixer Tutorial Experience Setting Novice Part 3 . . . 94

A.4 How2Sketch Camera Tutorial Experience Setting Apprentice Part 1 95

A.5 How2Sketch Camera Tutorial Experience Setting Apprentice Part 2 96

A.6 How2Sketch Train Tutorial Experience Setting Master Part 1 97

A.7 How2Sketch Train Tutorial Experience Setting Master Part 2 98

A.8 How2Sketch Roller Tutorial Experience Setting Novice Part 1 . . . 99

A.9 How2Sketch Roller Tutorial Experience Setting Novice Part 2 . . . 100

List of Tables

4.1 How2Sketch: Notation Table . 37

C.1 Edit Transfer: Augmented Render Channels 104

Chapter 1

Introduction

1.1 Motivation

As humans we inherently communicate visually, from our body language to creating

detailed architectural drawings. The reason why we prefer to communicate visually

has various theories. Some art theorists believe it is down to children learning to see

before they can speak [1]. While molecular biologists argue, it is due to more of our

brains being dedicated to visual processing than any of our other senses combined

[2]. Regardless of why we prefer communicating visually, it is humans have a long

history of creating imagery to convey ideas and emotions.

Our interest in visual communication dates back over 40,000 years starting

with primitive cave paintings of animals. The cave paintings were created using

tools to engrave into rock or by using natural pigments such as charcoal or clay [3].

These primitive drawings predate the invention of written language introduced by

the Egyptians around 2000 BC [3], perhaps another indication that communicating

visually is more natural to humans. The variety and quality of visual medium to

communicate has increased over the years. We now communicate using a wide

variety of techniques such as high-fidelity 3D models, manipulated photographs

and architectural designs. Driving the development of these medium have been the

advances in the tools available to artists and designers.

Visual content creation tools have seen incremental improvements, as well as

radical changes. From the various tools for traditional painting and drawing to

1.2. Assistive Tools 2

the domain specific software tools used today for 3D modelling or video editing.

The progression of technology means the tools available to artists have become

increasingly more powerful. However, they have also become increasingly more

complex and there are a number of challenges artists face.

Some of the challenges that artists face are more theoretical, such as drawing

from observation skills. Developing such skills is difficult, but once mastered can

be transferred to different applications that require an understanding of how the 3D

world should be depicted on a 2D surface. Other challenges are tool specific but

with reoccurring themes. For example, commonly an artist will perform the same

task multiple times and getting the exact same effect every time can be challeng-

ing. Both these theoretical and more applied challenges give an opportunity for

researchers to explore more intelligent tools to help artists.

1.2 Assistive Tools

To address some of the challenges outlined in Section 1.1 this thesis focuses on

creating assistive tools for artists and designers. We consider tools to be assistive

when designed to help visual artists achieve a specific task, such as drawing an

object more accurately or performing a type of image edit. To better define the

scope of assistive tools and how to evaluate their success, we outline some goals

and objectives below.

Goals. The goal of an assistive tool is to help artists more easily achieve a task

that is otherwise complex, tedious and/or time consuming. We recognise some

artistic endeavours are not about how efficiently artists can work or how accurate

their images are, however, this thesis is specifically interested in these qualities of

assistive tools. At the same time efficiency and accuracy needs to be balanced with

having the artist being able to achieve their vision. Therefore we want our assistive

tools to augment the artist’s creativity without taking away control, fitting naturally

in their workflow.

1.3. Multimodal Correlation Analysis 3

Objectives. To measures how well the proposed tools achieve these goals we have

specified a number of objectives that can be measured by qualitative or quantitative

analysis. For each of the tools we propose our objectives are to:

• Demonstrate that the proposed tool is more time efficient at achieving a given

task compared to existing methods.

• Demonstrate that the proposed tool is more accurate at achieving a given task

compared to existing methods.

• Get feedback from artists and designers to validate the usefulness of a the tool

in their workflow.

For each of the proposed tools we will measure their success against these

objectives.

1.3 Multimodal Correlation Analysis
An important concept throughout this thesis is the idea of a reference scene. A

reference scene is an input representation of the scene that the artist would like

to create or manipulate. For example, it could be an input photograph, 3D model

or rendering. If a reference scene is available to the artist we argue that assistive

tools can be enabled by creating different representations of the reference scene

and performing multimodal correlation analysis on these auxiliary representations.

Understanding how different modalities correlate can provide the intelligence that

an assistive tool requires.

There are many different way that multiple representations or modalities of

the reference scene can be created. For instance a 3D object is normally repre-

sented as a polygon mesh, but after some geometry processing, can be represented

as segmented primitives with inter-primitive relations. Another example of multiple

representations is how a 3D rendering can be represented as a single image (com-

monly known as a beauty pass) or as a number of light-path expressions [4] that

1.4. Contributions 4

composite together to create the beauty pass. Leveraging multiple representations

we demonstrate is useful in creating a variety of assistive tool as it allows for a

higher-level of understanding of the scene.

The final common step in creating assistive tools is understanding how differ-

ent signals correlate and using them to power an assistive tool. We use the term

correlation in a broad sense, simply using it to mean having an understanding how

two or more variables relate to each other. We use different techniques to find

correlation, as the best method to find correlation depends on what information is

useful in achieving a given task and how it can be utilised within an assistive tool.

1.4 Contributions
In our work we make three key technical contributions for creating assistive tools

for visual content creation. These technical contributions and much of the text

in this dissertation come from three peer-reviewed publications. These have been

published as follows:

• James W. Hennessey and Niloy J. Mitra. 2015. An Image Degradation Model

for Depth-augmented Image Editing. Computer Graphics Forum 34, 5 (Au-

gust 2015), 191-199. [5]

• James W. Hennessey, Han Liu, Holger Winnemller, Mira Dontcheva, and

Niloy J. Mitra. 2017. How2Sketch: generating easy-to-follow tutorials for

sketching 3D objects. In Proceedings of the 21st ACM SIGGRAPH Sym-

posium on Interactive 3D Graphics and Games (I3D ’17), Article 8 (March

2017), 11 pages. [6]

• James W. Hennessey, Wilmot Li, Bryan Russell, Eli Shechtman, and Niloy J.

Mitra. 2017. Transferring image-based edits for multi-channel compositing.

ACM Transactions on Graphics. 36, 6, Article 179 (November 2017), 16

pages. [7]

1.5. Organisation 5

The contributions made in these publications are now breifly summarised be-

low.

• In [5] the novel contribution is an image degradation model that predicts how

well an image edit can be performed in presence of coarse depth information.

The image degradation model can then be used to help guide artists when

performing an image manipulation.

• In [6] we propose an algorithm for automatically generating easy-to-follow

sketching tutorials for a user specified 3D model and viewpoint. These tutori-

als allow novice artists to learn structured techniques for accurately drawing

objects of their choice.

• In [7] the core contribution is an algorithm for transferring parametric image-

based edits to rendered scenes to global variations of the original scene. In

this paper we also introduced a new editing workflow to make the creation of

the parametric image-based edits easier. These tools allow for artists to more

easily make image-based edits, while, also being able to continue altering the

3D scene they are creating.

1.5 Organisation
The remainder of this dissertation is organised as follows:

Chapter 2, Related Work. This chapter provides an overview of the related

research literature from the human-computer interaction and computer graphics

research communities. Specifically, it discusses the history and development of

of image manipulation, sketching and sketch-based interfaces, and edit and style

transfer.

Chapter 3, An Image Degradation Model for Depth-augmented Image Editing.

In this chapter we investigate how even coarse depth information can be exploited

to address some of the fundamental challenges in image editing namely producing

1.5. Organisation 6

correct perspective, handling occlusion, and obtaining segmentation. To this end,

we propose a novel image degradation model that predicts how well an image edit

can be performed in presence of coarse depth information.

Chapter 4, Generating Easy-To-Follow Tutorials for Sketching 3D Objects.

Accurately drawing 3D objects is difficult for untrained individuals, as it requires

an understanding of perspective and its effects on geometry and proportions. Step-

by-step tutorials break the complex task of sketching an entire object down into

easy-to-follow steps that even a novice can follow. In this chapter we address this

problem by proposing an method for automatically generating easy-to-follow tu-

torials for arbitrary 3D objects. We demonstrate that our easy-to-follow tutorials

result in more accurate drawings compared to baseline tutorials.

Chapter 5, Transferring Image-based Edits for Multi-Channel Compositing. In

this chapter we propose a method to automatically transfer parametric image-based

edits made to rendered scenes across variations of object geometry, illumination,

and viewpoint. This transfer problem is challenging since many edits may be visu-

ally plausible but non-physical, with a successful transfer dependent on an unknown

set of scene attributes that may include both photometric and non-photometric fea-

tures. We compare our edit-transfer method to existing state-of-the-art methods

demonstrating that our method results in more accurate edit transfers. This chapter

also introduces a new editing workflow that allows artists to be more efficient in

creating image-based edits to rendered scenes.

Chapter 6, Conclusion. In the final chapter we summarise the proposed tools and

discuss future work in this field.

Chapter 2

Related Work

Assistive tools for visual content creation have a very broad body of related liter-

ature. In this chapter the most relevant research into digital tools that aide artists

and designers to create imagery are discussed, these predominantly come from the

computer graphics and human-computer interaction research communities. The

chapter starts by looking at research into image manipulation (see Section 2.1),

which, is most relevant to the image editing tools proposed in Chapters 3 and 5.

The research related to Chapter 4 is then discussed in Section 2.2, which, covers

sketching and sketch-based interfaces. Finally, Section 2.3 includes discussion of

edit and style transfer research related to Chapter 5.

2.1 Image Manipulation
In this section the literature most relevant to our image degradation model (see

Chapter 3) is discussed. This covers traditional image editing techniques, depth-

aware image editing and methods for rendering 3D models into images.

Traditional image editing. Given the popularity and ubiquity of images, signifi-

cant research has been devoted over the last decades in developing image editing

algorithms. Many of them are commonly available as standard options in image

editing packages like Gimp, Photoshop, etc. The central challenge we are most

interested in is to plausibly account for the lack of depth in input images. This

2.1. Image Manipulation 8

Figure 2.1: Many other works have looked at advanced image editing techniques, such as
Zheng et. al [8], whom use geometric proxies to approximate the geometry of objects in the
scene. The allows artists to easily manipulate the shape of objects in the image.

makes it difficult to correctly handle perspective and/or occlusion effects. Even

advanced methods like PatchMatch [9] fail when scenes are cluttered or a texture

changes with the perspective of the object. In the context of segmentation, the com-

monly used GrabCut segmentation algorithm [10] cannot satisfactorily segment

objects from different depth with the same appearance. In Chapter 3 we improve

the results of these algorithms by the use of geometric planar primitives. It is worth

noting research conduced concurrently and subsequently to ours also overcome the

limitations of PatchMatch [9] and GrabCut [10]. The state-of-the-art techniques

in semantic segmentation [11, 12, 13, 14, 15, 16] make use of advanced deep

learning convolutional neural network (CNN) architectures, such a fully-connected

networks, region based CNNs and encoder-decoder networks. Similarly advances

in image completion make use of deep learning approaches, particularly with gen-

erative adversarial neural network (GAN) architectures [17, 18].

Depth-aware image editing. Many depth-aware solutions have been proposed to

tackle specific image editing use cases and problems. For example RepFinder [19]

use repeated objects in a scene to assist with image completion and depth ordering,

while, [20] use vanishing points for artistically changing image perspective. We

approach the problem in Chapter 3 by using noisy depth information and want to

deal with these challenges for more general scenes.

A recent approach for editing man-made objects in 3D is to allow the user to

create 3D proxies for objects in the scene. One example approximates objects with

cuboids [8] and another generalized cylinders [21]. The results for both are im-

2.2. Sketching and Sketch-based Interfaces 9

pressive but require substantial and specialized user-interaction [22]. Our approach

in Chapter 3 also uses geometric primitives for editing objects in 3D, however, we

demonstrate that it is not necessary to accurately parameterize the objects for a

range of interactions.

Our application of parallax photography in Chapter 3 shares motivation with

viewpoint changes from a single image demonstrated by [23]. Their application

again has significant interaction to assign a depth to each segment. Tour into the

picture [24] allow users to make animations from a single image by changing view-

points, but do not complete occluded regions or achieve a parallax effect.

Rendering 3D Models in Images. Recent applications combine images with 3D

models with impressive results in either editing the scene [25] or realistically com-

positing objects in the scene [26]. These require 3D models, that match objects in

the scene, to be available for edits to be made. This setup is the same as the one

used in Chapter 5, however, we focus on creating and transferring image-based ed-

its to these scenes. In Chapter 3 we only use information from the original input

photograph and aim to use the depth information as go between the image and the

3D model. RGB-D images have become increasingly popular and many methods

have been proposed to address the common challenges of segmentation and depth

map completion [27, 28, 29].

Our Chapter 3 application of parallax photography can be compared with [30]

who create Parallax Photographs from LightField images. Their results are im-

pressive but as a Lightfield is sampling the ray space the input is a lot richer (and

heavy-weight). Instead RGB-D images are much easier to acquire. However, the

simplicity introduces a number of new problems such as segmentation, occlusion

and image completion.

2.2 Sketching and Sketch-based Interfaces

This section discusses the literature around sketching and sketch-based interfaces

relevant to our tool in Chapter 4. The section covers assisted drawing tools, systems

2.2. Sketching and Sketch-based Interfaces 10

Figure 2.2: An excellent example of an assistive tool for learning to draw is The Draw-
ing Assistant [31]. The tool generates automatic guidance over an input photograph and
interactive feedback to help novices learns drawing-from-observation skills.

for creating tutorials, theoretical research into drawing expertise and methods for

generating or utilising line drawings.

Assisted drawing. Various assistive tools have been proposed to assist a user

in sketching: Correcting user input based on geometric analysis of the users

input strokes [32, 33, 34]; relying on an underlying image to guide the user

[31, 35, 36, 37]; or using crowdsourced data (e.g., many sketches) to improve

the users drawing [38, 39, 40, 41, 42] at a local stroke level. Our work in Chapter 4

focuses on suggesting a meaningful drawing order and easy-to-construct guides

for accurate depiction of perspective and proportions. The mentioned related work

on Stroke correction or beautification is orthogonal to our main contribution and

may be used to complement the contour drawing phase of our sketching tutorials.

Other assisted sketching systems take as input 2D sketches and interpret them as

3D curve networks [43]. More advanced methods in the Sketch-based interfaces

literature [44, 45, 46] use 2D input to infer 3D geometry or surface normals for

complex shading. We focus on the automatic generation of sketching tutorials,

rather than automatic inference based on the sketched curves.

Tutorials. A good tutorial greatly facilitates understanding. Many attempts have

2.2. Sketching and Sketch-based Interfaces 11

been made to automatically generate high-quality tutorials for different applica-

tions. A digital drawing tutorial system was proposed by [47] that allows an expert

to create tutorials for novices. Tutorial generation systems [48, 49] for specific

sketching tasks have also been proposed, for example drawing a single scene with

pre-defined objects, or ‘eyes’. Grabler et al. [50] developed a tutorial system for

photo manipulation tasks. In contrast, the focus of our method in Chapter 4 is on

generating tutorials for sketching 3D models of man-made objects.

Drawing expertise. Tchalenko [51] found that novices and professional artists

have comparable accuracy when performing basic line drawing tasks (straight lines

and simple curves). However, in a follow-up study [52], he showed that when

copying complex artworks, novices made significantly more errors than artists. The

main difference in drawing strategy was that experts divided complex lines into

easy-to-draw short segments. Schmidt et al. [53] found that experts made qualita-

tively similar errors to non-artists, indicating that perspective drawing is hard, even

for trained users. Particularly for off-axis viewing angles, drawing error increased

significantly. In an observational study, Grimm [54] found that artists commonly

used a coarse-to-fine strategy starting with blocking shapes and finishing by draw-

ing detailed items at the end. Our tool in Chapter 4 assists the user by breaking

the drawing process up into basic steps that are easy to execute and by explicitly

indicating vanishing line directions.

Line drawings. Many methods for generating stylized artistic renderings of objects

have been proposed (see [55] for a survey). We leverage stylization in Chapter 4 to

visually distinguish the various line types of our tutorials (perspective lines, guides,

contours, etc). Other researchers investigated which features artists typically draw

to convey 3D shape [56, 57, 58, 59]. Finally, [60] and [61] infer plausible contour

ordering from 2D and 3D inputs, respectively. While the derived sequences are

plausible, they are not tailored for tutorials and do not provide specific guidelines

to make them easy to follow.

2.3. Edit and Style Transfer 12

Figure 2.3: A seminal work in the style transfer literature is Image Analogies [62] pro-
posed by Hertzmann et al. The framework allows the user to provide an input image (A),
a stylised version of that image (A′) and a target image (B). The algorithm then automati-
cally generates an image (B′) such that its relationship to B is analogous to the relationship
between A and A′.

2.3 Edit and Style Transfer
This section explores related work for our edit transfer tool in Chapter 5. It dis-

cusses 3D appearance editing as a form of edit transfer, 2D edit transfer algorithms

and parametric edit transfer techniques.

3D Appearance Editing. One approach to editing a 2D image of a rendered 3D

scene, then transferring the edit to global variations on the 3D scene, would be to

infer the 3D appearance edit. Having the appearance changed in 3D means the edit

would automatically be transferred to any 3D scene changes. Subsequently, there is

a significant body of work on manipulating the appearance of rendered 3D objects.

In particular, many of these methods help users adjust the output of physically-

based rendering techniques via “artistic” controls, such as scribble based material

appearance transfer [63], relighting a scene using a lighting paint brush [64], explot-

ing image-space repetitions to transfer edits [65], or using voice to interactively edit

image edits [66]. These are summarized in a recent survey by Schmidt et al. [67].

While such controls are designed to facilitate the editing process, making specific

adjustments to visual elements of a rendered scene is often still quite challenging

given the complex interactions between light, materials, and geometry within most

scenes. Moreover, many edits that artists want to make are either non-physical in

nature (e.g., boosting and muting various highlights on an object) or much easier to

specify in image space (e.g., emphasizing rim lighting at specific object contours).

Finally, in some cases, the artist who creates the final, composited product image

2.3. Edit and Style Transfer 13

may simply have much more familiarity with 2D image editing tools than 3D soft-

ware. As a result, in Chapter 5 we focus on image-based retouching workflows

rather than 3D appearance editing.

Another type of 3D appearance editing that is typically used for visual ef-

fects in computer-generated movies and animation is node-based compositing. For

example, Nuke [68] is a popular commercial tool that supports this type of com-

positing. In such tools, masks are defined based on object or material ids, and

a user-specified set of parameter adjustments are applied to the entire object or

material based on these masks in each rendered frame. In contrast, our goal is

to represent and transfer edits that are localized to specific parts of an object or

material.

2D Edit Transfer. Previous work proposes a wide variety of techniques that fa-

cilitate image editing operations [69, 70, 9, 65, 8, 71, 72, 5]. The most relevant to

our work are methods for transferring image edits across different images. Some

approaches leverage inter-image correspondences to transfer edits to different view-

points of the same scene or people [73, 74, 75, 76, 77, 78]. However, even with

access to perfect correspondences, such methods are not sufficient for our problem

in Chapter 5, since many retouching edits relate to lighting-dependent features (see

Figure 5.9). An alternative approach is to use the editing history from the user inter-

face [50, 79] or history inferred from the exemplar edit [80] to transfer edits to new

images. Our edit transfer method is agnostic to the sequence of editing operations

and only requires the final edited exemplar image. Our method builds on patch-

based synthesis approaches [81, 82, 83, 84] to transfer edits. More specifically, our

contribution is a synthesis method adaptive to the user’s edits.

We can also view image-based style transfer techniques as a form of edit

transfer [62, 85, 86]. However, such methods also have drawbacks. The neural

network-based style transfer of Gatys et al. [86] can be difficult to control precisely.

Image analogies [62, 85] provides a different formulation, but determining the ap-

propriate guidance channels to successfully transfer edits is non-trivial, as noted

2.3. Edit and Style Transfer 14

already in Section 5.1 and in Figure 5.2. In addition, all of the aforementioned

image-based techniques aim to transfer or synthesize the edit itself in the target

image. In contrast, our goal is to transfer spatially localized parameterized edits

that can be further refined by the artist.

Parametric Edit Transfers. Finally, some previous work has proposed techniques

for transferring parameterized edits in the domains of 3D modeling and 2D vector

graphics [87, 88, 89, 90]. These methods demonstrate the utility of parameterized

edit transfer for various content creation tasks. In Chapter 5, we present strategies

for supporting a related type of edit transfer in the context of image-based edits to

rendered content.

The following chapter is the first of our assistive tools. The tool focuses on

helping artists make 3D image manipulations to 2D photographs.

Chapter 3

An Image Degradation Model for

Depth-augmented Image Editing

Photographs remain the most popular medium to capture our surroundings. Al-

though significant advances have been made in developing image editing tools,

some edits remain difficult. One of the key challenges when performing image

edits is to intelligently account for unknown scene geometry. To overcome this

challenge we explore an assistive tool for the specific task of generating parallax

photographs. Our tool takes a colour photograph as the input reference scene and

a coarse depth map as a second axillary scene representation. To create our assis-

tive tool, we investigate how multimodal correlation analysis of the coarse depth

information and the photograph can be used to address some of the fundamental

challenges in image editing namely producing correct perspective, handling occlu-

sion, and obtaining segmentation. To this end, we propose a novel image degra-

dation model that predicts how well an image edit can be performed in presence

of coarse depth information. Technically, we create proxy geometry to summarize

available depth information, and use it to predict occlusions and ordering between

image patches, complete occluded regions, and anticipate image-level changes un-

der camera movement. We evaluate the proposed image degradation model in the

context of parallax photography from single depth images.

3.1. Introduction 16

3.1 Introduction

Images remain the most dominant and ubiquitous of visual mediums. A vast selec-

tion of tools exists supporting various image editing and manipulation tasks. Typi-

cally, users are interested in manipulating scene content or camera pose in order to

mimic being in the original 3D scene. However, the lack of actual geometry and

depth information makes such edits theoretically impossible to perform correctly.

Beyond full scale 3D acquisition, one can alternatively capture a lightfield of

the scene to accurately support many advanced manipulations (e.g., change in cam-

era pose, simulate depth of field effects, etc.). This, however, comes at the cost of

specialized and costly imaging setup. In this paper, we show that even very coarse

and incomplete depth information can vastly simplify many image processing tasks.

This is particularly relevant given the growing ubiquity of depth sensors that cap-

ture high resolution RGB information with loosely synchronized noisy depth infor-

mation. We demonstrate such depth information can be used to plausibly handle

occlusion, perspective, and completion effects — all from single view inputs.

More interestingly, we propose an image degradation model that predicts the

success likelihood of a proposed manipulation. The motivation behind the degrada-

tion model comes from two observations: (i) image completion algorithms are lim-

ited and can leave undesirable artefacts and (ii) by introducing depth information to

an image it enables the control of occlusions by changing camera viewpoint. The

objective of the image degradation model is to identify poorly completed regions

and prevent them from being revealed. Technically, we use the rough depth infor-

mation to help create a planar proxy based abstraction of the input image. We pro-

pose an iterative algorithm to segment the input, while estimating the corresponding

planar proxies to act as billboards for the respective segments. The information is

then used to create a layered set of planar proxies with infilled and clipped textures

per layer. Finally, we estimate a degradation score for new camera poses to predict

the plausibility of the synthesized image composition.

We evaluate our framework in the context of creating parallax videos from

single images. This application demonstrates a number of the challenges including

3.2. Overview 17

Figure 3.1: Example RGB-D input: Point cloud rendered from original camera pose (left)
showing large regions of missing depth information labeled in red. When rendered from
a different camera pose (right) the point cloud reveals many points have mislabeled depth
values. The coarseness of the data emphasises the need for decomposing the scene into
geometric proxies.

segmentation, image completion, perspective, occlusion and depth ordering in one

use-case. We evaluate the proposed method on a variety of scenarios with both

planar and non-planar objects, with and without texture.

3.2 Overview
Our application takes as input a single registered RGB-D image captured using a

camera and calibrated consumer depth sensor. The RGB-D inputs have high density

RGB measurements, but poor and incomplete depth information (see Figure 3.1).

The goal is to utilize the available information to create an image degradation model

to predict how successful typical image manipulations will be. In other words,

the degradation model characterizes edits as simple, or difficult and likely to show

artifacts.

In order to build such a model, we analyze an input RGB-D image to create

an intermediate representation. Specifically, we segment the input (either automati-

cally or semi-automatically), billboard-approximate them using planar proxies, ob-

tain the relative ordering of the respective planes, and infill the occluded regions for

each segment. We then build an image degradation model that captures the plau-

sibility of the infilled pixels. The effectiveness of the proposed image degradation

model is evaluated by using it to find suitable camera paths to create aesthetically

3.2. Overview 18

Figure 3.2: Method overview: (a) Input RGB + depth image; (b) incomplete point cloud
with noisy data (note the misalignment of RGB and depth); (c) segmentation, primitive
fitting, and depth completion; (d) occlusions identified and infilled using the primitives
(shown for one segment); (e) degradation model built for infilled pixels; (f) decomposed
and completed layered scene; and, (e) new view synthesized from user defined camera pose
is flagged by the degradation model as undesirable.

pleasing parallax photographs from single images.

Our pipeline (see Figure 3.2) has three stages: (i) Scene decomposition and

completion wherein we propose an iterative approach for image segmentation,

depth map completion, and planar proxy fitting. These primitives are then used to

determine occlusions and improve image completion. (ii) An image degradation

model is then created consisting of a degradation score for each of the occluded

pixels in each segment, completed in the previous step, representing the plausibility

of the completed pixel. The degradation model consists of a spatial term and texture

term. The intuitive idea behind these terms is that pixels close to known pixel values

and in a low texture region should receive a low degradation score, versus those

far from known pixels with a large amount of texture variations. Finally, we use

the decomposed and completed scene with the computed degradation model in the

(iii) camera path generation for a parallax photograph. Starting from user specified

camera key frames artists can utilize the degradation model to find a good camera

path between them.

3.3. Method 19

Contributions. Our key contribution is an approach to use coarse depth to simplify

image manipulation tasks. Central to this is a novel image degradation model that

captures the quality of synthetic regions of images. Additionally we propose a

method for creating proxy geometry to summarize coarse depth information and

exploit these proxies when dealing with common challenges such as segmentation,

occlusions, and perspective changes.

3.3 Method
All of our RGB-D images are captured using an Apple iPad and Occipital Structure-

Sensor. The StructureSensor has a range of 0.4m to 3.5m+ with precision 0.5mm at

40cm, 30mm at 3m. In practice the upper bound is further but precision degrades,

which, our pipeline mitigates. We use Occipital’s calibration app to register the

color and depth channels.

The RGB-D images are input into our system (see Figure 3.2 for pipeline).

We convert the data to a point cloud and estimate pointwise normals using local

PCA fitting. Note that the data is largely incomplete (marked in black in the depth

channel) and also there is misalignment between color and depth channels as seen

in the point cloud. The scene is then segmented using color and depth information

(automatically or with user guidance), abstracted with planar primitives, and com-

pleted using guidance from the obtained primitives.

3.3.1 Scene Decomposition and Completion

The main goal of this step is to simultaneously performs segmentation, planar

primitive fitting and pixel assignment. We couple these three steps in an iterative

approach that reassigns pixels to primitive to improve the segmentation and obtain

improved primitive fits. Figure 3.3 shows an example.

Scene decomposition. First, we segment the RGB image into SLIC SuperPix-

els [91] (Figure 3.3c) and fit planar primitives to the different segments. We encode

the fitted primitives in the normal-intercept form as n ·p+ d = 0. We cluster the

3.3. Method 20

Figure 3.3: Scene decomposition: simultaneously performs segmentation, planar primitive
fitting, and pixel depth assignment a) Input RGB image b) Input depth map; note incomplete
and missing regions c) SLIC Superpixels computed and planer primitives fitting d) Cluster-
ing of SuperPixels plane primitives e) Alpha-expansion graph-cut at SuperPixel level f) First
iteration of alpha-expansion graph-cut on pixel level g) First iteration of planar primitive fit-
ting and depth map completion h) Final image segmentation i) Final primitive fitting and
depth map completion j) Final segmentation and 3D proxies

superpixel plane primitives using k-means in the R4 space. Empirically, we found

k = 20 provided good results (Figure 3.3d). We again fit planar proxies to the su-

perpixel clusters to obtain a rough initial segmentation. Essentially, the clustering

step links superpixels sharing similar fitted planes. This allows non-locally linking

superpixels, for example walls are identified to be coming from the same plane even

under occlusion.

An alpha-expansion graph cut [92] is used to improve upon the initial super-

pixel segmentation. The graph cut allows (k+ 1) possible labels that a superpixel

could be assigned, representing the current segments and their primitives from the

superpixel clustering, and an additional possible assignment of a plane at large dis-

tance away. We use a unary cost for each label that encourage the average distance

between the label’s plane primitive and all points in a superpixel to be small and the

average angle between point normals and plane normal to be similarly small.

Eu(i) :=
1
N

N

∑
i=1

(|pi ·nprim +dprim|)+λ exp(−|nsp ·nprim|).

In our tests we set λ = 1000. Note that for pixels with no assigned depth value (i.e.,

3.3. Method 21

missing depth) we skip the unary term. If a whole superpixel has no depth data then

it is given a uniform cost for all primitives.

The pairwise cost for the graph encourages the neighbouring primitives to have

similar color and depth as:

Ep(i, j) := α exp(−|ci− c j|)+β exp(−|di−d j|) (3.1)

where, cx and dx respectively denote the mean color and depth values assigned to

the current segmentation primitives and normalized between 0 and 1. We used

α = 1000 and β = 200 in our tests. Again, we exclude the depth term here if one of

the pixels in a superpixels have no associated depth value. Finally, we refit planar

segments to the updated segmentation results. The SuperPixel level graph cut can

be seen in Figure 3.3e.

We then iteratively refine the segmentation and depth map but now working at

the pixel level. Each of the three iterations consists of performing a pixel level alpha

expansion, updating the primitives, and updating the depth map. Specifically, the

alpha expansion uses the same terms as previously. However, as we are working at

the pixel level the point to primitive distance is no longer averaged, nor is the color

or depth term in the pairwise cost. We update the depth map by setting each point’s

position as the ray-plane intersection for the assigned primitive. In the first itera-

tion, we only reassign the pixels with already known depth to correct flying pixels.

Subsequently, we visit the remaining pixels to also fill in regions with missing depth.

User assistance. In complex scenes, the above approach can fail to detect small

objects, or very similar objects (in depth and color) can be wrongly merged. This

is particularly a challenge for mid to far objects, where the corresponding depth

precision is particularly poor. In such cases, we allow the user to scribble objects

as specific segments. From the scribble marked regions, we compute the region’s

mean color, cµ , point normal, nµ , and depth value, dµ . Using region growing,

we append neighboring candidate pixels p to the current region if the following

3.3. Method 22

conditions hold:

|cµ − cp|< λc AND dµ −dp < λd AND nµ ·np < λn

where, λc = 65, λd = 0.3(dmax− dmin) and λn = 25◦. This rough segmentation is

then used instead of the output of the SuperPixel level alpha-expansion, and we

continue with the iterative segmentation, primitive fitting and depth map comple-

tion at the pixel level as previously described.

Billboarding. Note that we do not require the segmented regions to be planar.

While it is possible to work directly with the 3D pointcloud segments, we demon-

strate that billboarding the pointset is a much simpler and sufficient for many of

the target applications (cf., [93]). This drastically simplifies subsequent processing

steps while we can still plausibly handle perspective and occlusion effects. How-

ever, some segments are not well approximated by a plane and in some cases result

in a plane with poor orientation. Hence, we identify the non-planer segments based

on the corresponding fitting residue, and ‘billboard’ them fronto-parallel. Specifi-

cally, we assign the points to a plane with a normal facing the camera. This avoids

inaccurate planes being fitted to an object, causing issues later in our pipeline. We

found for scenes with a large range setting the residue threshold to 2000 best, scenes

with medium range 1000 and small range scenes 300.

Occlusion map. Next, we identify which regions on the primitives are occluded

by foreground objects. For each pixel we find the 3D point on each primitive using

ray-plane intersection. If the point’s depth is greater than the associated value in

the completed depth map and the pixel for this segment has no color information

(i.e., is not visible in the input image), we mark it as occluded. After searching over

all the points in a layer, we test if the marked occluded regions are connected to a

region on the primitive that is visible. This removes false positive occlusions when

the object has actually ended, but this is not known at the primitive level. We fur-

ther clip the primitives by extending the visible edges into the occluded regions.The

3.3. Method 23

Figure 3.4: Image Completion: (a) Segments in their original position from input image
(b) Segments made front-parallel to the camera using 2D homography (c) Occluded regions
determined and infilled using PatchMatch (d) Infilled segments returned back to original
pose.

result for each layer are pixels marked as being occluded that need to be infilled.

Fronto-parallel image completion. The final step is to complete the occluded re-

gions. As has been observed by [94] image completion works better with planer

surfaces. As our scene is positioned around the depth sensors optical center, we

transform each primitive so it is fronto-parallel with the camera by finding the

rotation between the primitive’s normal vector and the vector pointing down the

negative z-axis. We apply this transformation to the points in 3D, and find the cor-

responding 2D homography and apply it to the image (see Figure 3.4). Thus we

exploit the planar proxies to obtain fast and light-weight image warping.

To deal with shadows before performing image completion, we grow the

depth-occluded pixels slightly to include some visible pixels, removing any shad-

owing artefacts. We used the Photoshop implementation of PatchMatch [9] for

image completion. We warp the new completed image back to the original pose by

applying the inverse rotation.

3.3. Method 24

3.3.2 Image Degradation Model

We can use the created scene abstraction to propose a simple image degradation

model that predicts plausibility of image manipulations. In other words, it provides

a confidence score for the quality of the infilled pixels from the previous step and

penalize bad ones if they are revealed by proposed image manipulations. The over-

all degradation of the image is then the sum of pixel-level degradation scores visible

in the image. For example, in the case of parallax photography from a single image,

the degradation score is zero when the camera is at the origin, and increases as we

move further from the original camera pose, however, not uniformly in all direc-

tions. Hence, the score can inform the user which directions to pursue, and more

importantly which ones to avoid.

Our proposed per-pixel degradation score consists of two terms: a spatial term

measuring proximity to known pixels and a texture term measuring the plausibility

of infilled textures.

The spatial term captures the intuition that deeper inside occluded regions, our

guesses will have access to less local information for clues. We compute it by

using a breadth-first region growing approach starting at the boundary of known

and unknown pixels. The boundary grows by adding any of the occluded pixels in

the eight-connected neighborhood of the current boundary. We repeat the process

until all unknown pixels have been visited. The degradation score is set to 1 for the

Figure 3.5: Degradation Model: The heat-maps visualize the degradation model for one
segment. The spatial term (left) gently degrades the further known pixel values. The tex-
ture terms (middle) shows greater degradation around the sharp texture boundaries of the
checkerboard pattern but low degradation in the centre of squares. The combined final
term (right) shows how high textured regions close to known values will receive a moderate
score; such regions further from known pixels receive a high score.

3.3. Method 25

first layer and increments on each iterations.

The texture term captures the intuition that uniform (or structured) regions are

more likely to be plausibly infilled. We compute it using a similar region growing

approach. As the boundary region grows the degradation score is the average sum

of absolute difference between each pixel and its (2k+1)×(2k+1) neighbourhood

of visited or visible (i.e., known) pixels as:

texture(i, j) :=
1
N

k

∑
x=−k

k

∑
y=−k
|I(i+ x, j+ y)− I(i, j)|.

where, N is the number of pixels in the neighbourhood that have been visited and

the neighbourhood width k = 10. We estimate the final degradation score for a pixel

simply as product of the two terms. Figure 3.5 shows an example.

3.3.3 Novel view synthesis

We can now use the layered texture-infilled planar proxies to generate novel view

images, and also score the plausibility of the synthesized view using the proposed

degradation model.

In the context of parallax photography, we have to generate a new image for

each camera view along a path. The path is defined by the user who selects two key

frames parameterized by camera location and rotation; the remaining poses on the

path are linearly interpolated. Changing the camera pose is equivalent to applying

the same transformation to all of the points in the scene, so our camera actually

stays in one place and the scene is moved. To generate the new image equivalent

to moving the camera position we warp the planar proxies to a new pose using

homographies. To find the homographies we simply transform all the 3D points

by the transformation from the original camera pose to the new pose, and project

them onto the image plane. We store the points’ original positions in the image

plane and their new positions. Then, we estimate homographies to map the two

sets of points using a RANSAC-based approach from the OpenCV library. Finally,

we transform the points back to their original positions. We create the final image

composite using the painters algorithm, iterating over the layers, and updating the

3.4. Results 26

input image

synthesized image
(low degradation)

synthesized image
(high degradation)

degradation map (low) degradation map (high)

Figure 3.6: Novel View Synthesis: Input image (top) is used to create two novels
views (middle) with degradation models (bottom). The left example has a low degrada-
tion score as the revealed region only has moderate texture and is close to known pixels.
The right example has a high degradation score as it reveals a high texture region and far
from known pixels.

output image pixel if a lower depth value (closer to camera) is found. Figure 3.6

shows some example novel views and their degradation models.

3.4 Results
We evaluate our framework for creating parallax photographs with the degradation

providing feedback on the quality of the results. Figure 3.7 shows both of these in

action in a variety of settings; video results can be found on our project webpage1.

1http://geometry.cs.ucl.ac.uk/projects/2015/degradation model/

http://geometry.cs.ucl.ac.uk/projects/2015/degradation_model/

3.4. Results 27

input RGBD image layered + in�lled
3D scene abstraction

novel view synthesis
(low degradation)

novel view synthesis
(high degradation)

Figure 3.7: From top to bottom scenes: office, kitchen, living room, park1, park2. In each
row, we show the input RGBD image, the abstracted layered scene, novel view synthe-
sis with low degradation (inset showing degradation map), novel view synthesis with high
degradation (inset showing degradation map), respectively.

All the scenes are captured using a StructureSensor. Please refer to the accompany-

ing video for full sequences.

Figure 3.7-kitchen shows how occluded regions can be determined and com-

pleted effectively. The book stand, which is partly occluded by the cereal box is

reliably infilled (due to fronto-parallel rectification) and still ensures that the back-

ground remains visible.

We demonstrate how we can deal with large regions of missing depth, due to

3.4. Results 28

range limitation of consumer depth sensors, by allowing segments be approximated

by a far away plane in Figure 3.7-park1 and Figure 3.7-park2 . In these scenes, we

are still able to have a parallax effect with only two proxies in the scene.

The two statues in scenes park1 and park2, the pot in scene kitchen, and the

table a chairs in scene office show how non-planar objects can be approximated

by a plane primitive. By using the plane fitting error we can identify such objects

and set their normal facing the camera and using the segments centroid. This does,

however, lead to inaccurate perspective scalings in scene-office. Note that for non-

planar objects, we can also add a degradation term for views deviating from fronto-

parallel projection.

For each scene, we give examples of synthesized views with low and high

degradation scores. Qualitatively, the degradation models captures image blemishes

reasonably. For example, in the scene-office, moving the camera too far into the

scene reveals a poorly infilled region that gets flagged by a high degradation score.

In scene-kitchen, panning right and forward reveals a much smaller segment on

high-texture infill, compared to panning right. Similarly with the scene-living room

the poorly infilled floor is also flagged by the degradation model.

Some of the scenes required user-interaction for the segmentation step. Fig-

ure 3.7-office required the table legs to be highlighted to ensure the legs were

segmented with the table top; Figure 3.7-kitchen required user interaction to ensure

the orange tray was assigned to the back wall, not the wooden stand; and Figure 3.7-

living-room required the sofa and chair to be tagged as separate objects.

Depth of Field. The primitive abstraction and depth can be used in creating a

depth of field effect, see Figure 3.8. The user can control the camera’s depth of

field by setting a focus depth value and range: pixels within the depth of field

remain the same but those outside are blurred with a Gaussian kernel. To get

the complete depth of field effect the variance parameter for the Gaussian Filter is

made dependent on the difference in each pixel’s depth with the depth of field range.

3.5. Closing Remarks 29

Figure 3.8: Depth of Field: A DoF effect can be created using the primitives. The left
image shows the first frame of parallax photograph with the book currently in focus. The
right image shows the final frame with the checkerboard in focus. Throughout the sequence
the camera’s depth of field remains the same but as the camera moves forward the object in
focus changes.

Limitations. Our approach works best when there are only a handful of intersecting

primitives. In scenes such as Figure 3.9 where there are too many intersecting

primitives in close depth proximity and appearance, we are unable to segment and

fit primitives correctly. The problem is complicated as the noise level in the depth

measurement is higher than the depth separation of the scene planes. The initial

synthesis looks plausible for small view changes, but when the user makes bigger

view change it reveals glaring artefacts breaking the illusion.

We only used planes as proxy geometry in our implementation. While we

demonstrated that planes can solve many of the challenges, more complex primi-

tives are likely to provide more interesting results. For example, cylinders, where

appropriate, would provide more accurate occlusions and perspective changes as

the camera moves.

3.5 Closing Remarks

We have presented an assistive tool that can aide artists in creating parallax pho-

tographs from single depth images. Central to creating this tool is understanding

the signals present in both an input photograph and depth image. Understanding

these multimodal signals allows us to predict occlusions and ordering between im-

3.5. Closing Remarks 30

Figure 3.9: Failure Case: For this input scene (left) where there are many intersecting
objects we are unable to accurately fit primitives and determine occlusions (right). Without
accurate proxies we are unable to correctly complete the scene or synthesise new views.

age patches, complete occluded regions, and anticipate image-level changes under

camera movement. We argue that empirically we demonstrate that artists can more

easily generate accurate parallax photographs from a single depth image by simply

selecting two key frames, rather man manually creating each frame in the sequence.

We additionally qualitatively evaluate the accuracy of the image degradation model.

We argue that the tool meets the objectives set out for assistive tools, however, more

vigorous evaluation via a user study could support this more strongly.

Subsequent Work. Since this work was published there have been several ad-

vances in semantic segmentation [11, 12, 13, 14, 15, 16] and image completion

[17, 18]. In future work we would like to evaluate the image degradation model

using these more advanced algorithms in our pipeline. Potentially, the improved

segmentation could help with more accurate primitive fitting. Moreover, with im-

proved data-driven image completion, it would be interesting to further evaluate the

accuracy and usefulness of our image degradation model.

Next, in Chapter 4 we explore a very different type of assistive tool that gen-

erates sketching tutorials for novice artists. To enable this tool we use a reference

scene of a 3D model and through some geometry processing generate alternative

representations that can be used to enable our assistive tool.

Chapter 4

Generating Easy-To-Follow Tutorials

for Sketching 3D Objects

Accurately drawing 3D objects is difficult for novices, as it requires an understand-

ing of perspective and its effects on geometry and proportions. Step-by-step tuto-

rials break the complex task of sketching an entire object down into easy-to-follow

steps that even a novice can follow. However, creating such tutorials requires ex-

pert knowledge and is time-consuming. As a result, the availability of tutorials for

a given object or viewpoint is limited. In this chapter we present an assistive tool

How2Sketch (H2S) to address this problem. H2S automatically generates easy-to-

follow sketching tutorials for arbitrary 3D objects. Given a segmented 3D model

and a camera viewpoint as an input reference scene. H2S computes a sequence

of steps for constructing a drawing scaffold comprised of geometric primitives,

which helps the user draw the final contours in correct perspective and proportion.

To enable this we use multiple representations of the input reference scene, a 3D

model. Specifically, we generate different possible candidate variations of scaffold-

ing primitives that approximate the segmented 3D model. The algorithm analyses

the candidate scaffolding primitives and solves for an ordering among them that is

easy-to-follow. Specifically, H2S explicitly wants to allow small geometric modifi-

cations to the size and location of the object parts to simplify relative positioning.

Technically, we formulate this scaffold construction as a single selection problem

that simultaneously solves for the ordering and geometric changes of the primitives.

4.1. Introduction 32

4.1 Introduction

The ability to draw real-world objects is a useful and important skill across many

disciplines. Product designers draw daily as they generate and refine product ideas,

fine artists may spend hours in figure drawing classes learning how to replicate a

shape from the real world, while hobbyists use sketches for visual expression. Still,

sketching requires skill and practice. One of the major challenges in drawing real-

world objects is learning to draw what you see rather than what you know [95]. A

simple cylinder, for example, is known to have a circular cross-section with equal

widths at the top and bottom. However, when we actually see a cylinder, it is subject

to perspective distortion: circles become ellipses while projected radii diminish with

distance from the viewer.

Tutorials are commonly employed to teach novices how to draw a specific

object using correct drawing practices. Manual authoring such tutorials requires

significant expertise and time commitment even for trained artists. Consequently,

objects and viewpoints in existing tutorials tend to be limited and are chosen by the

expert, rather than the users of the tutorials. To address these issues, we present

an approach for automatically generating easy-to-follow tutorials for drawing part-

segmented 3D models from user specified viewpoints. Figure 4.1 shows parts of a

(a) easy-to-follow tutorial steps (only a few shown) (b) user sketch

step 6/28 step 7/28 step 9/28

step 15/28 step 24/28 step 28/28

(a) easy-to-follow tutorial steps (only a few shown) (b) user sketch

step 6/28 step 7/28 step 9/28

step 15/28 step 24/28 step 28/28

Figure 4.1: (a) We present How2Sketch, a system that automatically generates easy-to-
follow tutorials for drawing 3D models. Each generated tutorial presents a list of steps
for drawing scaffolding primitives that help the user draw the object in correct perspective.
To help the user draw the scaffolding, the tutorial shows how to construct guidelines that
anchor object parts relative to one another. User study feedback on the tutorials indicates
that users feel they are able to create more accurate drawings (b).

4.1. Introduction 33

tutorial generated by our system and the drawing by one of our study participants

based on that tutorial. Our algorithm targets man-made objects where part relations

and proportions tend to be inherently meaningful and crucial for accurate depiction.

Inspired by instructional books and online tutorials, we take explicit steps to

make a sketching tutorial easy-to-follow:

i. Focus on accurate inter-part proportions and relations via a drawing scaffold,

followed by detailing of the object contour;

ii. Proceed in a coarse-to-fine fashion, where object parts are abstracted as prim-

itives (e.g., cuboids, cylinders) over several levels of detail to build up said

scaffold;

iii. Propose a particular drawing order among the scaffolding primitives such

that those sketched later can be easily anchored (i.e., drawn with guidance)

off already drawn primitives; and

iv. Provide explicit steps for the construction of guidelines to accurately anchor

the scaffolding primitives.

Our key observation is that in easy-to-follow tutorials the dimensions and ar-

rangements of object-parts tend to have ratios that are easy to construct. For ex-

ample, it is easier to construct the center line of a rectangular face compared to

its one-fifth line. Tutorial authors choose to construct with such ‘easy ratios’ to

simplify the drawing process and to focus on the procedure, rather than incidental

and arbitrary measurements (see Figure 4.2). To apply this technique to existing

objects, How2Sketch proposes small geometric changes while keeping overall de-

viations from the source model minimal. Since in each step new primitives and

guidelines are anchored with respect to those drawn in the previous steps, the or-

dering of steps significantly affects the simplicity of ratios that can be employed,

and the incurred geometric approximations. This tight interdependence between or-

dering of primitives and their geometric changes makes the problem non-trivial. A

further challenge is to preserve the original inter-part relationships of objects, even

4.1. Introduction 34

Figure 4.2: A step-by-step sketching tutorial for drawing a car, ©Czajkowski. The task is
made simpler by breaking it into steps and by providing guidance about part proportions
and alignments.

under geometric perturbations. For example, in Figure 4.1 the coaxial relationship

between the mixer bowl and mixer blade is preserved.

Technically, we map the geometric adjustment and ordering of parts to a single

selection problem. We first generate a set of potential candidate primitives by enu-

merating different anchoring possibilities. Since such anchoring requires drawing

guidelines, and some guidelines are easier to construct than others, the algorithm

prefers anchoring possibilities that rely on easy-to-construct guidelines, such as the

top edge, bottom edge, center line, etc., of existing primitives. Our key insight is that

the problem of geometric adjustment and ordering of parts can be simultaneously

solved by selecting an appropriate subset from the candidate primitives, in order to

balance between geometric changes and ease of constructing necessary guidelines.

We test our algorithm on a range of examples and evaluate our algorithmically

generated easy-to-follow tutorials with a user study, which finds that H2S tutorials

can help both with objective as well as perceived accuracy of sketches, and are

easier to follow.

4.2. Learning How to Sketch 35

4.2 Learning How to Sketch
To inform the design of How2Sketch we studied several drawing books [95, 96,

97], consulted various sketching websites (e.g., Sketch-A-Day [98], Draw-A-Box

[99]), carried out an expert interview with a professional artist, and participated in

a drawing course.

Through this process we found that effective tutorials for drawing 3D objects

typically include the following:

• Parts are approximated by geometric primitives: Plane, cubes and cylinders

are heavily used to approximate shapes. They are easy to construct and verify

visually.

• Steps are coarse-to-fine: First, the overall object is scaffolded with approxi-

mate shapes, followed by finer contour details. Primitives are drawn sequen-

tially, in optimized order.

• Anchor shapes to each other: Shapes are drawn with respect to previously

drawn shapes, to aid with correct placement and proportions. Instructions for

positing shapes relative to each other use simple measurements (e.g., draw

box half way down the side, draw circle in the center of the rectangle), etc.

• Vanishing lines for perspective: Vanishing points are explicitly indicated to

aid the user to draw correctly.

How2Sketch supports the above tutorial features as follows:

(a) Scaffolding primitives. How2Sketch utilizes scaffolding primitives to geo-

metrically approximate each segmented object part. The system supports planes,

cuboids, cylinders, and truncated pyramids, as they allow for planar guidelines to

be used, which are simple to construct, and cover a wide range of shapes. (Note that

in our visualization, cylinders are shown as axis-aligned bounding boxes, since the

box faces are used for providing guidance for drawing ellipses for cylinder caps.)

In addition to scaffolding, we guide users in drawing ellipses to better approximate

4.2. Learning How to Sketch 36

some shapes.

(b) Ordering. Our algorithm provides the relative ordering of the scaffolding prim-

itives. Further, How2Sketch offers detailed, sequenced instructions for constructing

primitives.

(a) 1/2 guide (b) 1/4 guide (c) 1/3 guide (d) extend guide

(e) alignment guide (f) perspective guide

A A A A

B

C

B
BB

CCC

D D D D

E E E
G

FFF

H

I

J

K

L

M

N

N’

M’

Figure 4.3: Our system supports different forms of guidelines for drawing coplanar propor-
tions (a-d), for anchoring alignments (e), and for previewing 2-point perspectives (f). Please
refer to Sec. 4.2.

(c) Placement, alignment, and proportions. We support a set of coplanar guide-

lines (see Figure 4.3). Given a face ABCD, its diagonals help construct the 1⁄2

line EF (Figure 4.3a). Two levels of 1⁄2 lines produce a 1⁄4 line GH (Figure 4.3b);

while intersecting a diagonal BD with line CE produces a 1⁄3 line IJ (Figure 4.3c).

Similarly, we support extrusion towards a vanishing point as in Figure 4.3d where

ABCD is extended by reflection to form BCLK such that AB = AK. Finally, we also

support alignment, as in Figure 4.3e, M′N′ is aligned with MN.

(d) Perspective. To provide perspective information, we show the vanishing points

(if within the drawing area) and also show the vanishing lines leading to them (Fig-

4.3. Generating Sketch Sequences 37

ure 4.3f). How2Sketch supports sketching in 2-point and 3-point perspective.

4.3 Generating Sketch Sequences
Given a 3D object (S) segmented into parts and a desired viewpoint, our goal is

to establish an easy-to-follow sequence for drawing the object, starting with the

scaffolding and progressing to the contour details. We make it easier to draw the

scaffold by actively making small part-level geometric changes to facilitate relative

anchoring using a set of guidelines.

As described in Section 4.2, we have adopted simple procedures to accurately

draw guidelines at easy-to-construct ratios (1⁄2, 1⁄3, 1⁄4, 1×, 2×, etc). Object part

positions and sizes in the original models, however, rarely conform to such ratios.

Hence, we propose to modify object parts, so that they end up with part relationships

that are easy to draw. We motivate this choice twofold: (i) Scaffolding primitives in

tutorials like those generated by H2S are already approximations of real geometry

and thus contain a measure of error. Some of this error can actually be compen-

sated by adjusting the fit of contours within the scaffold. (ii) Accurate estimation

of lengths and ratios is difficult, even for experts, so errors are almost unavoidable.

By enforcing that parts relate via simple ratios for which reasonable geometric con-

structs can guide the user H2S can minimize per-part error and make better global

decisions about how to distribute the overall error.

Our algorithm proceeds in three main stages (see Figure 4.4): (i) generating

part-level primitives and encoding inter-primitive relations; (ii) creating primitive

Table 4.1: Notation table.

symbol denotes
S input part-segmented model
Pi primitive corresponding to the i-th part of S

Ri, j relation between primitive pairs (Pi,Pj)
C j Parent candidate that can be used for anchoring

Ck
j→i candidate for the i-th part primitive with (anchoring) parent from the

j-th part primitive, where k denotes the k-th such instance
C∗i set of all the candidate primitives generated for part primitive Pi

χ(X) indicator variable corresponding to the selection of X
Λ assignment of indicator variables denoting a set of selected candidates

4.3. Generating Sketch Sequences 38

segmented
input model

generate
primitives & relations

create
primitive candidates

select
valid + desirable cand.

create
tutorial view point

Figure 4.4: System Overview. Starting from a segmented input model and a user-specified
viewpoint, How2Sketch generates easy-to-follow step-by-step tutorials. The system auto-
matically makes subtle geometric modifications to simplify the tutorial steps.

candidates based on various inter-primitive anchorings strategies; and (iii) selecting

a valid and desirable set of primitives among the candidate selections. The result

implicitly encodes how to geometrically modify each part (both their dimension

and placement), and in which order to draw them. Intuitively, our algorithm pro-

duces an easy-to-follow primitive drawing sequence at the cost of deviating from

the original geometry in a controlled fashion. We now elaborate each step. Please

refer to Table 4.1 for symbols used in the following.

4.3.1 Generating Primitives and Inter-part Relations

H2S takes as input a pre-segmented 3D model and abstracts the model parts with

primitive shapes. In our implementation we support planes, cuboids, cylinders, and

truncated pyramids (see Figure 4.5a). For each part of the input model S, we use

least-squares to fit different axis-aligned primitive types and take the one with the

smallest residual. In case of ties, we prefer the simpler primitive. We denote the

primitive for the i-th part as Pi (the type of primitive is not explicitly indicated in

this notation).

Man-made objects often have dominant inter-part relations. We found it desir-

able to preserve such relations in the generated tutorials. Hence, we first detect such

inter-part relations and later preserve them in the generated tutorials. We simply test

(see [100]) each pair of primitives Pi and Pj for any (supported) relations. In our

implementation, we handle coplanar, coaxial, and common bisector plane relations.

In case of multiple relations between a pair of primitives, we prefer common bisec-

tor plane over coaxial over coplanar. We represent a relation using a binary variable

4.3. Generating Sketch Sequences 39

(a) (b)

cylinder

plane

cuboid

truncated
pyramid

common
bisector plane

Figure 4.5: Given a part-segmented input model S (top-left inset), the system abstracts the
parts as different primitives (a) and identifies inter-part relations. For example, here the
mixer bowl and mixer head primitives share a common bisector plane.

Ri, j where i and j respectively denote the primitives Pi and Pj (type of relation is not

explicitly indicated in this notation). If a relation is present, we mark Ri, j = 1 and

Ri, j = 0 otherwise. Figure 4.5 shows some examples.

4.3.2 Creating Candidate Primitives

We now describe the candidate primitive generation step that creates additional

primitives based on possible anchoring strategies. We use C∗i to denote the set of

all the candidate primitives generated corresponding to the primitive part Pi. Since

the original primitives (e.g. P1, P2 and P3 in Figure 4.6) are always candidates, we

start with C∗i := {Pi}. We generate candidate primitives in three stages:

(i) For each pair of primitives Pi and Pj, we generate candidates of the form

Ck
j→i, where j→ i indicates that a candidate is generated for primitive part Pi and

is anchored off Pj with k denoting different anchoring possibilities. For example,

parts can be anchored based on different guidelines described in Section 4.2 for

different face- or plane-based anchors. We append these candidates to the respective

candidate sets as: C∗i← C∗i∪{C1
j→i,C

2
j→i, . . .} (see Figure 4.6b).

(ii) The small part modifications introduced during anchoring in step (i) may

violate some of the relations Ri, j. For each pair of primitives (Pi,Pj) sharing a

relation, we add additional primitives to their candidate sets to restore the relations.

Specifically, corresponding to a candidate of the form Ck
j→i (created in stage (i)), we

create a new candidate of the form Ck′
i→ j such that Ck

j→i↔Ck′
i→ j are similarly related

4.3. Generating Sketch Sequences 40

(a) (b)

(c) (d)

1/2

1/3
1/4

y

x

P1

P2

P3

C1
1→2

C2
1→2

C3
1→2

Ck′
2→3

Figure 4.6: (a) Starting from initial primitives P1,P2,P3, for each pair of primitives we
generate several adjusted primitive candidates. Candidates are generated for each axis in-
dependently, for example, in (b) we show how using P1 as a parent several P2 candidates
are created by aligning its top edge to the 1/2 (C1

1→2), 1/3 (C2
1→2) and 1/4 (C3

1→2) guides on
the y-axis. (c) As P2 and P3 have a co-planar relation for each Ck

1→2 candidate a new P3
candidate (Ck′

2→3) is generated restoring this relation. This process is repeated both in the
other dimensions and to generate second-level candidates (see Section 4.3.2) to generate the
full set of candidates (d). This is an illustrative figure in 2D with only some of candidate
primitives shown.

as in Pi↔ Pj. We append all such relation-based additional candidate primitives to

the respective candidate sets, i.e., C∗i← C∗i∪Ck′
i→ j (see Figure 4.6c).

Note that in the above a candidate is allowed to be anchored from one or mul-

tiple parents, as each axis can be independently anchored. Additionally a candidate

can be partially unguided (e.g., the width and length of cuboid is guided but the

4.3. Generating Sketch Sequences 41

height is not) or completely unguided (e.g., it is simply the input primitive) (see

Figure 4.6). We defer further details to the implementation section. (iii) We allow

second-level candidates, i.e., candidate primitives as generated above are allowed

to act as anchors for other primitives creating a hierarchy. To this end, we simply

iterate one more time stage (i) and (ii) (e.g., in Figure 4.6d candidates Ck
1→2 create

second-level candidates for P3). Note that before starting this step, we remove the

undesirable candidate primitives with large changes in geometry or relative place-

ments (more details in the implementation section).

At the end of this stage, we have a set of candidates for each part Pi of the

input model resulting in the super set of candidate primitives of the form {C∗i} (see

Figure 4.7).

4.3.3 Selecting Candidate Primitives

Having generated multiple candidates, our remaining task is to select a set of valid

and optimal candidates, as explained next.

Valid candidate sets. We first characterize the notion of valid selections. We

use indicator variables χ(X) to denote if a candidate primitive X is selected (i.e.,

χ(X) = 1) or not (i.e., χ(X) = 0). We have χ(Ck
j→i) ∈ {0,1} for each Ck

j→i ∈ C∗i.

Let Λ denote a particular assignment for the indicator variables for all the candidate

primitives.

Among the various possible selections, not all the subsets of candidates of the

form Λ constitute valid selections. A valid selection of candidates should satisfy

three conditions:

i. For each part of S, exactly one candidate primitive should be selected;

ii. If a selected candidate primitive is anchored off one or more parent (candi-

date) primitives, then its parent primitive(s) must also be selected;

4.3. Generating Sketch Sequences 42

iii. If any two primitives Pi and Pj share a relation, then their corresponding se-

lected candidate primitives should also respect the same relation.

We now express the above conditions in terms of the indicator variables in Λ.

(a) We encode (1) as

∑
j,k

χ(Ck
j→i) = 1 ∀i. (4.1)

(b) We encode (2) as a quadratic constraint involving the binary selection vari-

ables as

χ(Ck
j→i)χ(C j)−χ(Ck

j→i) = 0 (4.2)

for each dependent pair Ck
j→i ∈ C∗i and its parent C j. Note that this condition

disallows χ(Ck
j→i) = 1 AND χ(C j) = 0, but allows any of the other three assign-

ments involving χ(Ck
j→i) and χ(C j).

(c) We now encode (3). Let two primitives Pi and Pj share a relation, i.e.,

Ri, j = 1. Let C∗i = {C1
∗i,C

2
∗i, . . .} be all the generated candidates for primitive Pi

and similarly C∗ j = {C1
∗ j,C

2
∗ j, . . .} for primitive Pj. Then for each pair of the form

Ck
∗i ∈ C∗i and Ck′

∗ j ∈ C∗ j that does not share the relation Ri, j, we require

χ(Ck
∗i)χ(C

k′
∗ j) = 0. (4.3)

This condition disallows χ(Ck
∗i) = 1 AND χ(Ck′

∗ j) = 1, i.e., candidate primitives

that do not share the same relation as their primitive parts cannot be jointly selected.

Thus, a selection Λ is valid if and only if Equations 4.1-4.3 are all satisfied.

Among all such valid selection sets, we next determine which one is the most desir-

able. Figure 4.7 shows a set of candidate primitives and a valid selection. Note that

as each candidate primitive has a unique id and anchoring hierarchy, the constraints

prevent dependency loops from being created.

Sequencing sketching as a selection problem. We balance the error due to mak-

4.3. Generating Sketch Sequences 43

Figure 4.7: From a set of candidate primitives (left), our algorithm selects a subset of
primitives that is valid and desirable as shown on the right. The selection implicitly encodes
in which order to draw the primitives and also how to change each primitive (size and/or
placement) such that the resulting tutorial is easy to construct. Please refer to the text for
details.

ing changes to the geometry with the difficulty of drawing arising from anchoring.

Specifically, we consider unanchored parts to be most difficult to sketch. Further,

among the anchored ones, we consider a primitive easier to draw if it requires fewer

guides. We model this difficulty of drawing as the cost Ee(Ck
j→i) with a lower cost

denoting easier to draw (see “Error functions”, below). The total cost is expressed

as:

Edifficulty(Λ) := ∑
i, j,k

χ(Ck
j→i)Ee(Ck

j→i). (4.4)

Selecting any primitive, however, incurs an associated error that we indicate as

Ed(Ck
j→i) due to deviation from original geometry. So, the total data cost of select-

ing a set of primitives is:

Eadjust(Λ) := ∑
i, j,k

χ(Ck
j→i)Ed(Ck

j→i) (4.5)

with a higher cost indicating larger geometric deviations from the original parts.

Thus, we arrive at the final formulation for desirable selection as,

Λ
? := argmin

Λ
(Eadjust(Λ)+Edifficulty(Λ)) (4.6)

subject to Equations (4.1)-(4.3) to ensure a valid selection. Thus, we have formu-

4.3. Generating Sketch Sequences 44

lated our problem as a quadratically constrained linear program.

Error functions. The above formulation requires metrics for Ee and Ed . We use

the following metrics in our implementation.

For the difficulty of drawing term Ee(Ck
j→i), we associate a higher cost for

anchors that are harder to replicate (e.g., requiring more construction lines). Specif-

ically, we set the cost to the number of guidelines divided by the area of the parent

plane where construction lines are to be drawn. This encourages fewer guides but

also using planes/faces with larger areas for drawing sketch guides. (The effect of

viewpoint is only considered at runtime as discussed in Section 5.4).

For the data error Ed(Ck
j→i), we sum the changes in length along each axis,

normalized by the original axis length, with the translation of the midpoint of each

axis, again normalized by the input axis length. For an unguided axis we set the

data error to the maximum of 2 to discourage unguided candidates.

Final drawing order. The solution to the above optimization directly gives us both

the ordering and the size and location modifications of the parts. The ordering is

represented as a directed graph, and we gain the final linear ordering via topological

sorting. Note that the directed graph may have a fork in the ordering of candidates

primitives. This implies that the relative drawing order of certain primitives are

not specified. We break such ties only at runtime once the user selects a view (see

Section 5.4).

4.3.4 Implementation details

We now clarify some implementation details. The 3D models were downloaded

(e.g., from Turbosquid) and manually part segmented (if part level segmentation

was missing). Segments that are not well approximated by one of the primitives

described above can be represented as a custom primitive (e.g., line) but such prim-

itives are excluded from our optimization step. Instead, their positions are updated

after optimization by enforcing existing relational constraints with optimized prim-

itives.

4.3. Generating Sketch Sequences 45

The candidate primitive generation works in two steps: first, we use the copla-

nar relations to generate candidate planes ck
i→ j, and then depending on the primitive

type we combine the planes to create a complete primitive Ck
i→ j (here, lowercase c

indicates a candidate plane rather than a complete primitive, C). This choice unifies

candidate primitive generation across primitive types (recall cylinders are processed

based on their axis-aligned bounding box).

For each pairwise coplanar relation Ri, j we have two participating planes in

Pi and Pj: at this stage the relation is undirected and we produce candidate planes

using both combinations ck
j→i and ck

i→ j. To generate a candidate plane, each axis

is considered independently then all combinations of axis pairs are used to create

planes ck
i→ j. An axis can be anchored by the parent plane using the end points of

the same axis. This means there are several anchoring possibilities. For example,

anchoring the vertical axis of Pi on Pj might involve anchoring the top edge of Pi

to the 1⁄3 line of Pj and the bottom edge Pi to the bottom edge of Pj. An alternative

might be to anchor the top edge of Pi to the 1⁄3 line of Pj and the bottom edge Pi

to 1⁄4 line of Pj. We initially generate all such candidates but to reduce the number

of candidates to select from we discard those where an axis length or translation

change by more than 10% of the input length.

Having generated all the candidate planes using all the pairwise relations, we

generate complete primitives by combining the different planes based on the primi-

tive type. To generate a complete cuboid primitive, for example, we find the missing

height axis from one of the other planes to complete the primitive. For truncated

pyramids we combine top and bottom planes with a height axis to make a truncated

pyramid. Finally, we repeat this process but use the first level candidates as the

parent primitives to generate second level candidates.

We use the Gurobi Solver [101] to solve the quadratically constrained LP as

described above. Typically the solver takes 1-2 minutes in the presented examples.

4.4. Presenting Sketch Sequences 46

4.4 Presenting Sketch Sequences
The sequence generated in Section 4.3 provides primitive ordering, sketching guide-

lines, and adjusted part geometry for drawing the scaffolding of the object. H2S

tutorials can be adapted further based on the user chosen viewpoint and user in-

dicated drawing level (novice/apprentice/master), which can be controlled interac-

tively. Our custom viewer indicates when guidelines can be erased and provides

hints for drawing in perspective and object contours.

Viewpoint. We use the user specified viewpoint to customize the tutorial as fol-

lows: (i) Although primitive ordering is determined based on anchoring strategies,

multiple primitives can anchor from the same parent, resulting in a tie. We break

such ties by first choosing the primitive that is closest to the user from the indicated

viewing position. (ii) The selected viewpoint can make some guidelines cumber-

some to draw because of limited space on the projected area of a primitive face.

We identify such instances by thresholding based on Ap/k, where Ap indicates the

projected area and k the number of guides necessary to draw the primitive. If a

primitive falls below a threshold of 0.01, we ask the user to simply ‘eyeball’ the

primitive without drawing intermediate guides. (iii) Finally, a segment that is oc-

cluded and its primitive does not help anchor any other visible primitive is deemed

unnecessary and hence is left out from the generated tutorial.

User ability. We adapt our tutorials to different sketching abilities by classifying

Novice Apprentice Master

Figure 4.8: User ability. The user specify a preferred drawing level (novice, apprentice,
or master) which determines the number of intermediary guides presented for each step.
For the ‘extend by 1/2’ step, novices (left) are shown 9 guidelines, apprentices (center) 6
guidelines, and masters (right) 3 guidelines.

4.4. Presenting Sketch Sequences 47

Step 1 Step 2 Step 3

Figure 4.9: Guide lifetime. Guides first appear in orange (left). In subsequent steps guides
that are no longer required are removed, while those that are to be reused are marked in blue
(middle, right).

the various guidelines as suitable for novice, apprentice, or master users. For ex-

ample, dividing a face of a primitive into halves requires three guidelines. A novice

is shown all the three, an apprentice only the 1⁄2 line itself, and a master is not pro-

vided with any intermediate guidance. Note that in all cases, the user is instructed

to divide the highlighted face into half by a text label in the viewer (see Figure 4.8).

Guide lifetime. In order to reduce the amount of guidelines on a sketch at any

point in time, we determine each guide’s lifetime to inform the users when a guide

can be safely erased. To this end, we first go over the list of generated guidelines to

identify the equivalent ones, and store their lifetime, i.e., when they first appear and

when they are last used. During the tutorial, a guideline is drawn in orange when it

first appears. If the guideline is used in any later step, it is changed to blue. After

the last step a guide is used, it is no longer shown. As a result, users do not have to

unnecessarily erase/redraw guides, which helps to reduce clutter as they sketch (see

Figure 4.9).

Vanishing points and ellipses. Vanishing lines and vanishing points are indicated

with respect to the paper boundary (shown as green corners) to help users better

position the lines. We additionally guide users in sketching ellipses on a primitive

face by using guides to the vanishing points. These guides intersect with the edges

of the face at the perspective mid-points, which are the points where the ellipse

should touch the face of the primitive.

4.4. Presenting Sketch Sequences 48

(d) train

(a) camera

(c) mixer

step 12/24 step 15/24 step 21/24step 17/24

step 6/34 step 9/34 step 23/24step 14/34

step 5/14 step 6/14 step 10/24step 7/14

step 9/27 step 11/27 step 23/27step 19/27

(b) roller

Figure 4.10: Example step-by-step tutorials generated by our system: (a) and (b) were
generated in the master-user setting, while (c) and (d) were generated in the novice-user
setting. Please refer to the supplementary materials for complete examples.

Contour ordering. Once the user has sketched the scaffolding and ellipses, we

guide them to sketch the contours. We progressively display contours on the modi-

fied underlying model segments, following the order determined by the primitives.

Already drawn parts are used to determine occlusion for the new primitives, thus

reducing clutter (see Figure 4.1).

Interface. H2S tutorials can be presented in a few different forms. They can be

navigated using an interactive interface, they can be printed (see supplementary

material on our project webpage1), or sequenced into a tutorial video. Text instruc-

tions can be synthesized, as needed.

1http://geometry.cs.ucl.ac.uk/projects/2017/how2sketch/

http://geometry.cs.ucl.ac.uk/projects/2017/how2sketch/

4.5. Results and Discussion 49

4.5 Results and Discussion

We used How2Sketch to generate sketching tutorials for four man-made objects -

a Digital SLR Camera, Kitchen Mixer, Train, and Paint Roller. For these models,

numerous tutorials depending on viewpoint and user ability can be generated. Parts

of the tutorials are shown in Figure 5.7 (see Appendix A and supplementary mate-

rial on project webpage for full sequences). We encourage the readers to compare

How2Sketch tutorials with existing online tutorials (e.g., Draw-A-Box [99]). Each

tutorial takes between 15 and 45 minutes (across the users who used the system)

to complete due to their varying complexity. The small changes made to the input

geometry by the method are illustrated in Figure 4.11. As desired, the alterations to

geometry are subtle but now enable simple anchoring strategies based on the altered

segment bounding boxes (also shown).

As demonstrated in Figure 4.10, our tutorials follow a coarse-to-fine strategy,

starting with a single primitive that can be used to anchor subsequent primitives.

Figure 4.10a shows excerpts from a tutorial sequence with master-user ability. Here,

the grip of the camera is anchored on the edges of the camera body and a 1⁄4 guide.

Additionally, the grip and flash are both extended by one half the depth of the main

body. The lens, an example of a second level anchoring, uses the flash for anchoring

by extruding 1×. Guides for ellipses are provided before contours are drawn.

In the paint roller tutorial in Figure 4.10b the handle anchors the roller using

the common bisector plane. The top edge of the roller is 1× the length of the handle.

The bottom edge is 1⁄2× the length of the handle but due to the limited projected area

and number of guides otherwise required, the step is unguided (as per Section 4.4).

Figures 4.1 and 4.10c both show novice-level tutorials for the food mixer but

from different viewpoints. The plane primitive for the base of the mixer anchors the

bowl using a planar relation and 1⁄2 guide. The common bisector plane between the

base and the main body of the mixer is used for anchoring the length of the main

body. The bisector plane is first drawn before being extended in both directions to

create the cuboid primitive. The Mixer’s stand is an example of a primitive with two

parents, being anchored off both the main body and base. Difference in viewpoint

4.5. Results and Discussion 50

(a) original models (b) modified models
Figure 4.11: (Left) Original models. (Right) Subtle changes proposed by our algorithm in
order to make the objects easier to draw.

between the two tutorials means that as one of the knobs is occluded from the view

chosen in Figure 4.10c, it is omitted from the tutorial (see Section 4.4).

The train example, Figure 4.10d, anchors the second carriage as 1× the length

of the first carriage and the top edge of the wheels using the 1⁄4 guide on the vertical

axis of the first carriage. The driver’s compartment is unguided.

4.6. Evaluation 51

Limitations. H2S only makes small changes to the input geometry. However, small

gaps between object parts can have important semantic meaning. An example of this

can be seen in Figure 4.11 where the main body of the mixer and the stand separate

slightly in the adjusted version. We know these two segments would be joined by

a hinge making such an adjustment unrealistic. Symmetry or regular structure can

similarly be lost from the small geometry changes. An example of this is the roller in

Figure 4.11, which ceases to be a perfect cylinder. Note that most of these violations

are difficult to spot unaided and tend to get masked by drawing inaccuracies. Finally

we find relations from the input segments but do not allow adjustments in geometry

to create a relation that was not already present. In the future, we might enable such

changes to allow for an even wider range of candidates.

4.6 Evaluation

To evaluate the effectiveness of the H2S tutorials, we compare to a simple step-by-

step tutorial that shows scaffolding primitives for each part of the object but does

not simplify the sizes or locations of the primitives to make them easier to draw. In

this Basic tutorial type, the scaffolding primitives are shown in order from largest

to smallest with a base primitive anchored to the ground plane. No guidelines are

shown. Please see the supplemental materials for the complete tutorials used in the

study.

Participants. We recruited 10 participants (ages 18-55, 6 men, 4 women) with

varied expertise in drawing. Two participants reported negligible drawing experi-

ence, four reported drawing once in a while, and four reported drawing at least once

a month. Three had taken college-level art classes or private/non-accredited art

classes. When asked (free-form) what they found most challenging about drawing,

4 mentioned perspective, proportions, scale, and relative positions. When asked to

rate their drawing skills on a scale of 1 (poor) to 5 (great), only 4 people rated their

drawing skills above 2.

4.6. Evaluation 52

Methodology. In advance, each participant filled out an introductory questionnaire

about their experience with drawing. Upon arrival, each participant was told that

they will be asked to draw two objects, a camera and a mixer, using two different

tutorials. Participants always followed a H2S tutorial first to disadvantage H2S to

any learning effect. The two objects (camera and mixer) counter-balanced with half

of the participants using the H2S tutorial type for the camera and half using the

H2S tutorial for the mixer. The H2S tutorial was set to the novice ability for all the

participants.

Before the H2S tutorial, participants were given a written handout (see sup-

plemental material) that described how to draw construction lines for 1⁄2, 1⁄4, and 1⁄3

guidelines and extending planes (see Figure 4.3). This written tutorial was designed

to give them context for what they would encounter in the H2S condition.

Both the Basic and H2S tutorials were followed using a 13” laptop; partici-

pants used the trackpad to advance forward and backward through the tutorial. All

drawings were done on paper. Each participant was given two pencils (HB, 0.3mm

and 0.7mm). They were allowed to use a provided straight-edge and eraser. For

creating each drawing, the participants were given a sheet of paper that included the

vanishing points and the ground plane of the first primitive. This initial anchoring

allowed us to easily compare drawings across users. All users drew the scaffolding

primitives first on the calibrated paper. For drawing the final contours of the object,

the moderator attached a transparent sheet to the paper with the scaffolding. This

allowed for easier digitization and separately compare the contour drawings and the

scaffolding primitives across users.

Participant filled out a questionnaire after drawing each object, indicating their

level of satisfaction with their drawing (1 - not at all, 5 - very much), perceived

accuracy of their drawing (1 - not at all accurate, 5 - very accurate), enjoyment with

the tutorial experience (1 - not at all, 5 - very much), and ease of following the

tutorial steps (1 - not at all easy, 5 - very easy). They also gave free-form responses

about what they liked about each tutorial type and how it could be improved. At the

end of the study, subjects were asked which tutorial type they preferred (Basic or

4.6. Evaluation 53

How2Sketch). We referred to the Basic tutorial type as the tutorial without guides

and the H2S tutorial type as the tutorial with guides. Each participant was given a

$25 gift card for his/her time.

User feedback. Nine out of ten participants preferred the H2S tutorial over the

Basic tutorial. For each of the four questions, the users preferred H2S over the

Basic tutorial (see Figure 4.12).

satisfaction accuracy enjoyment ease

How2Sketch basic tutorial

2.8 2.4
3.1 3.2

4.0 3.9 4.2 4.4

Figure 4.12: Average user ratings for satisfaction, perceived accuracy, enjoyment, and ease
of following were all higher for the How2Sketch tutorials than for the basic tutorials. Show-
ing standard error of mean (SEM) bars for N = 10.

An ANOVA across tutorial type and object drawn reveals a significant effect

of tutorial type on accuracy and ease of following tutorial (p<0.003), significant

effect on enjoyment (p<0.034), and marginal effect on satisfaction (p<0.058). The

object drawn did not have an effect on any measure, despite their varying difficulty,

and there was no interaction between tutorial type and object drawn.

Evaluating sketch quality. Figure 4.13 overlays the registered user sketches from

the different conditions on the original model for the condition (e.g., H2S model

after part level adjustments). While variation in contour placement is evident in

both tutorial types, the variation in the basic tutorial sketches is greater.

In the camera tutorials the basic version starts with the ground plane for the

lens and H2S with the ground plane of the main body. With this anchoring in the

4.6. Evaluation 54

Figure 4.13: User Study Sketches: All the user sketches overlaid on the target objects.
Sketches from following basic tutorials (top) show much greater variation in proportions
and alignment than sketches from following H2S tutorials (bottom).

MIXER object CAMERA object

basic

How2Sketch

basic

How2Sketch

n
u
m

b
e
r

o
f
p
a
ir
w

is
e
 c

o
m

p
a
ri
s
o
n
s

n
u
m

b
e
r

o
f
p
a
ir
w

is
e
 c

o
m

p
a
ri
s
o
n
s

probability of being judged more accurate probability of being judged more accurate

Figure 4.14: Bradley-Terry Model for the Mixer and the Camera Sketches produced by
users of our tutorials and evaluated by another user study with Amazon Mechanical Turk
rankers.

4.6. Evaluation 55

basic tutorial sketches, the width and length of the lens are accurate. However, the

lens height and the other three primitives have a variety of errors in proportion and

part placement. Comparing with H2S sketches, there are similar variations in the

height of the main body. However, the guided steps for the grip and lens show

reasonable consistency in positioning across the users. For the Mixer sketches -

where both tutorials start with the base plane of the mixer - there is much more

consistency of object part placements across users with the H2S.

As further validation, we conducted an additional user study using Amazon

Mechanical Turk (AMT). In the study, we presented users with two sketches of

the same object type overlaid and registered to their condition specific model (see

supplementary material). The two pairs of object could be from the same or differ-

ent tutorial types. We asked participants to “Please select the sketch that is more

accurate to the underlying model. Do consider the proportions, alignment and per-

spective. Please ignore style or shading”. The studies for the two objects were run

independently, so did not have the same responders. Each participant evaluated the

45 unique image pairs for one of the objects. Each study had 220 sets of responses.

AMT users were compensated $0.01 per comparison.

The H2S Camera tutorial received 128/220 votes in pairwise comparisons

against the basic tutorial. Similarly the H2S Mixer tutorial received 131/220 votes.

Using the binomial test to evaluate these results, we can reject the null hypothesis

with p<0.018 for the Camera and p<0.006 for the Mixer.

To evaluate the results further, we performed pairwise comparisons using

the Bradley-Terry model. We plot probability histograms for both objects in Fig-

ure 4.14. The bottom axis is the probability of being judged more accurate in a

pairwise comparison. The left axis is the number of pairwise comparisons that has

this probability. Visually we observe H2S tutorials - in both object types - are more

likely to be perceived as having higher accuracy.

Scaffold accuracy. To numerically evaluate accuracy we use the corners of the

scaffolding primitives. We first rectify the scanned sketches into a normalised coor-

4.6. Evaluation 56

dinate space using the corner registration marks on the paper. For both conditions,

we manually marked the 32 corner landmarks and 40 corner landmarks of all scaf-

folding primitives in the Camera example and the Mixer example, respectively.

For each point, in each condition across users, we computed a mean position,

standard deviation, and distance of the mean from ground-truth in 2D (Error) (see

Figure 4.15). Standard deviations across conditions were similar, which we take to

suggest comparable user drawing skills across conditions. For the Camera exam-

ple, 2D drawing error was 71% higher in the Basic condition compared with H2S

(highly significant with p<2E-10 using two-way ANOVA). For the Mixer exam-

ple the error was only 3.5% higher in the basic tutorial and was not statistically

significant.

(a) (b)

Figure 4.15: How2Sketch Scaffold Accuracy: The mean location of the scaffold primitive
corners plotted on the ground truth with the size of each bubble being the mean 2D error.

We explain the variation across objects as follows: The predominant guidance

in the Mixer H2S sequence is that many of the primitives share a common bisector

plane. There is, however, no guidance for the height of the primitives. Thus it is

unsurprising that the scaffold corners are not accurate compared to ground truth,

as many primitives accuracy rely solely on getting the height of another primitive

correct (see Figure 4.15b). We believe the guidance for the common bisector plane

helps with the alignment and perspective of the sketch, hence the perceived accuracy

4.7. Closing Remarks 57

improvement in the H2S condition from the AMT user study. In the Camera H2S

sequence there are no primitives that are solely dependent on a parent primitive with

an unguided axis, therefore the users are more accurate at drawing the scaffolding

(see Figure 4.15a).

Limitations. Our user study has two potential sources of bias: (i) By having users

follow H2S tutorials first we intended to disadvantage H2S against a learning effect,

however, this could have potentially introduced a bias in our user feedback regard-

ing enjoyment and satisfaction. (ii) By providing users with a tutorial on how to use

construction lines it could imply that construction lines are good practice, therefore

the absence of construction lines in the Basic tutorial could have biased the users.

In future studies randomizing the ordering of tutorials may help avoid these issues.

4.7 Closing Remarks
We have presented an assistive tool that can aide novice artists to sketch an object of

their choice. Continuing with the running theme in this thesis the tool uses multiple

representations of a reference scene to power the assistive tool. In this instance the

multiple representations are various candidate scaffolding primitives that approxi-

mate the object and the inter-primitive relations found in the input reference scene.

By analysing all of these modalities we are able to generate an easy-to-follow tu-

torial for sketching the input model. Through our user study we demonstrate that

artists find our tutorials easier to use compared a baseline tutorial. They also had

more satisfaction and enjoyment completing H2S tutorials compared to the base-

line. We also qualitatively demonstrate that sketches following our tutorials are

more accurate through a AMT user study. Through our evaluation we argue that we

have met all of the objectives of an assistive tools outlined in Chapter 1.

In Chapter 5 we propose the final tool in this thesis. Similar to Chapter 3 the

tool focuses on image editing but this time in the context of transferring image-

based edits for multi-channel compositing. To enable this tool the multiple scene

representations that are are used to find multimodal correlations are light-path ex-

pressions [4] that are output by commercial physically-based renderers.

Chapter 5

Transferring Image-based Edits for

Multi-Channel Compositing

A common way to generate high-quality product images is to start with a physically-

based render of a 3D scene, apply image-based edits on individual render chan-

nels, and then composite the edited channels together (in some cases, on top of a

background photograph). This workflow requires users to manually select the right

render channels, prescribe channel-specific masks, and set appropriate edit param-

eters. Unfortunately, such edits cannot be easily reused for global variations of the

original scene, such as a rigid-body transformation of the 3D objects or a modi-

fied viewpoint, which discourages iterative refinement of both global scene changes

and image-based edits. We propose an assistive tool to automatically transfer such

user edits across variations of object geometry, illumination, and viewpoint. This

transfer problem is challenging since many edits may be visually plausible but non-

physical, with a successful transfer dependent on an unknown set of scene attributes

that may include both photometric and non-photometric features. To address this

challenge, we use the same approach of using multiple representations of a refer-

ence scene and multimodal correlation analysis. Specifically, we create an aug-

mented set of photometric and non-photometric guidance channels of the input ref-

erence scene. Using the user’s original image-edit we then analyse the channels to

give an importance weighting to each of them. Finally, we use these weights in an

adaptively weighted image analogies formulation to transfer the edit. We demon-

5.1. Introduction 59

So
ur

ce
 V

ie
w

Ta
rg

et
 V

ie
w

(a) Input rendered scene (b) Parameterized image-based edits (c) Edit localization masks outlined

Figure 5.1: (Top) Input source view rendered using a set of photometric render channels.
(a) Composite of ALL PHOTOMETRIC channels. (b) The user applies 2D image-based edits
to specified channels such as: blurring the background object to create depth of field effect
(ALL PHOTOMETRIC channels); adjusting gamma, hue, and saturation to emphasise floor
reflections (REFLECTION channel); Making the eye sockets of foreground skulls appear to
glow blue by adjusting the hue, saturation, and lightness (DIFFUSE and GLOBAL ILLUM

channels). (Bottom) Given a target view (a) with a different scene configuration (skulls are
positioned in different 3D locations and orientations) (b) our method transfers the 2D image-
based user edits automatically. The right column (c) shows the outlines of the corresponding
localization masks for the two views. Multiple instances of the same object make this a
challenging scene. For baseline comparisons, please see supplementary material.

strate the usefulness of our tool in a variety of complex edit-transfer scenarios and

evaluate them in two separate user studies.

5.1 Introduction
Physically-based rendering algorithms have matured to the point where they are in-

creasingly used to create photorealistic product images. For example, IKEA reports

[102] that 75% of their catalogue images are rendered rather than photographed.

In addition to being more cost-effective than real photography, one key advan-

tage of rendered content is that it provides artists with greater editing flexibility.

While some edits can be easily achieved by changing 3D rendering parameters (e.g.,

changing the color or intensity of light sources), many other edits are not physically

valid and are thus difficult to express in 3D (e.g., removing distracting reflections,

emphasizing specific object contours). Artists typically make such non-physical

edits in 2D by editing the individual render channels (e.g., DIFFUSE LIGHTING,

SECULAR REFLECTIONS, REFRACTIONS, etc.) that together make up the final ren-

5.1. Introduction 60

dered result. The typical workflow is to mask out a specific element of the image,

like a specific reflection or object contour, and then either mute or emphasize it by

applying some parameterized adjustment (e.g., brightness, contrast, exposure, lev-

els). Many rendered images are “retouched” in this manner to produce the final

composited image. One such example is shown in Figure 5.1. There are several

video tutorials demonstrating this workflow [103, 104].

While editing multi-channel renderings is a powerful approach, it also has

some challenges. Most high-quality renderings include a large number of render

channels (typically 4–15), which requires artists to flip through many channels to

determine which one to edit. For many image editing experts who lack 3D ren-

dering expertise, this task is especially difficult since they may have little intuition

about which channels contribute to the image element they want to adjust. More

importantly, once the artist has made edits on one rendered version of a scene, those

edits cannot be re-used to create variations of the scene. For example, if a client

or art director requests even small changes to the position or orientation of objects,

lights or the camera, all the edits must be redone from scratch for the new scene con-

figuration. Another common scenario is inserting or replacing objects in the scene.

This unfortunate limitation adds significant inefficiencies to the authoring process

and discourages iterative design space exploration for rendered product images.

In this work, we propose a novel compositing workflow that addresses these

challenges. To retouch a rendered image, the user marks a region that requires an

edit. Our system then automatically identifies suitable render channels to modify

and, based on the selected channels, proposes a candidate mask (which the user can

refine if necessary). The user can then make a number of parameterized adjustments

- levels, exposure, gamma, blurring, hue, saturation, lightness - to modify the ap-

pearance of the masked region, and repeats this process until all the desired edits

have been made. Given a modified version of the 3D scene, our system automati-

cally transfers over all of the image-based edits, which allows users to quickly ex-

periment with variations in viewpoint, object positions, object configurations (e.g.,

replacing an object), and lighting effects while preserving the image-based edits.

5.1. Introduction 61

si
ng

le
 c

ha
nn

el
al

l c
ha

nn
el

s
ou

rs

Figure 5.2: Given an example edit for an input view (left) where the user masked out the
reflection on the red object (outlined in yellow) to be removed, the challenge is to transfer
the edit mask to a novel view (centre). Existing variants of image analogy can easily fail:
(top) a single channel (reflection channel) is not sufficient as it wrongly establishes corre-
spondence with the blue object; adding all the photometric channels (middle) with fixed
weights is also not sufficient as the channels that are not relevant to the edit corrupt the
correspondence, resulting in a bad mask transfer. (bottom) Our method, which adaptively
estimates weights for the different channels to best explain the example edit, results in a
successful edit transfer. The right column shows the resulting edit using the transferred
mask.

For example, Figure 5.1 shows several edits to rendering with multiple instances of

a skull being transferred to new scene configuration.

The main technical challenge in supporting this workflow is how to perform

the edit transfer. One approach is to formulate the task as an image analogies prob-

lem [62, 85], where the input is the original rendered image (A), the edited image

(A’), and an unedited rendering of the modified scene (B). The goal is to generate

the analogous edited version of the modified scene (B’). Previous work demon-

strates that providing the synthesis procedure with additional guidance channels

(e.g., PHOTOMETRIC RENDER CHANNELS, otherwise known as light path expres-

5.1. Introduction 62

sions [4]) can be very effective. However, choosing the right guidance channels is

not a trivial task. While the edited render channel is an obvious candidate, a single

channel is often not sufficient to characterize the edit in a unique way. On the other

hand, adding additional channels that are not correlated with the edit is problem-

atic since they add noise and corrupt the signal of the correlated channels, hence

can have a negative impact on the synthesized output. Figure 5.2 shows how such

problems can arise even in a very simple editing scenario. In short, transferring

image-based edits across different 3D scene configurations is a difficult task.

In our approach, we introduce a new image analogies formulation that auto-

matically adapts the weights for a large set of candidate guiding render channels

based on the characteristics of each edit. In particular, for each edit, we solve for a

sparse set of render channels that best reconstruct the edit via L1-regularized regres-

sion. This technique allows us to transfer edits that depend on a broad spectrum of

different scene features (e.g., normals, depth, lighting effects, etc.). Furthermore,

rather than synthesizing the appearance of edited image regions, we synthesize the

edit masks and then solve for the appropriate adjustment parameters in the modified

scene. This approach makes it convenient for users to refine the results by editing

the transferred masks and parameters.

We evaluate our method on a range of challenging edit transfer scenarios under

different scene variations involving object manipulation, illumination adjustment,

and viewpoint changes. In most cases, the automatically transferred edits success-

fully reproduce the modifications to the original scene configuration and require no

additional user refinement. In the few situations where the fully automatic trans-

fers are not completely satisfactory, small tweaks to the synthesized edit masks or

adjustment parameters are typically sufficient to achieve the desired result. We con-

ducted a user study demonstrating significant time savings compared to manually

transferring edits to different scene variations.

In summary, we present a novel editing workflow for multi-channel composit-

ing; develop a smart selection tool for identifying relevant render passes and au-

tomatically creating corresponding local masks; and formulate an optimization for

5.2. System Overview 63

Rendered 3D scene
+

Aug. render channels
(Source view)

Channels and mask  
selection

(Section 5)

Edited
source view

Modified 3D scene
+

Aug. render channels
(Target view)

Edits transferred
from source to target

(Section 4)

U
se

r s
pe

ci
fie

s
R

O
I +

 a
dj

us
ts

 p
ar

am
s

U
se

r m
od

ifi
es

3D
 s

ce
ne

e.
g.

, c
ha

ng
e

 o
bj

ec
ts

, v
ie

w
po

in
t

+ adjustment 
parameters

Figure 5.3: System overview. Starting from an input source view of a rendered 3D scene,
along with corresponding augmented render channels, the user may make a number of 2D
edits. To make an edit, the user first outlines a region of interest (ROI). Our method then
automatically determines a region mask and a selection of one or more relevant photometric
render channels for the edit. The user then makes a parametric adjustment within the region
mask to the selected channels to obtain an edited source view. In this example, the user
removes the wine glass reflection and adjusts highlights on the labels. The user may then
modify the 3D scene by replacing the 3D objects or changing the viewpoint to yield a target
view. Our system automatically transfers the user edits from the source view to the target
view. Text on green background denote the user interaction and blue text the computational
aspects of our method.

transferring local parametric edits in an adaptive Image Analogies framework.

5.2 System Overview
We illustrate our overall system in Figure 5.3. The input to our system is a 3D

scene configuration that includes one or more objects at the desired positions and

orientations, materials for those objects, a lighting setup, and a camera viewpoint.

Such configurations can be created with most 3D modeling and rendering software

(e.g., Maya, VRay). The user may also specify a background photograph in which

to composite the rendered scene. Given this input, we provide an interactive editing

tool that helps users specify and transfer parameteric image-based edits from the

initial configuration of the input scene (source view), to a modified configuration

(target view) that may involve a different viewpoint, lighting, object arrangement,

or in some cases, new objects with similar geometry. We represent image-based

edits as a 2D region mask that identifies the relevant part of the image to modify

and a parametric adjustment that is applied within the mask. As mentioned earlier,

each edit is applied to one or more specific render channels.

The main technical contribution is in our synthesis-based approach for trans-

ferring image-based edits from the source to the target view. Specifically, we intro-

5.3. Transferring Parameterized Edits 64

duce an adaptive version of Image Analogies that automatically determines how to

weight various candidate guidance channels in order to transfer each edit. We also

present an interface that helps users select and modify the appropriate render chan-

nels to specify the image-based edits in the source view. We now provide details for

these two aspects.

5.3 Transferring Parameterized Edits
Given a set of image-based edits in the source view, we transfer the edits to the

target view in two stages. First, we transfer the 2D region mask to the target view

using a new adaptive version of Image Analogies [62]. Next, given the transferred

region mask, we update the edit adjustment parameters for the target view. Before

describing the details of mask and adjustment parameter transfer, we first introduce

our set of augmented render channels that supports both of these steps.

5.3.1 Augmented Render Channels

The Image Analogies method is based on a repeated computation of a dense corre-

spondence field (or nearest neighbor field) using guiding channels from the target

to the source view. A critical challenge then is finding the right guiding channels

resulting in a correspondence field that would be appropriate for the task of transfer-

ring edit masks and adjustment parameters. Note that the desired correspondence

field may not simply be the rigid-body transformation of the 3D scene objects or a

dense 3D correspondence field between two different 3D shapes. Many common

edits, such as adjusting specular highlights or adding a halo around an object, may

depend on one or more photometric and non-photometric factors, such as specular-

ity, direction to light source, and the view-dependent silhouette of the object. Thus,

our approach leverages a diverse set of rendered guidance channels derived from

the 3D scene to help determine the correspondence between views.

Given a 3D asset with positioned lights or environment maps, we can output

a full global illumination render of the 3D asset using a renderer such as VRay or

Mitsuba [105]. Moreover, we can render a set of photometric channels, also called

light path expressions [4], that separate the different global illumination effects at

5.3. Transferring Parameterized Edits 65

each pixel. The different lighting effects can be diffuse or specular, and together

sum to the full global illumination render of the 3D asset.

In addition to the standard set of photometric channels, we also render a set

of complementary channels. Such channels are useful for finding edit-dependent

dense correspondences. For example, the bottle rim lighting example in Figure 5.7

relies on the distance to the silhouette of the object. We render a number of channels

relating to the 2D layout and 3D geometry of the object, such as surface normals and

distance transform to the object silhouette. Moreover, we found that including log-

channels log(Ai + ε), where Ai is a photometric render channel, boosts weak signals

and improves transfer results. We used ε = 0.001 for our experiments. Note that

for augmented render channels with multiple dimensions at each pixel, we separate

each dimension into its own augmented render channel. We normalize the Lab color

channels into the range [0,1].

The success of our method does not rely on a specific set of render channels.

The technique only requires a diverse superset of channels that are consistent be-

tween renderings. We demonstrate results using the VRay and Mitsuba renderers,

which generate different sets of augmented render channels. Appendix C lists the

specific set of channels for each renderer along with the render times.

5.3.2 Mask Synthesis via Adaptive Image Analogies

Given a set of augmented render channels A = {Ai} for the rendered scene in the

source view, a user edit eA in the source view, and augmented render channels B =

{Bi} for the rendered scene in the target view, our goal is to infer the user edit

eB for the target view. We parameterize a user edit in the source view as eA =

(XA,A′,θA), where XA are indices into the augmented render channels A indicating

which photometric channels were selected by the user for the edit, A′ is a real-

valued user mask, and θA are parameters for the adjustment within the mask A′

(see Section 5.4 for how edits eA are specified using our interface). Similarly, we

have eB = (XB,B′,θB) for the target view. We assume that the selected photometric

channels for the target view are the same as the source view, so we set XB← XA. In

this section we describe how to synthesize the user mask B′ in the target view.

5.3. Transferring Parameterized Edits 66

We formulate the mask synthesis task as one of finding an image analogy where

A : A′ :: B : B′ [62]. While one could explicitly reason about the 3D scene via tech-

niques for inverse rendering [67, 63, 106, 107, 64] to recover the unknown mask, we

argue that formulating the mask transfer task via image analogies is more flexible

as it allows transfer of visually plausible but non-physically valid user edits.

The Image Analogies formulation proposed by Hertzmann et al. [62] is a multi-

scale iterative optimization algorithm. At each scale every iteration starts by com-

puting a dense correspondence field given a previously computed B′. For every

target patch around pixel q a best-matching source patch p is found that minimizes

the following energy:

Eq(p) = ||A′(p)−B′(q)||2 +µ||A(p)−B(q)||2, (5.1)

where µ is a tunable scalar hyperparameter. Note that for the first iteration only

the second term is used so that an initial B′ mask can be synthesized. Given the

dense correspondences, B′ is updated by averaging the mask values for all overlap-

ping best-matched patches for every pixel q. The overall energy is decreased after

a few iterations and the result is upsampled to a finer scale until a solution (trans-

ferred mask and final correspondence field) at the finest scale is achieved. In [62]

the inputs are RGB images or steerable filter responses. More recently, Fišer et

al. [85] introduced StyLit, which uses photometric render channels as inputs to Im-

age Analogies for illumination-guided stylization of 3D renderings. We build on

the StyLit formulation for our task.

Transferring user-edit masks presents different challenges than the 3D render-

ing stylization transfer demonstrated in StyLit. As we will demonstrate in Sec-

tion 5.5, simply applying the StyLit Image Analogies formulation produces a trans-

ferred edit mask with significant artifacts. We identify two reasons for this failure:

(i) the information required for a particular edit transfer might not be present in the

standard photometric render channels; and (ii) StyLit treats each photometric render

channel equally in the image analogies formulation. For example, to adjust a spec-

ular highlight, the system needs knowledge of not only the specular component, but

5.3. Transferring Parameterized Edits 67

also the direction to the light source. Moreover, not all photometric render channels

are relevant to transfer the edit.

To address these issues, we leverage our augmented render channels to add

non-photometric information that can aid in the transfer. To make use of the ad-

ditional channels, we extend the standard image analogies formulation to one that

adapts the weights of the different augmented render channels to a given user edit

eA:

E(eA)
q (p) = ||A′(p)−B′(q)||2 +µ ∑

i
w(eA)

i ||Ai(p)−Bi(q)||2, (5.2)

where {w(eA)
i } are given scalar weights for the augmented render channels depen-

dent on user edit eA.

5.3.3 Finding Edit-Dependent Weights

The adaptive edit-dependent image analogies energy in Equation (5.2) requires

knowledge of a set of edit-dependent weights {w(eA)
i }, which guides the synthesis

algorithm to know which augmented render channels are important for synthesis.

We seek to automatically infer the edit-dependent weights given the user edit. This

is challenging as we do not know a priori what type of edit the user is making,

e.g., adjusting specular highlight or adding silhouette halo, or which channels are

important for the edit.

Since the desired weights are dependent on the user edit, and we do not have

training examples with synthesized masks B′ in the target view, we make the as-

sumption that rendered channels important to synthesize B′ in the target view are

the same as the ones important to synthesize images of the user edit in the source

view. As B′ is related to the user edit, we find that this is a reasonable assumption

that holds in practice and demonstrated in our final results. Moreover, we assume

that not all channels are important and there can be some redundancy due to having

an overcomplete superset of channels, meaning a sparse subset of all the channels

will be sufficient to successfully transfer edits.

We formulate our edit-dependent weight recovery problem as an L1-

regularized regression to synthesize the user-edited source view. Let IA be the

5.3. Transferring Parameterized Edits 68

image of the source rendered scene and IA′ the image of the edited source ren-

dered scene. We define the source edit-difference image at pixel location p as

∆A(p) = IA′(p)− IA(p). We seek to find the weights w(eA) = [w(eA)
1 , . . . ,w(eA)

N]T that

reconstructs the source edit-difference image from the augmented render channels

{Ai} for a set of sampled pixel location S,

w(eA)← argmin
w

∑
p∈S

(
∑

i
Ai(p)wi−∆A(p)

)2

+λ ||w||1. (5.3)

We use an L1 sparsity prior over the edit-dependent weights, weighted by hyper-

parameter λ to select augmented render channels important for reconstructing the

edit-difference image. Note that we use the Lab lightness channel for ∆A instead

of all color channels as we found that reconstructing the lightness channel provides

better correspondences when there is a significant change in color in the target view.

Sampling. Since there are often many fewer non-zero pixels in the edit mask A′

(dubbed inside mask pixels; we dub the complement set as outside mask pixels),

we do not regress over the entire edit-difference image ∆A. Instead, we balance

the number of inside and outside mask pixels by including only the hardest outside

mask pixels. The union of the inside and hardest outside mask pixels form the set of

pixels S. Formally, let k be the number of inside mask pixels. We find the k outside

mask pixels that are closest to the mean vector of the user-selected photometric

channels {Ai}i∈XA for the inside mask pixels. We also found that including pixels

around the edge of the inside mask pixels found via dilation improves results. We

used a unit dilation kernel of 3×3 pixels. This sampling scheme helps find weights

w(eA) that differentiate between regions with similar features for inside and outside

mask pixels. Figure 5.4 demonstrates the ability of this sampling strategy to find

features unique to the given edit.

5.3.4 Adjustment Parameter Transfer

Our goal is, given the synthesized user mask B′, to recover the user adjustment

parameters θB for the user mask (see Figure 5.5). To aid in the recovery, we first

seek to synthesize the image ĨB′ , which is an estimate of the edited target rendered

5.3. Transferring Parameterized Edits 69

(a) Sampling Strategies (b) Transferred edits w/ localization mask outlined

Figure 5.4: Using the source and target views from Figure 4.1 we show: (a) sampling
strategies overlaid on the source view (showing user-selected photometric channels), and
(b), the target view with resulting transferred edits. We only show the sampling and outline
of the transferred mask for a single edit (eye sockets). (Top) Naively sampling only the
masked region and immediate surrounding pixels (green) results in channels with non-zero
weights (LOG SPECULAR, LOG REFLECTION, LIGHT DIRECTION and HALF ANGLE) that
fail to uniquely describe the users edit and to transfer the masks. (Bottom) Our sampling
additionally samples hard negatives (magenta), resulting in selection of render channels
that characterizes the edit (LOG LIGHTING, SHADOW, LOG SHADOW and Z-DEPTH), and
successfully transferring the edits.

scene IB′ . We can then estimate the adjustment parameters θB by optimizing over

the adjustment that best matches the estimate image ĨB′ .

To synthesize the estimate image ĨB′ , we leverage the learned edit-dependent

weights w(eA) to reconstruct the edit-difference image ∆B from the augmented render

channels {Bi},

∆B(p) =

∑i w(eA)
i Bi(p). if p ∈ {p|B′(p) 6= 0}

0. otherwise
(5.4)

Here, we only synthesize within non-zero pixels in the synthesized mask B′. Given

the image of the target rendered scene IB, we obtain the estimate image ĨB′(p) =

IB(p)+∆B(p) at pixel location p.

5.3. Transferring Parameterized Edits 70

Given the estimated image of the edited target rendered scene ĨB′ , we can re-

cover the adjustment parameters θB by minimizing the following energy,

θB← argmin
θ

∑
p∈{p|B′(p)6=0}

||ĨB′(p)− IB′(p;θ)||2, (5.5)

where the image of the edited target rendered scene is given by

IB′(p;θ) = IB(p)+ ∑
i∈XB

B′(p)(fθ (Bi, p)−Bi(p)) , (5.6)

where fθ is a parameterized image adjustment function. We optimize the above

objective via grid search over the parameter space θB. We provide details of these

fθ functions and for the grid search in Section 5.4.2 and Appendix D when we

introduce our editing tool.

Figure 5.5: Adjustment parameter transfer. (Left) Baseline where we simply copy the user-
provided adjustment parameter from the source view. (Right) Our approach for adjustment
parameter transfer. Notice that simply copying the parameter results in a brighter reflection,
whereas our approach more closely matches the edited source view (Figure 5.7).

5.3.5 Implementation Details

User-specified masks can often be coarsely specified if a masked region in the user-

selected photometric channels {Ai}i∈XA is surrounded by black pixels. This is due to

many parameter adjustments having no effect in these black regions. Including all

of these masked pixels can lead to over-sampling pixels p where the edit-difference

∆A(p) is zero. This can make Equation 5.3 ineffective at choosing relevant features.

So as a pre-processing step we removed pixel locations p from the mask A′(p)

where ∑i∈XA
fθA (Ai, p) is less than 10−3. In an additional pre-processing step for

5.3. Transferring Parameterized Edits 71

gaussian-blur edits we set Ai(p) = fθA (Ai, p) as the blur operation has a spatial

extent not captured in Equation 5.3 as it does not take into account neighbouring

pixels. This pre-processing allows for edits with a spatial extent to work in our

formulation.

We used a CPU C++ implementation multi-scale guided synthesis algo-

rithm [85]. Similar to their method, we used a fixed patch size of 5× 5 pixels and

pyramid down-sampling ratio of 2. We ran synthesis up to 6 levels in the pyramid

and used fewer levels if the down-sampled user mask comprised less than 30 pix-

els in a given level. We set the hyperparameter µ for the adaptive image analogies

Energy (5.2) to µ = 3 for the first level and µ = 1
3 for the last level, and linearly

interpolated the intermediary levels. Intuitively, the hyperparameter setting µ at the

different levels allow for more guidance over the features at the beginning, and later

to previous level’s mask B′.

Additionally, after each level in the adaptive image analogies pyramid, we dis-

carded correspondences that went to pixel locations in the target view where all of

the selected photometric channels were less than 10−3. At a given level of the pyra-

mid it may not matter masking a region that is nearly black. However, a problem

arises when the mask propagates to later levels of the pyramid where it should not

be masked but due to the decreasing µ parameter the correspondence does not up-

date, leading to spurious artifacts. In the special case of an edit eA with a spatial

extent (e.g. blur), we apply the edit at the pixel location using the θA parameters

before testing for small values.

Similar to StyLit, we initialized B′ by randomly assigning from A′. Addition-

ally, on the first iteration we applied no weighting to the ||A′(p)−B′(q)||2 term.

Fišer et al. [85] introduce a new way to compute a correspondence field from the

target to the source view, that avoids “washout” and obvious repetition artifacts.

Their solution involved multiple source-to-target search iterations that significantly

slowed down the computation. Since these artifacts are less relevant for texture-

less masks as they are for RGB images, we use the regular target-to-source search

[62, 108] using PatchMatch [9].

5.4. Interface 72

The hardest regions to find correct correspondences are mask boundaries due to

the averaging of conflicting features in the image pyramid. In cases of underestimat-

ing the boundary location, as a post-processing step, we compute the mean of the

selected render channels in the output mask. For for all mask boundary pixels, we

allow the mask to grow if the neighbouring pixel in the selected render channels was

within 0.1 distance to the mean, up to a maximum of 5 pixels. To optimize the L1-

regularized regression Energy (5.3), we used the publicly available POGS solver1.

For scenes rendered using VRay we set hyperparameter λ = 10000 + 300 · NL,

where NL is the number of lights in the 3D scene as additional light sources in-

troduce additional channels requiring more regularization. For scene rendered with

Mitsuba we set λ = 20000 as the number of channels is fixed.

5.4 Interface
Our interface allows users to quickly select render channels to edit, generate masks,

and set adjustment parameters. The user starts by loading a stack of photometric

render channels into our interface (see Figure 5.3 and supplementary video). By de-

fault, the users are only shown the composited image, but can switch to other chan-

nels as desired. For each edit, they specify a rough region of interest on the com-

posited image, and our method automatically selects a subset of channels (named

XA in Section 5.3.2). The user can verify the correct channels were chosen via hot

keys and use the auto-mask feature to create an edit mask (named eA Section 5.3.2).

The user then edits the selected channels inside the masked region by adjusting

some of the supported adjustment parameters (named θA Section 5.3.2). The user

can perform multiple edits on the same example scene, and transfer them to other

comparable scene variations.

5.4.1 Render Channel Selection For Editing

In order to select a subset of render channels, the user simply specifies a coarse

region of interest (ROI) using either a rectangular marquee or polygon selection tool

directly on the the final composited image. Our selection method then identifies the

1http://foges.github.io/pogs

5.4. Interface 73

relevant channels based on the assumption that the user is interested in only those

layers that make the selected region unique with respect to the neighboring regions.

In the following, we first describe how to sample neighboring regions, formulate

the selection problem given a choice of such neighboring regions, and finally create

the edit mask (see Figure 5.6).

Sampling neighboring regions. Let P? denote the set of all pixel locations in the

user-selected ROI. Given P?, we first sample other regions at random by displac-

ing the ROI by random translations with magnitude in the range [δ ,2δ] with δ

denoting the diameter of ROI P? bounding circle. From the random samples we re-

move overlapping selections and those intersecting the ROI to generate m candidate

(neighboring) patches {P1, . . . ,Pm}, where Pj denotes a set of pixel locations in the

jth neighboring region.

Selecting among the render channels. Among the channels {Ai}N
i=1, we seek to

identify the ones that are distinct within the ROI with respect to the spatially neigh-

boring regions. Similar to approaches for bottom-up saliency [109], we measure

distinctness for a channel Ai by computing a difference between the statistics within

ROI P? and all neighboring regions Pj.

Figure 5.6: (Left) The user marks a region of interest (ROI) P? (shown as the yellow poly-
gon) on the input composited image. (Right) By comparing patch statistics against neigh-
boring regions Pj (shown as green polygons), our method automatically chooses which ren-
der channel(s) maximizes the uniqueness of ROI P?. In this example the reflection channel
(highlighted in orange) was chosen.

5.4. Interface 74

Let µi(P) = Ep∼P[Ai(p)] be the mean value within the render channel Ai for

pixel locations P, and σ2
i (P) = Ep∼P[(Ai(p)− µi(P))2] the variance, stored as a

vector of statistics (µi(P),σi(P)). We define the difference between the statis-

tics within the ROI P? and neighboring region Pj for channel Ai using d j,i =

‖(µi(Pj),σi(Pj))− (µi(P?),σi(P?))‖ as the L2 distance between their respective

statistics vectors. We define the vector of differences between ROI P? and neighbor

region Pj across all render channels as d j =
(
d j,1, . . . ,d j,N

)T .

Our goal is to find a selection vector x = (x1, . . . ,xN)
T that makes the user-

selected ROI unique with respect to its neighbor regions, i.e., maximizes the accu-

mulated differences across all neighbor regions Pj:

max
x ∑

j

(
xT d j

)2
s.t. xT x = 1, (5.7)

where xT x = 1 is used to regularize the problem.

Such an optimal x can be directly computed as the eigenvector corresponding

to the highest eigenvalue of the matrix C = ∑ j d jdT
j . Please refer to Appendix B for

details. In order to convert the vector x to the final selection of channels XA, we sort

the channels based on x2
i and pick the top ones that accounts for 0.9∑i x2

i . In our

experiments, this resulted in typically 1−3 selected channels.

Creating the edit mask. Using our selected channels XA we use GrabCut [10] to

create the final mask A′. Specifically, we composite the selected channels ∑i∈XA
Ai

and sample pixels inside and outside the ROI P? to form the mixture model for

the foreground and background, respectively. We erode pixels from the ROI P?

boundary using a 3x3 kernel to avoid boundary artifacts during GrabCut, and dis-

card pixels within 20% of the ROI P? diameter. We then run GrabCut to get an edit

mask (c.f., Figure 5.6 top-right). If desired, the user can adjust the edit mask using a

brush tool. As a final step we set a mask pixel to zero if all of the selected channels

are zero at that pixel. This prevents the adapted image analogies returning spurious

correspondences when transferring the mask to the target view.

5.5. Results 75

5.4.2 Parameterized Adjustments

To complete the edit eA, our interface allows the user to adjust several parameters

affecting the selected channels XA in the region masked by A′. Additionally, after

an edit has been transferred to the target scene (c.f., Sections 5.3.2 and 5.3.4), the

user can similarly continue editing the transferred edit eB. In Equation (5.6) we

outline how the adjustment of a parameter affects the final composite using the

parameters θ . We currently support the following adjustments: exposure, levels,

gamma, hue, saturation, lightness and Gaussian blur. These cover a wide range

of edits as demonstrated by the variety of examples in our paper. Furthermore,

comparing with the editing operations used in online tutorials [103, 104], the only

editing operation we do not support is painting colors directly. The details of the

specific parameters θ and how they are applied to a render channel can be found in

Appendix D.

Grid Search. To find the optimal parameters θ in Equation (5.5), we first normalize

the values of the individual parameters into the range [0,1] and perform a grid search

sampling every 0.05, before denormalising into the original domain. In addition to

sampling at every 0.05, we sample the exact parameter setting for the source view, as

this may be the most appropriate parameter value for the transfer. We only perform

grid search for parameters that are not at their default settings in the source view.

We do not attempt to search for the Gaussian blur parameters and simply use the θA

provided by the user in the source view edit.

5.5 Results
In this section we show results of our automatic system for transferring parame-

terized edits. In our experiments, we used thirteen different 3D scenes, three of

which were composited onto background photographs. Motivated by our target ap-

plication, we selected 3D scenes that may appear in product images, such as a car

model, a bottle, and a wristwatch. We created the majority of the scenes ourselves,

using 3D assets we collected exclusively from Turbosquid2 and Adobe Stock3, with

2http://www.turbosquid.com
3https://stock.adobe.com

http://www.turbosquid.com
https://stock.adobe.com

5.5. Results 76

C
ar

K
itc

he
n

B
at

hr
oo

m
B

ac
kp

ac
ks

 W
hi

sk
ey

Ju
ic

e
B

ot
tle

(a) Source view (b) Edited source view (c) Target view (d) Transferred edit

In
st

ru
m

en
ts

Figure 5.7: Our results. To best view the transferred edits, please see the electronic paper
version, the supplemental video, and the suppl. PDF found on the project webpage5.

5.5. Results 77

the exception of the dragon, made available by Stanford University4. Additionally,

we used the San Miguel, Kitchen and Bathroom [110] scenes. When compositing a

rendered view into a photograph, we used stock photographs as background images.

The input renderings, user image-edits and source code can be found on the project

webpage5.

As there are no publicly-available datasets of 3D rendered scenes with 2D

touchups, we manually set up and edited different 3D scenes to highlight a variety

of touchups and effects that our automatic edit transfer approach can handle. Setting

up the initial scene took between 30 and 120 minutes, with most of the time spent

on adjusting lights and material properties.

We then applied common image-based edits to refine lighting effects, empha-

size shape or material properties, and highlight important details and objects. Fi-

nally, to create the target views, we modified the 3D scenes in various ways, such as

changing the camera viewpoint, re-arranging objects, and in some cases, replacing

or adding object geometry. Please see Appendix E for a complete description of the

edits to our 3D scenes.

Figure 5.7 shows the image-based edits and automatically transferred results

for some of our example scenes. We show additional results in our supplemental

PDF, which also includes the masks for all edits. These examples demonstrate the

variety of different 2D touchups and scene modifications that our method is able to

support. Since some of the edits are (by design) subtle, you may want to zoom into

the electronic version of the paper and supplemental materials. Typically, finding

edit-dependent weights (Section 5.3.3) takes 10 - 40 seconds to compute and the

parameter grid search (Section 5.3.4) 20 - 60 seconds, the timings vary depending

on the size of the mask.

5.5.1 Limitations

To test the limits of our method we transfer the edits from a single exemplar to

frames from an animation sequence. In cases where features remain consistent

4https://graphics.stanford.edu/data/3Dscanrep/
5http://geometry.cs.ucl.ac.uk/projects/2017/edit-transfer/

https://graphics.stanford.edu/data/3Dscanrep/
http://geometry.cs.ucl.ac.uk/projects/2017/edit-transfer/

5.5. Results 78

(a) Source (b) Target A (Success) (c) Target B (Limit) (d) Target C (Limit)

In
pu

t
E

di
te

d

Figure 5.8: Testing Limits: (a) Given a single source input frame (top) and user edit (bot-
tom) we transfer the edit to frames of an animation where the camera moves along a path.
(b) For moderate camera moves the edits transfer successfully. For severe camera move-
ments (c) forward or (d) backwards the method reaches its limits as the scene geometry
scales and/or new geometry comes into view. Note the artefacts in (c) where bricks in the
archway are incorrectly turned turquoise or (d) only part of the table is brightened. For
additional frames in the camera path please see supplementary material.

throughout the animation, such as the rotating dragon in the supplemental video,

the edits transfer successfully. However, if the content in the source and target

views changes significantly throughout the sequence, the transfer begins to fail as

the features in the source view are not present in the target view. We demonstrate

this by zooming the camera in/out and revealing new geometry and lighting effects

in the San Miguel scene (Figure 5.8).

In addition to the aforementioned limitation, we have identified four other po-

tential limitations of our approach. First, the edit-dependent adaptive image analo-

gies approach performs the synthesis in a coarse-to-fine fashion. As a result, fea-

tures over small spatial extent may be missed by the coarse scales, resulting in

mask synthesis artifacts, e.g., along an object boundary. Second, our approach may

have difficulty in pixel regions when a second light source interferes with the tar-

get view. Thirdly, not all edit operations can be easily described using a mask and

adjustment parameter (e.g. clone brush tool) and therefore cannot be transferred us-

ing our method. Finally, our formulation assumes the photometric render channels

have a linear blending relationship, which may not be true for certain advanced edit

operations.

5.5. Results 79

(a
) N

R
D

C
(b

) S
ty

Li
t s

in
gl

e
(c

) S
ty

Li
t p

ho
to

(d
) S

ty
Li

t a
ll

(e
) o

ur
s

Figure 5.9: Baseline comparison. (a) Non-rigid dense correspondences [75], (b) StyLit
with only the single user-edited render channel, (c) StyLit that uses all of the photometric
render channels, (d) StyLit that uses all of the augmented render channels, (e) Ours. Notice
that all baselines are unable to transfer the full edit from the source view to target view in
all cases, whereas our approach successfully handles the edits. Note only more subtle edits
highlighted. Please refer to Figure 5.7 for the Car source images and Figure 5.3 for the
Wine Bottle source and target images. The Car target image and additional comparisons
can be found in the supplemental material on the project page5.

5.5. Results 80

5.5.2 Baseline Comparisons

For the edit transfer task, we compare our approach against a number of baselines

and existing approaches for finding dense correspondences. Our first baseline is to

simply use the known 3D shape correspondences between the two views (corre-

spondences). The second baseline is StyLit [85]. For StyLit, we compare against

three variants: (i) “out of the box” StyLit that uses ALL PHOTOMETRIC render

channels (StyLit photo channels), (ii) StyLit that uses only the edited render chan-

nel (StyLit single), and (iii) StyLit that uses all of the augmented render channels

(StyLit all channels). We also compare against two algorithms for finding dense

correspondences between two images using their source code: non-rigid dense cor-

respondences (NRDC) [75] and Transfusive Image Manipulation (Transfusive) [77].

We show output comparisons for NRDC, StyLit single, StyLit photo channels,

and StyLit all channels in Figure 5.9. Notice how all baselines are unable to transfer

the full edit from the source view to the target view for all cases. For example, all

methods fail to remove the wine glass reflection in the background. NRDC and

StyLit all channels introduce artifacts within the watch face. While all the baselines

can transfer the car reflection, there are either artifacts in the transfer for the front

light, or in the case of StyLit all channels the edit for the light fails to transfer at all.

Figure 5.10: Comparison with Transfusive Image Manipulation [77]. In these examples,
SURF matches (as used in their paper) failed to find reasonable correspondences and the
method was initialized by manually selecting pairs of corresponding points between the
source and target views. In the two examples the method fails to transfer all edits suc-
cessfully and the edits which are transferred have ghosting artefacts . Please note that the
tranfusive image manipulation work was designed for an entirely different application and
it works directly on the composited image without access to the render channels.

5.5. Results 81

Figure 5.11: OBJECT MASK comparison. Using the source and target views from Fig-
ure 4.1 we show that (left) using StyLit with ALL PHOTOMETRIC render channels, ad-
ditionally augmented with OBJECT MASK fails to transfer the masks correctly. (right)
Additionally adding the log of ALL PHOTOMETRIC render channels to the set to available
channels improves results but still fails to transfer all edits correctly. Having OBJECT MASK

for guidance means edits can only be transferred to the same object they were applied to, in
this example the desired outcome is to have both background skulls blurred as shown in our
result in Figure 4.1.

Comparisons with Transfusive Image Manipulation are shown in Figure 5.10.

The method was initialised with manually annotated pairs of points in the two views

due to poor feature matching. Despite this additional interaction, the results suffer

from inaccuracies in the correspondences and erroneously transfer edits.

We show two qualitative comparisons with additional baselines. In Figure 5.11

we show how using StyLit with ALL PHOTOMETRIC render channels, additionally

augmented with the log of each channel and the OBJECT MASK also fails to transfer

edits correctly. Secondly, we show the effectiveness of our approach for adjustment

parameter transfer in Figure 5.5. We compare against a baseline where we simply

copy over the adjustment parameter the user selected in the source view to the target

view. Notice that simply copying the parameter to the target view results in a bright

reflection of the car. Our inferred adjustment parameter for the target view allows

the reflection to more closely match the edited source view.

Perceptual study. To quantitatively evaluate our approach, we performed a percep-

tual study comparing our results against several baseline edit-transfer techniques:

NRDC, StyLit single, StyLit photo channels, and StyLit all channels. We used a

two-alternative forced choice (2AFC) design that shows a raw (A) and edited (A′)

source view, a raw target view (B), and two candidate edits for the target view gen-

erated by two of the methods under evaluation. The judge is asked to select the

5.5. Results 82

candidate edit that is more similar to A′. We generated all pairs of comparisons for

three different scenes and ran the experiment on Amazon Mechanical Turk (AMT).

In total, we had 147 distinct AMT workers and obtained 50 judgements for each

pair of candidate edits. To analyze the data, we used the Bradley-Terry model [111]

to compute the likelihood of an edit transfer technique being selected by an AMT

worker in a comparison. Our results are shown in Figure 5.12. Please refer to the

supplemental for the interface shown to the AMT workers.

5.5.3 User Study

While the comparisons above demonstrate the effectiveness of our automatic edit-

transfer technique, we also wanted to investigate the utility of our method within an

interactive editing workflow where users may want to refine the automatic-transfer

results. To this end, we conducted a comparative user study where participants used

Adobe Photoshop to transfer edits to target scenes in two different ways: manually

(i.e., specifying all the masks and image adjustment parameters from scratch) and

using our automatic transfer results as a starting point. We use Photoshop in both

conditions to achieve a more controlled comparison and provide an ecologically

valid setting where users have access to an industry-standard set of editing features

to refine auto-transferred edits. We recruited 16 participants from a university and

a large software company for the study. Since our approach is designed primarily

for artists with some image editing expertise, we focused on candidates who are

reasonably familiar with Adobe Photoshop; ten of the participants had at least five

years of Photoshop experience, and only two had used the software for less than a

year. We report qualitative feedback from the editing sessions and quantitative data

on the quality and completion time of the edits.

5.5.3.1 Methodology

We asked each participant to perform a total of four edit-transfer tasks on two differ-

ent scenes, Juice Bottle (Figure 5.7) and Car (source view in Figure 5.7 and target

view in Figure 5.9) . For each scene, we first presented a source Photoshop docu-

ment containing both a raw (A) and edited (A′) version of the scene, along with a

5.5. Results 83

ours NRDC Stylit Stylit photo Stylit single
0

1

ours NRDC Stylit Stylit photo Stylit single
0

ours NRDC Stylit Stylit photo Stylit single
0

1

ours NRDC Stylit Stylit photo Stylit single
0

1

(a) averaged over all examples (b) averaged over car

(c) averaged over watch (d) averaged over wine

Figure 5.12: Quantitative evaluation. We performed a pairwise-comparison user study
on Amazon Mechanical Turk. Shown are likelihoods from the Bradley-Terry model [111]
(normalized to 1) for the different approaches over (a) all scenes, (b) car scene, (c) watch
scene, (d) wine scene. Please see the text for more details.

text description of the edits with annotated figures highlighting the changes. In the

Photoshop document, edits were represented as adjustment layers that encode a pa-

rameterized image adjustment and mask applied to a specified render channel. By

toggling the visibility of these layers and the associated render channels, users were

able to see the effect of each edit. They could also inspect the image adjustment

parameters and masks.

After users familiarized themselves with the edits, we gave them a target Pho-

toshop document with a modified configuration of the scene (B) and asked them to

produce an edited version (B′) that is analogous to the differences between A and A′.

We created two types of target documents. The manual version provides the same

set of adjustment layers (applied to the same set of render channels) as the source

document, but each adjustment is set to its default parameters (which have no effect)

5.5. Results 84

and the mask is set to modify the entire image. This setup approximates current edit

transfer workflows where users manually propagate each edit from source to tar-

get view by specifying the mask and image adjustment parameters from scratch.

We also created an automatic version of the target document where the parameters

and mask for each adjustment layer are initialized with the results of our automatic

edit-transfer method. For each scene, we asked participants to transfer the edits

using both the manual and automatic target documents to produce a pair of edits

(B′man,B
′
auto). We counterbalanced the order of the tasks to account for the potential

learning effects from performing the edits twice.

We instructed users to complete the tasks as quickly as possible and recorded

their completion times. To limit the duration of each session, we capped each task at

ten minutes and alerted participants when they started to run out of time. After each

task, we asked users to rate how well their B′ matched A′ as well as the perceived

difficulty of the task on a 5-point scale. At the end of the session, we also asked

whether they preferred the manual or automatic condition. Finally, in addition to

these self-assessments, we obtained external judgements on the relative quality of

each pair of user-generated edits (B′man,B
′
auto) using the same 2AFC design as the

perceptual study described above.

Qualitative Feedback. Overall, participants expressed a clear preference for the

automatic condition over the purely manual workflow. Amongst the 16 users, 14 in-

dicated that they preferred the automatic version. They noted that working from the

automatically transferred edits saved time and effort, even when they had to refine

the masks and adjustment parameters. Our observations of the editing sessions sup-

port these sentiments; in the automatic condition, users spent far less time creating

masks compared to the manual condition. The two participants who preferred the

manual condition complained that they found it difficult to understand how some

of the automatically-generated edits worked. However, both noted that they would

probably prefer the automatic condition if they had created the original edits in the

source view (which would typically be the case in real-world scenarios).

The self-assessments on the quality of edits and the difficulty of the tasks also

5.5. Results 85

clearly favour the automatic condition. For the Juice scene, only one of the 16 par-

ticipants felt that the manual condition produced a better result than the automatic

condition, and only three participants found the manual task easier than the auto-

matic version. For the Car scene, two participants felt that their manual result was

better, and one found the manual task easier.

difference in completion times (in min)
-10 -8 -6 -4 -2 0 2 4 6 8 10

di
ffe

re
nc

e
in

 v
ot

es

-50

-40

-30

-20

-10

0

10

20

30

40

50 juice bottle
car

Figure 5.13: Quality vs. Time: Scatterplot showing the difference in completion times and
difference in number of votes. The dotted lines show the median value for each axis. The
juice bottle (blue) results show significant improvement in completion time and quality.
The car (green) has significant improvement in completion time but in quality the results
are varied.

Quality versus Completion Time. The task completion times and external quality

judgments also support the qualitative findings. We visualize this data by encoding

each (B′man,B
′
auto) pair generated by a given participant as a single (x,y) data point

where x represents the difference in completion times and y represents the difference

in the number of votes from the 2AFC comparison between the two conditions. In

particular, x = TB′man
− TB′auto

, where T is completion time, and y = VB′auto
−VB′man

,

5.6. Closing Remarks 86

where V is the number of votes. Using this encoding, Figure 5.13 provides a rates

quality versus completion times for the two scenes.

The fact that most points lie in the top right quadrant indicates that users were

generally faster and produced higher quality edits when starting with our automat-

ically transferred edits. However, there are some differences in the relative quality

of the manual and automatic results across the two scenes. For the Juice scene, all

the automatic results received more votes, but for the Car scene, the votes are more

evenly distributed. We believe the reason for this discrepancy is that the masks for

the Car edits were easier to specify manually than the masks for the Juice edits,

some of which required more careful brushing. Still, it is important to note that

the automatic Car edits were at least comparable in quality to the manual edits, and

participants consistently completed the edits much more quickly in the automatic

condition, which is a key benefit of our approach.

5.6 Closing Remarks

This chapter presented an assistive tool for transferring image-based edits made

to multichannel renderings to global scene variations. The method allows users

to apply an edit once to a rendering of one scene configuration, then automatically

transfer the edit to another variation of the scene. To enable the tool we use multiple

representations of the original rendered scene, these are both photometric and non-

photometric render channels. The user specified edit is then used and analysed to

find correlations between the various scene representations. From this multimodal

correlation analysis we learn a channel weighting for each of the scene representa-

tion and use this to transfer the edit in a weighted image analogies formulation. We

also presented a new editing workflow that more easily allows users to find the right

channel they would like to edit. This method again works by finding correlations be-

tween channels using a user specified region of interest. To ensure that we meet the

objectives set out in Chapter 1 we conducted a user study showing that our method

is more time efficient at transfer edits compared to the existing workflow. Addition-

ally, we compared our transfer method with existing algorithms demonstrating our

5.6. Closing Remarks 87

transferred edits are more accurate. Finally, in qualitative feedback from user study

participants a clear preference to our workflow compared to the exiting one was

shown. We are happy that our tool meets the objectives we outlined for assistive

tools.

In the final chapter, Chapter 6, we conclude the thesis by summarising the

findings of the research presented and discuss potential future work.

Chapter 6

Conclusion

In this thesis, three different examples of assistive tools for creating visual content

have been discussed. The three tools all use multiple representations of a reference

scene and some form of multimodal correlation analysis of these representations

to power the tools. In this final chapter the key contributions from these tools are

summarised and for each of the tools specific future work is discussed. This is

followed by a section discussing future work more broadly in the area of assistive

tools.

6.1 Summary
Image Degradation Model. In Chapter 3 we presented a scene abstraction and

image degradation model for single RGB-D images. Central to the method is un-

derstanding the correlations between the scene represented as an RGB photograph

and as a depth image. Using this understanding, we demonstrated how a variety of

objects, or even groups of objects, can be approximated by simple planar proxies

created out of rough depth information loosely synchronized with RGB informa-

tion. These proxies can then be used to determine occlusions in a scene and assist

with image completion in these occluded regions. This scene abstraction allows for

an image degradation model to be created that captures the confidence in the qual-

ity of the image completion step. We use the model to assist the user in performing

edits. We demonstrated the use of the degradation model in the context of parallax

photography from single images.

6.1. Summary 89

In the future, we would like to further explore applications of the image degra-

dation model. One particular area of interest is using it to create a smart interface

for image editing. Such an interface could allow the user to perform 3D edits in the

scene - by way of geometric proxies - and have the output degradation evaluated. If

the degradation is high the system could suggest a similar alternative edit by mov-

ing objects in the scene or adjusting the camera pose to one that has less degradation.

How2Sketch. In Chapter 4 we presented How2Sketch, a system that automati-

cally generates easy-to-follow tutorials for drawing part-segmented man-made 3D

objects from selected views. The algorithm creates multiple candidate representa-

tions of primitive approximation for the object, before solving a selection problem

constrained by geometric relationships found in the input object. The output of the

selection optimisation - the selected candidates and their ordering - enables the tool

to generate the sketching tutorial. We evaluated our system using a user study, and

found that sketches made by following H2S tutorials had more accurate proportions

and relative part placements compared to a basic step-by-step tutorial with scaf-

folding primitives. Users preferred the H2S tutorials over the basic tutorial, giving

significantly higher ratings for satisfaction, accuracy, and enjoyment.

One possible future direction is to provide stroke level support to help users

draw the final object contours, possibly by explicitly providing guidelines with

respect to the scaffold primitives. Another direction would to explore new types of

guidelines that can help reduce the number of unguided steps in a tutorial. A very

interesting future question is to investigate if H2S really teaches users to sketch

better by drawing “what you know.” While this is the ultimate goal of any sketch-

ing tutorial, answering this question will require a much more involved user study

where we have to track and quantify user-specific improvements.

Edit Transfer. Finally, in Chapter 5 we developed an interactive editing tool for

2D and 3D editing of rendered 3D scenes, which allows transfer of parametric 2D

edits to new views of the scene or scenes with different objects. At the heart of

6.2. Future Work 90

our method is a new edit-dependent adaptive image analogies method. This re-

quires edit-dependent weighting to be found through understanding the correlation

between the user edit and multiple render channels of the scene. We demonstrated

that our edit-dependent approach successfully transfers edits for a variety of 3D

scenes and 2D touchups, and outperforms prior approaches that rely on dense cor-

respondences that do not take into account the user edits. Additionally, we evaluated

the usefulness of our transfer method in a user study. Our tool opens up the pos-

sibility of additional functionalities that blur the boundary between 2D and 3D for

editing, such as propagating 2D and 3D edits to automatically inferred 3D scene

properties from the background photograph, e.g., to transfer edits to object shadows

that affect others depicted in the background.

Our approach to the edit transfer problem is a practical one that fits with the

existing workflow of digital artists that is intuitive to them. A different way to

approach the problem would be to pose it as one of inverse rendering. Such a tool

could allow the artist to make in image-based edit then automatically infer the 3D

scene parameters that would result in that image. This would mean the edit transfer

problem is intrinsically solved. However, the artists would then be limited to only

physically-valid edits.

6.2 Future Work

In addition to the application specific areas of future work suggested in Section 6.1,

there are many interesting avenues of research into assistive tools for visual content

creation. In all the the tools proposed in the previous chapters the problems have

been approached using limited input with either one or no exemplars. In future

work it would be interesting to explore using data-driven approaches to assistive

tools, however, this will come with new challenges to overcome.

One challenge to overcome is giving the artist more control of data-driven

tools. There have been some very successful applications of using artist input to

then generate an image. For example the network proposed in Pix2Pix [112] has

been used to generate images of cats based on an artist sketch. However, the gener-

6.2. Future Work 91

ated images, you could argue, are quite difficult to the artist to control. For example

if they wanted to keep one feature but change others this is challenging without

providing a perfect sketch. Some work has attempted to look into this problem giv-

ing artists more control. For example Delanoy et al. [113] use multiple sketches

from different viewpoints in a data driven sketch-based modelling application. In

the context of style transfer Gatys et al. [114] decompose style into different per-

ceptual factors to allow more artist control. However, it could be argued that more

artist control needs to be provided to these data-driven tools. One particular area

of future research would be to use multimodal input with such tools. For example,

input sketches and verbal / written descriptions could be combined to synthesise im-

ages or 3D models. The sketch could provide geometric information and the verbal

appearance.

Another challenge for using data-driven approaches is generating the training

data or how to pose the problem as one of unsupervised learning. There have been

some successful examples of this [112, 113], however, the solutions are not gen-

eral. For the tools proposed in Chapters 4 and 5 it is not immediately clear how

training data could be collected efficiently or how it would be posed as a unsu-

pervised learning problem. Overcoming this problem in a general way, even for a

group of interactive tasks such an image editing or 3D compositing would be a great

step forward in the field.

Given the future research directions proposed here and in Section 6.1, it is

clearly a field with many avenues of future work. Moreover, given the history of

the development of the tools used by artist and the number of challenges people

still face, it is hard to imagine that the tools used today will be the tools used in

the future. This thesis has argued that assistive tools is an interesting direction

for interactive computer graphics tools and one that has potential to cross from

academic research to being used in industry.

Appendix A

How2Sketch Tutorials

This appendix contains some example How2Sketch tutorials from Chapter 4. For

additional, higher resolution, examples please see the project webpage.

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7 (i) Step 8

Figure A.1: How2Sketch Mixer Tutorial Experience Setting Novice Part 1

http://geometry.cs.ucl.ac.uk/projects/2017/how2sketch/

93

(a) Step 9 (b) Step 10 (c) Step 11

(d) Step 12 (e) Step 13 (f) Step 14

(g) Step 15 (h) Step 16 (i) Step 17

(j) Step 18 (k) Step 19 (l) Step 20

(m) Step 21 (n) Step 22 (o) Step 23

(p) Step 24 (q) Step 25 (r) Step 26

Figure A.2: How2Sketch Mixer Tutorial Experience Setting Novice Part 2

94

(a) Step 27 (b) Step 28 (c) Step 29

(d) Step 30 (e) Step 31 (f) Step 32

(g) Step 33 (h) Step 34 (i) Step 35

(j) Step 36 (k) Step 37 (l) Step 38

Figure A.3: How2Sketch Mixer Tutorial Experience Setting Novice Part 3

95

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7 (i) Step 8

(j) Step 9 (k) Step 10 (l) Step 11

(m) Step 12 (n) Step 13 (o) Step 14

(p) Step 15 (q) Step 16 (r) Step 17

Figure A.4: How2Sketch Camera Tutorial Experience Setting Apprentice Part 1

96

(a) Step 18 (b) Step 19 (c) Step 20

(d) Step 21 (e) Step 22 (f) Step 23

(g) Step 24 (h) Step 25 (i) Step 26

(j) Step 27 (k) Step 28 (l) Step 29

(m) Step 30 (n) Step 31 (o) Step 32

(p) Step 33 (q) Step 34

Figure A.5: How2Sketch Camera Tutorial Experience Setting Apprentice Part 2

97

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7 (i) Step 8

(j) Step 9 (k) Step 10 (l) Step 11

(m) Step 12 (n) Step 13 (o) Step 14

(p) Step 15 (q) Step 16 (r) Step 17

Figure A.6: How2Sketch Train Tutorial Experience Setting Master Part 1

98

(a) Step 18 (b) Step 19 (c) Step 20

(d) Step 21 (e) Step 22 (f) Step 23

(g) Step 24 (h) Step 25 (i) Step 26

(j) Step 27 (k) Step 28 (l) Step 29

(m) Step 30 (n) Step 31 (o) Step 32

(p) Step 33

Figure A.7: How2Sketch Train Tutorial Experience Setting Master Part 2

99

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7 (i) Step 8

(j) Step 9 (k) Step 10 (l) Step 11

(m) Step 12 (n) Step 13 (o) Step 14

(p) Step 15 (q) Step 16 (r) Step 17

Figure A.8: How2Sketch Roller Tutorial Experience Setting Novice Part 1

100

(a) Step 18 (b) Step 19 (c) Step 20

(d) Step 21 (e) Step 22 (f) Step 23

(g) Step 24 (h) Step 25

Figure A.9: How2Sketch Roller Tutorial Experience Setting Novice Part 2

Appendix B

Derivation of Optimal Channel

Selection

As formulated in Section 5.4.1, our goal of determining a channel selection vector

x = (x1, . . . ,xN)
T for a user-selected ROI can be cast as:

max
x ∑

j

(
xT d j

)2
s.t. xT x = 1.

Using Lagrangian multiplier λ , we can reformulate the above as maxx E(x)

where,

E(x) := ∑
j

(
xT d j

)2
+λ (1−xT x).

Simplifying E(x), we get:

E(x) = xT (∑
j

d jdT
j)x+λ (1−xᵀx)

= xT Cx+λ (1−xT x)

with C = ∑ j d jdT
j . In order to find extrema of E(x), we set

∂E(x)
∂x

= 2Cx−2λx = 0.

Thus, to find an extrema of E(x) we have to select an eigenvector of C. Let xe be

102

such an eigenvector, i.e., Cxe = λxe. For such a choice, E(x) evaluates to

E(xe) = xT
e (Cxe) = xT

e (λxe) = λ ,

where we used xT
e xe = 1 since xe is an eigenvector.

Thus, to maximize E(x), we have to pick the eigenvector with the largest

eigenvalue among the N eigenvectors of C.

Appendix C

Renderer Specific Augmented

Render Channels

The rendered of a scene using VRay took, on average, 10 minutes and Mitsuba

on average took 8 hours. The list of Augmented Render Channels used for these

examples can be seen in Table C.1. Note that Mitsuba cannot separate lighting

effects per light source but has a diverse set of non-photometric channels enabling

our transfer method to work.

104

Table C.1: Augmented Render Channels: The photometric render channels 1-3 are option-
ally rendered per light source. Geometry channels 4 -7 are rendered per light source. VRay
object channels inner- and outer-distance transforms (DT) are generated in 2D using the
object masks. We further augment the photometric render channels by adding the log of
each channel. The Mitsuba outgoing- and incoming ray channels are the average rays for
each pixel. We use ALL PHOTOMETRIC to refer to all channels in the Photometric column
for a given renderer.

Photometric Geometry Object

VRay

1. SPECULAR Z-DEPTH OBJECT MASK

2. DIFFUSE NORMALS INNER-DT
3. REFLECTION VIEW DIRECTION OUTER-DT
4. REFRACTION NORMAL VIEW COS

5. GLOBAL ILLUM LIGHT DIRECTION

6. SHADOW NORMAL LIGHT COS

7. CAUSTICS HALF ANGLE

8. SELF ILLUM

9. CAUSTICS

10. SUBSURF SCATTER

Mitsuba

11. DIRECT SPECULAR Z-DEPTH OBJECT MASK

12. DIRECT DIFFUSE NORMALS PRIMITIVE ID

13. GLOBAL ILLUM SPECULAR OUTGOING RAY BSDF TYPE

14. GLOBAL ILLUM DIFFUSE INCOMING RAY SAMPLE TYPE

15. SUBSURF SCATTER OR NORMAL COS ALBEDO

16. ENVIRONMENT MAP IR NORMAL COS

17. EMITTER HALF ANGLE

18. CAUSTICS CURVATURE

19. RAW DIRECT ILLUM

Appendix D

Adjustment Parameters

Implementation Details

Exposure has a single scalar value θ ∈ [−10,10] and adjusts the input as

fθ (Bi, p) = Bi(p)∗2θ .

Levels require several parameters θ =
(
θ min

in ,θ max
in ,θ min

out ,θ
max
out ,θ γ

)
∈ [0,1]5 and ap-

plied to a pixel as

fθ (Bi, p) =
(

Bi(p)−θ min
in

θ max
in −θ min

in

) 1
θγ (

θ
max
out −θ

min
out
)
+θ

min
out , (D.1)

where γ allows for a single scalar parameter in the range θ ∈ [0,10] and adjusts a

pixel as fθ (Bi, p) = Bi(p)θ .

Hue, Saturation and Lightness changes are adjusted using the parameters θ =

(θh,θs,θl) ∈ ([−180,180], [−180,180], [−100,100]) and is applied to a pixel in

HSL domain as fθ (Bi, p) = Bi(p)+θ .

Gaussian blur is parameterized using a kernel size and standard deviation, θ =

(θx,θσ) which is applied to a pixel by,

fθ (Bi, p) =
θx

∑
k=−θx

θx

∑
j=−θx

Gθσ
(k, j)Bi(p′) (D.2)

106

where p′ = p+q, q =
[
k j

]ᵀ
and

Gθσ
(x,y) =

1
2πθ 2

σ

e
− x2+y2

2θ2
σ . (D.3)

Appendix E

Scene, Edit and Transfer

Descriptions

In this appendix we outline the scene rendering setup, the image-based edits per-

formed, and the non-zero weighted render channels used to transfer edits to the

target view.

Car. The car scene was rendered with an area light source above the car and a point

light source behind the camera. We made four image-based edits: (i) emphasize

reflection on the ground; (ii) remove specular glare on the headlight; (iii) reduce

specular reflection on the windscreen wipers; and (iv) reduce specular highlight on

the bumper. We created many 3D scene variations: 3×viewpoint change, change in

material, add duplicate geometry and new geometry. For each edit, the following

channels were selected for transfer and reconstruction: (i) LOG SPECULAR (light

source 1), LOG DIFFUSE (light source 1), LOG SPECULAR (light source 2), LOG

REFLECTION; (ii) SPECULAR (light source 1), LOG SHADOW, NORMALS, NOR-

MAL VIEW COS; (iii) SPECULAR (light source 2), REFLECTION, GLOBAL ILLUM;

(iv) SPECULAR (light source 1), LOG SHADOW, LOG REFLECTION.

Juice Bottle. The bottle is lit by two point light sources, one behind the object and

the other above and in front. We made three image-based edits: (i) remove spec-

ular glares around the outside of the bottle and push the specular highlight away

from the bottle contour; (ii) remove harsh reflection on the bottom of the bottle; (iii)

emphasize the label. In the target view, we changed the viewpoint. The following

108

render channels were selected: (i) LOG SPECULAR, OUTER-DT, GLOBAL ILLU-

MINATION; (ii) REFLECTION, LOG REFLECTION; (iii) LOG REFLECTION, LOG

SPECULAR, REFLECTION, SELF ILLUM.

Wine Bottle and Glass. The scene has 4 light sources: two area lights (one red and

one white) and two point lights (one in front and one behind the wine and glass).

We made five image-based edits: (i) remove big white reflection from the white

area light reflecting off the table and wall; (ii) remove big red reflection from the

red area light on the table; (iii) remove reflection of the wine glass on the back wall;

(iv) emphasize bottom half of the white reflection on the wine bottle so it matches

the reflection above; (v) remove distracting red refraction on the wine glass. In the

target view, we changed the object geometry and viewpoint. The following ren-

der channels were selected: (i) NORMALS, LOG REFLECTION (light 1), REFLEC-

TION (light 1); (ii) REFLECTION (light 2), NORMALS; (iii) REFLECTION (light 1),

LOG REFLECTION (light 2), LOG REFLECTION (light source 4), LOG REFRAC-

TION (light 2), LOG REFRACTION (light 3); (iv) REFRACTION (light source 4),

LOG REFLECTION (light 4), SHADOW, LOG GLOBAL ILLUM; (v) DIFFUSE (light

2), LOG REFRACTION (light 2), LOG REFLECTION (light 2).

Watch. The scene is lit with a single point light source on the opposite side of the

watch to the camera (not visible to camera). The image-based edits were (i) increase

brightness of the watch face; (ii) add exaggerated highlight on the watch face; (iii)

make metal material more reflective. In the target view, the watch was rotated and

translated on the table. The selected render channels were (i) LOG REFLECTION,

LOG BACKGROUND; (ii) LOG REFRACTION, LOG REFLECTION, LOG DIFFUSE,

LOG SHADOW, LOG BACKGROUND; (iii) LOG GLOBAL ILLUM, LOG SHADOW,

LOG BACKGROUND, LOG REFRACTION.

Whiskey. The original scene is rendered with a background photo of a beach with

a directional light source above and to the left of the bottle. The image-based edits

were (i) add halo effect around the outline of the bottle; (ii) emphasize the label to

make it more visible. In the target view, we chose a different background image, the

objects have been rotated and translated, and the light source position has moved to

109

the right of the bottle. The following render channels were selected for the trans-

fer: (i) OUTER-DT, NORMALS, LOG BACKGROUND; (ii) LOG GLOBAL ILLUM,

DIFFUSE.

Dragon. There are three lights in this scene: two point lights on either side of the

Dragon and a soft area light above. The image-based edits were (i) increase specular

highlights to emphasize the Dragon’s curvature; (ii) boost the GI channel inside the

Dragon’s body to give a glowing effect. In the target views, we rotated the Dragon

360°. The selected render channels were (i) LOG SPECULAR, NORMALS, LOG

REFLECTION, DIFFUSE; (ii) LOG GLOBAL ILLUM, INNER-DT, LOG SHADOW.

Backpacks. The scene is lit from above by a single point light source in between

the bags and the camera position. Three image-based edits were made: (i) make

the fabric appear darker; (ii) remove unwanted highlight on the side of the bag; (iii)

make creases of the bag orange matching the handle color. We modified the 3D

scene by rotating and translating the two bags. The selected render channels were

(i) LOG DIFFUSE, DIFFUSE, GI; (ii) LOG SPECULAR, SPECULAR, LOG REFLEC-

TION, LOG SHADOW; (iii) LOG REFLECTION, NORMALS, LOG SHADOW, LOG

DIFFUSE, LOG SPECULAR.

3D Text. The 3D text is composited into a background photo with a single point

light behind the text. The material of the text is translucent. We edited the source

view to emphasize translucency by increasing the exposure at some of the edges of

the text. In the target view, the text has been rotated and translated, in addition to

changing the background image. To transfer the edit, our method selects the LOG

SUBSURF SCATTER, SUBSURF SCATTER, LOG DIFFUSE, LOG SPECULAR and

GLOBAL ILLUM channels.

San Miguel. The scene’s lighting comes from an environment map, which is only

visible thought the atrium. The image-based edits were (i) increasing the exposure

of the indirect global illumination channel to make the region in shade more vis-

ible (ii) adjusting the levels on the tree leaves to make them more prominent and

green (iii) adjusting the hue, saturation and lightness of the wall. In the target views

the camera moves and rotates revealing new geometry. To transfer the edits the

110

selected channels were (i) ALBEDO, SAMPLE TYPE, LOG GLOBAL ILLUM DIF-

FUSE, NORMALS (ii) ALBEDO, LOG GLOBAL ILLUM DIFFUSE and PRIMITIVE

ID (iii) ALBEDO, SAMPLE TYPE, and NORMALS.

Bathroom. The scene’s lighting comes from an environment light outside, which

is coming though the windows. The image-based edits were (i) reducing the expo-

sure of the glass windows to make them appear frosted and (ii) hue, saturation and

lightness of the floor to make it a different color. In the target view the camera is

translated up and towards the left. To transfer the edits the selected channels were

(i) BSDF TYPE, RAW DIRECT ILLUM and IR NORMAL COS (ii) BSDF TYPE,

RAW DIRECT ILLUM, Z-DEPTH and IR NORMAL COS.

Kitchen. The scene’s lighting comes from a sphere area light behind the camera

position and several smaller point lights visible in the scene. The image-based edits

were (i) blurring light sources, (ii) adjusting hue/saturation/lightness of the work

surface, (iii) adjusting hue/saturation/lightness of the mug, (iv) reducing rendering

noise on the pot using gamma correction and (v) reducing the specular highlights

on the pot using the exposure parameter. In the target view the camera was trans-

lated. To transfer the edits the selected channels were (i) ALBEDO, curvature, RAW

DIRECT ILLUM, SAMPLE TYPE (ii) ALBEDO, NORMALS, primitive id, SAMPLE

TYPE and Z-DEPTH (iii) ALBEDO, PRIMITIVE ID, SAMPLE TYPE and Z-DEPTH

(iv) ALBEDO, RAW DIRECT ILLUM, Z-DEPTH (v) BSDF TYPE, RAW DIRECT

ILLUM, Z-DEPTH.

Skulls. The scene is lit by a large area light directly above the skulls. The image-

based edits were (i) blurring the background skull to create a depth of field effect

(ii) changing the hue, saturation and gamma to change the color and emphasize the

reflections on the ground plane (Note this and edit (i) together is physically invalid,

typical for our target application) (iii) adjusting the hue, saturation and lightness in

the foreground skulls’ eye sockets to make them appear to glow. In the target view

the skulls were rotated and translated into a new configuration. To transfer the edits

the following channels were selected (i) LOG DIFFUSE, shadow, LOG SHADOW

and Z-DEPTH (ii) LOG DIFFUSE, LOG REFLECTION, LOG SHADOW (iii) LOG

111

DIFFUSE, LIGHT DIRECTION, NORMAL LIGHT COS, HALF ANGLE

Instruments. This scene is lit by a white area light above the instruments and a

red point light next to the camera. The image based edit (i) was blurring the back-

ground saxophone. In the target view the viewpoint was changed and the saxophone

rotated. To transfer the edit (i) the LOG GLOBAL ILLUM, LOG DIFFUSE, LOG RE-

FLECTION, INNER-DT and OUTER-DT were selected.

Bibliography

[1] John Berger, Sven Blomberg, Chris Fox, Michael Dibb, and Richard Hollis.

Ways of seeing. 1973.

[2] John J. Medina. Brain rules: 12 principles for surviving and thriving at work,

home, and school. 2008.

[3] Susan B. Barnes. An Introduction to Visual Communication: From Cave Art

to Second Life. 2017.

[4] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing.

SIGGRAPH Comput. Graph., 24(4):145–154, September 1990.

[5] James W. Hennessey and Niloy J. Mitra. An image degradation model for

depth-augmented image editing. Symposium on Geometry Processing 2015,

2015.

[6] James W. Hennessey, Han Liu, Holger Winnemller, Mira Dontcheva, and

Niloy J. Mitra. How2sketch: Generating easy-to-follow tutorials for sketch-

ing 3d objects. Symposium on Interactive 3D Graphics and Games, 2017.

[7] James W. Hennessey, Wilmot Li, Bryan Russell, Eli Shechtman, and Niloy J.

Mitra. Transferring image-based edits for multi-channel compositing. ACM

Trans. Graph., 36(6):179:1–179:16, November 2017.

[8] Youyi Zheng, Xiang Chen, Ming-Ming Cheng, Kun Zhou, Shi-Min Hu, and

Niloy J. Mitra. Interactive images: Cuboid proxies for smart image manipu-

lation. ACM SIGGRAPH, 31(4):99:1–99:11, 2012.

Bibliography 113

[9] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman.

PatchMatch: A randomized correspondence algorithm for structural image

editing. ACM SIGGRAPH, 28(3), August 2009.

[10] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. “GrabCut”:

Interactive foreground extraction using iterated graph cuts. ACM Trans.

Graph., 23(3):309–314, August 2004.

[11] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. CVPR, November 2015.

[12] Alex Kendall, Vijay Badrinarayanan, , and Roberto Cipolla. Bayesian segnet:

Model uncertainty in deep convolutional encoder-decoder architectures for

scene understanding. arXiv preprint arXiv:1511.02680, 2015.

[13] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2017.

[14] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for robust semantic pixel-wise

labelling. arXiv preprint arXiv:1505.07293, 2015.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-

CNN. arXiv preprint arXiv:1703.06870, 2017.

[16] Aayush Bansal, Xinlei Chen, Bryan Russell, Abhinav Gupta, and Deva Ra-

manan. Pixelnet: Representation of the pixels, by the pixels, and for the

pixels. arXiv:1702.06506, 2017.

[17] Raymond A. Yeh∗, Chen Chen∗, Teck Yian Lim, Schwing Alexander G.,

Mark Hasegawa-Johnson, and Minh N. Do. Semantic image inpainting with

deep generative models. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017. ∗ equal contribution.

Bibliography 114

[18] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and Lo-

cally Consistent Image Completion. ACM Transactions on Graphics (Proc.

of SIGGRAPH 2017), 36(4):107:1–107:14, 2017.

[19] Ming-Ming Cheng, Fang-Lue Zhang, Niloy J. Mitra, Xiaolei Huang, and

Shi-Min Hu. Repfinder: finding approximately repeated scene elements for

image editing. ACM SIGGRAPH, 29(4):83:1–83:8, 2010.

[20] Robert Carroll, Aseem Agarwala, and Maneesh Agrawala. Image warps

for artistic perspective manipulation. ACM SIGGRAPH, 29(4):127:1–127:9,

2010.

[21] Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 3-

sweep: extracting editable objects from a single photo. ACM SIGGRAPH

Asia, 32(6):195:1–195:10, 2013.

[22] Yu-Shiang Wong, Hung-Kuo Chu, and Niloy J. Mitra. Smartannotator an

interactive tool for annotating indoor rgbd images. CGF Eurographics, 2015.

[23] Byong Mok Oh, Max Chen, Julie Dorsey, and Frédo Durand. Image-based

modeling and photo editing. ACM SIGGRAPH, pages 433–442, 2001.

[24] Youichi Horry, Ken-Ichi Anjyo, and Kiyoshi Arai. Tour into the picture:

using a spidery mesh interface to make animation from a single image. ACM

SIGGRAPH, pages 225–232, 1997.

[25] Natasha Kholgade, Tomas Simon, Alexei Efros, and Yaser Sheikh. 3d ob-

ject manipulation in a single photograph using stock 3d models. ACM SIG-

GRAPH, 33(4):127:1–127:12, 2014.

[26] Kevin Karsch, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, Hailin Jin,

Rafael Fonte, Michael Sittig, and David Forsyth. Automatic scene inference

for 3d object compositing. ACM SIGGRAPH, 33(3):32:1–32:15, 2014.

Bibliography 115

[27] Can Erdogan, Manohar Paluri, and Frank Dellaert. Planar segmentation of

rgbd images using fast linear fitting and markov chain monte carlo. In Pro-

ceedings of the 2012 Ninth Conference on Computer and Robot Vision, CRV

’12, pages 32–39, 2012.

[28] Si Lu, Xiaofeng Ren, and Feng Liu. Depth enhancement via low-rank matrix

completion. IEEE CVPR, pages 3390–3397, 2014.

[29] Tianjia Shao, Aron Monszpart, Youyi Zheng, Bongjin Koo, Weiwei Xu, Kun

Zhou, and Niloy Mitra. Imagining the unseen: Stability-based cuboid ar-

rangements for scene understanding. ACM SIGGRAPH Asia, 2014. * Joint

first authors.

[30] Ke Colin Zheng, Alex Colburn, Aseem Agarwala, Maneesh Agrawala, David

Salesin, Brian Curless, and Michael F. Cohen. Parallax photography: creat-

ing 3d cinematic effects from stills. Proceedings of Graphics Interface 2009,

pages 111–118, 2009.

[31] Emmanuel Iarussi, Adrien Bousseau, and Theophanis Tsandilas. The draw-

ing assistant: Automated drawing guidance and feedback from photographs.

In ACM Symposium on User Interface Software and Technology (UIST).

ACM, 2013.

[32] Takeo Igarashi and John F. Hughes. A Suggestive Interface for 3D Draw-

ing. In Proceedings of the 14th Annual ACM Symposium on User Interface

Software and Technology, UIST ’01, pages 173–181. ACM, 2001.

[33] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. ILoveSketch: As-

natural-as-possible Sketching System for Creating 3D Curve Models. In Pro-

ceedings of UIST, UIST ’08, pages 151–160, 2008.

[34] Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach. Analytic

Drawing of 3D Scaffolds. In ACM SIGGRAPH Asia 2009 Papers, SIG-

GRAPH Asia ’09, pages 149:1–149:10. ACM, 2009.

Bibliography 116

[35] Jun Xie, Aaron Hertzmann, Wilmot Li, and Holger Winnemöller. PortraitS-

ketch: Face Sketching Assistance for Novices. In Proceedings of the 27th

Annual ACM Symposium on User Interface Software and Technology. ACM,

2014.

[36] Luca Benedetti, Holger Winnemöller, Massimiliano Corsini, and Roberto

Scopigno. Painting with Bob: Assisted Creativity for Novices. In Proceed-

ings of the 27th Annual ACM Symposium on User Interface Software and

Technology, UIST ’14, pages 419–428. ACM, 2014.

[37] Piyum Fernando, Roshan Lalintha Peiris, and Suranga Nanayakkara. I-draw:

Towards a freehand drawing assistant. OzCHI ’14, pages 208–211, 2014.

[38] Daniel Dixon, Manoj Prasad, and Tracy Hammond. iCanDraw: Using Sketch

Recognition and Corrective Feedback to Assist a User in Drawing Human

Faces. pages 897–906, 2010.

[39] Yong Jae Lee, C. Lawrence Zitnick, and Michael F. Cohen. Shadow-

draw: Real-time user guidance for freehand drawing. ACM Trans. Graph.,

30(4):27:1–27:10, July 2011.

[40] Yotam Gingold, Etienne Vouga, Eitan Grinspun, and Haym Hirsh. Dia-

monds from the rough: Improving drawing, painting, and singing via crowd-

sourcing. In Proceedings of the AAAI Workshop on Human Computation

(HCOMP), 2012.

[41] Alex Limpaecher, Nicolas Feltman, Adrien Treuille, and Michael Cohen.

Real-time drawing assistance through crowdsourcing. ACM Trans. Graph.,

32(4):54:1–54:8, July 2013.

[42] Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa.

Learning to Simplify: Fully Convolutional Networks for Rough Sketch

Cleanup. ACM SIGGRAPH, 35(4), 2016.

Bibliography 117

[43] Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James Mc-

Crae, and Karan Singh. True2form: 3d curve networks from 2d sketches via

selective regularization. Transactions on Graphics (Proc. SIGGRAPH 2014),

33(4), 2014.

[44] Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. Crossshade:

Shading concept sketches using cross-section curves. ACM Transactions on

Graphics (Proceedings of ACM SIGGRAPH 2012), 31(4), 2012.

[45] Emmanuel Iarussi, David Bommes, and Adrien Bousseau. Bendfields: Reg-

ularized curvature fields from rough concept sketches. ACM Transactions on

Graphics, 2015.

[46] Hao Pan, Yang Liu, Alla Sheffer, Nicholas Vining, Changjian Li, and Wen-

ping Wang. Flow aligned surfacing of curve networks. ACM Trans. Graph.

(SIGGRAPH), 34(4), 2015.

[47] Jennifer Fernquist, Tovi Grossman, and George Fitzmaurice. Sketch-sketch

revolution: An engaging tutorial system for guided sketching and applica-

tion learning. In Proceedings of the 24th Annual ACM Symposium on User

Interface Software and Technology, UIST ’11, pages 373–382. ACM, 2011.

[48] Saeko Takagi, Noriyuki Matsuda, Masato Soga, Hirokazu Taki, Takashi

Shima, and Fujiichi Yoshimoto. A learning support system for beginners

in pencil drawing. In Proceedings of the 1st international conference on

Computer graphics and interactive techniques in Australasia and South East

Asia, pages 281–282. ACM, 2003.

[49] D. Cummmings, F. Vides, and T. Hammond. I don’t believe my eyes!: Ge-

ometric sketch recognition for a computer art tutorial. In Proceedings of the

International Symposium on Sketch-Based Interfaces and Modeling, SBIM

’12, pages 97–106, 2012.

[50] Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and

Takeo Igarashi. Generating photo manipulation tutorials by demonstration.

Bibliography 118

In ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09, pages 66:1–66:9. ACM,

2009.

[51] John Tchalenko. Eye movements in drawing simple lines. PERCEPTION,

36(8):1152, 2007.

[52] John Tchalenko. Segmentation and accuracy in copying and drawing: Ex-

perts and beginners. Vision Research, 49(8):791 – 800, 2009.

[53] Ryan Schmidt, Azam Khan, Gord Kurtenbach, and Karan Singh. On Expert

Performance in 3D Curve-drawing Tasks. In Proceedings of the 6th Euro-

graphics Symposium on Sketch-Based Interfaces and Modeling, SBIM ’09,

pages 133–140, New York, NY, USA, 2009. ACM.

[54] Cindy Grimm. Results of an observational study on sketching results of an

observational study on sketching. SBIM, 2011.

[55] Jan Eric Kyprianidis, John Collomosse, Tinghuai Wang, and Tobias Isen-

berg. State of the art: A taxonomy of artistic stylization techniques for im-

ages and video. IEEE Transactions on Visualization and Computer Graphics,

19(5):866–885, 2013.

[56] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony San-

tella. Suggestive contours for conveying shape. ACM Transactions on Graph-

ics (Proc. SIGGRAPH), 22(3):848–855, July 2003.

[57] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz. Interactive

rendering of suggestive contours with temporal coherence. In NPAR, pages

15–24, June 2004.

[58] Michael Burns, Janek Klawe, Szymon Rusinkiewicz, Adam Finkelstein, and

Doug DeCarlo. Line drawings from volume data. ACM Transactions on

Graphics (Proc. SIGGRAPH), 24(3):512–518, August 2005.

Bibliography 119

[59] Doug DeCarlo and Szymon Rusinkiewicz. Highlight lines for conveying

shape. In International Symposium on Non-Photorealistic Animation and

Rendering (NPAR), August 2007.

[60] Hongbo Fu, Shizhe Zhjou, Ligang Liu, and Niloy Mitra. Animated construc-

tion of line drawings. 30(6), 2011.

[61] Jingbo Liu, Hongbo Fu, and Chiew-Lan Tai. Dynamic sketching: Simulating

the process of observational drawing. In Proceedings of the Workshop on

Computational Aesthetics, CAe ’14, pages 15–22, 2014.

[62] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and

David H. Salesin. Image analogies. ACM SIGGRAPH, pages 327–340, Au-

gust 2001.

[63] Xiaobo An, Xin Tong, Jonathan D. Denning, and Fabio Pellacini. Appwarp:

Retargeting measured materials by appearance-space warping. In ACM SIG-

GRAPH Asia, 2011.

[64] Fabio Pellacini, Frank Battaglia, Keith Morley, and Adam Finkelstein. Light-

ing with paint. ACM TOG, 26(2):Article 9, June 2007.

[65] Ming-Ming Cheng, Fang-Lue Zhang, Niloy J. Mitra, Xiaolei Huang, and

Shi-Min Hu. Repfinder: Finding approximately repeated scene elements for

image editing. ACM TOG, 29(4):83:1–83:8, 2010.

[66] Ming-Ming Cheng, Shuai Zheng, Wen-Yan Lin, Vibhav Vineet, Paul

Sturgess, Nigel Crook, Niloy J. Mitra, and Philip Torr. Imagespirit: Verbal

guided image parsing. ACM TOG, 34(1):3:1–3:11, December 2014.

[67] Thorsten-Walther Schmidt, Fabio Pellacini, Derek Nowrouzezahrai, Woj-

ciech Jarosz, and Carsten Dachsbacher. State of the art in artistic editing

of appearance, lighting and material. CGF, 35(1):216–233, 2016.

[68] Nuke. https://www.thefoundry.co.uk/products/nuke/.

https://www.thefoundry.co.uk/products/nuke/

Bibliography 120

[69] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color

transfer between images. IEEE Comput. Graph. Appl., September 2001

2001.

[70] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimiza-

tion. In SIGGRAPH, SIGGRAPH ’04, pages 689–694, New York, NY, USA,

2004. ACM.

[71] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and

Pradeep Sen. Image Melding: Combining inconsistent images using patch-

based synthesis. ACM SIGGRAPH, 31(4):82:1–82:10, 2012.

[72] Olga Diamanti, Connelly Barnes, Sylvain Paris, Eli Shechtman, and Olga

Sorkine-Hornung. Synthesis of complex image appearance from limited ex-

emplars. ACM TOG, 34(2), 2015.

[73] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense correspondence

across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell.,

33(5):978–994, May 2011.

[74] S.W. Hasinoff, M. Jozwiak, F. Durand, and W.T. Freeman. Search-and-

replace editing for personal photo collections. In IEEE International Confer-

ence on Computational Photography, pages 1–8, 2010.

[75] Yoav HaCohen, Eli Shechtman, Dan B Goldman, and Dani Lischinski. Non-

rigid dense correspondence with applications for image enhancement. ACM

SIGGRAPH, 30(4):70:1–70:9, 2011.

[76] Yoav HaCohen, Eli Shechtman, Dan B Goldman, and Dani Lischinski. Opti-

mizing color consistency in photo collections. ACM SIGGRAPH, 32(4):85:1

– 85:9, 2013.

[77] Kaan Yücer, Alec Jacobson, Alexander Hornung, and Olga Sorkine. Transfu-

sive image manipulation. ACM SIGGRAPH Asia, 31(6):176–176, November

2012.

Bibliography 121

[78] Kaan Yücer, Alexander Sorkine-Hornung, and Olga Sorkine-Hornung.

Transfusive Weights for Content-Aware Image Manipulation. CGF Euro-

graphics, 2013.

[79] Floraine Berthouzoz, Wilmot Li, Mira Dontcheva, and Maneesh Agrawala.

A framework for content-adaptive photo manipulation macros: Application

to face, landscape, and global manipulations. ACM TOG, 30(5), October

2011.

[80] Shi-Min Hu, Kun Xu, Li-Qian Ma, Bin Liu, Bi-Ye Jiang, and Jue Wang.

Inverse image editing: Recovering a semantic editing history from a before-

and-after image pair. ACM TOG, 32(6), November 2013.

[81] Connelly Barnes, Fang-Lue Zhang, Liming Lou, Xian Wu, and Shi-Min Hu.

Patchtable: Efficient patch queries for large datasets and applications. ACM

SIGGRAPH, 34(4), August 2015.

[82] F. L. Zhang, J. Wang, E. Shechtman, Z. Y. Zhou, J. X. Shi, and S. M. Hu.

Plenopatch: Patch-based plenoptic image manipulation. IEEE TVCG, 23(5),

2016.

[83] Connelly Barnes and Fang-Lue Zhang. A survey of the state-of-the-art in

patch-based synthesis. Computational Visual Media, 3(1), 2017.

[84] Shi-Min Hu, Fang-Lue Zhang, Miao Wang, Ralph R. Martin, and Jue Wang.

Patchnet: A patch-based image representation for interactive library-driven

image editing. ACM TOG, 32(6), November 2013.

[85] Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli Shechtman, Paul Asente,

Jingwan Lu, and Daniel Sýkora. StyLit: Illumination-guided example-based

stylization of 3d renderings. ACM Transactions on Graphics, 35(4), 2016.

[86] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convo-

lutional neural networks. IEEE CVPR, pages 2414–2423, June 2016.

Bibliography 122

[87] Paul Guerrero, Stefan Jeschke, Michael Wimmer, and Peter Wonka. Edit

propagation using geometric relationship functions. ACM SIGGRAPH,

33(2):15:1–15:15, April 2014.

[88] Jun Xing, Hsiang-Ting Chen, and Li-Yi Wei. Autocomplete painting repeti-

tions. ACM SIGGRAPH Asia, 33(6):172:1–172:11, November 2014.

[89] Gilbert Louis Bernstein and Wilmot Li. Lillicon: Using transient widgets to

create scale variations of icons. ACM SIGGRAPH, 34(4):144:1–144:11, July

2015.

[90] Paul Guerrero, Gilbert Bernstein, Wilmot Li, and Niloy J. Mitra. PATEX:

Exploring pattern variations. ACM SIGGRAPH 2016, 2016.

[91] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal

Fua, and Sabine Susstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE PAMI, 34(11):2274–2282, 2012.

[92] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of

min-cut/max-flow algorithms for energy minimization in vision. IEEE PAMI,

26:359–374, 2001.

[93] James McCrae, Karan Singh, and Niloy J. Mitra. Slices: A shape-proxy

based on planar sections. ACM SIGGRAPH Asia, 30(6):168:1–168:12, 2011.

[94] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. Image

completion using planar structure guidance. ACM SIGGRAPH, 33(4):129:1–

129:10, 2014.

[95] B. Edwards. The New Drawing on the Right Side of the Brain. Jeremy P.

Tarcher/Putnam, 1999.

[96] K. Eissen and R. Steur. Sketching: Drawing Techniques for Product Design-

ers. Bis B.V., Uitgeverij(BIS Publishers), 2007.

[97] K. Eissen and R. Steur. Sketching: The Basics. BIS, 2011.

Bibliography 123

[98] Sketch-a-day. http://www.sketch-a-day.com/, 2016. Accessed:

2016-10-23.

[99] Draw-a-box. http://drawabox.com/lesson/6, 2016. Accessed:

2016-10-23.

[100] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and

Niloy J. Mitra. Abstraction of man-made shapes. ACM SIGGRAPH Asia,

28(5):#137, 1–10, 2009.

[101] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

[102] FastCompany. 75% of ikea’s catalog is computer generated

imagery. https://www.fastcodesign.com/3034975/

75-of-ikeas-catalog-is-computer-generated-imagery,

2014.

[103] CGalter. Multipass compositing in photoshop - vray render elements.

https://www.youtube.com/watch?v=q0WpIzi8sc4, 2015.

[104] 3DArtist. Compositing 3d render passes in photoshop. https://www.

youtube.com/watch?v=wrsvFKNgxgU, 2016.

[105] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

[106] Stephen Robert Marschner. Inverse rendering for computer graphics. Tech-

nical report, 1998.

[107] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for

inverse rendering. ACM SIGGRAPH, pages 117–128, 2001.

[108] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion of

video. IEEE Trans. Pattern Anal. Mach. Intell., 29(3):463–476, March 2007.

[109] L. Itti and C. Koch. Computational modelling of visual attention. Nature

Reviews Neuroscience, 2(3):194–203, 2001.

http://www.sketch-a-day.com/
http://drawabox.com/lesson/6
https://www.fastcodesign.com/3034975/75-of-ikeas-catalog-is-computer-generated-imagery
https://www.fastcodesign.com/3034975/75-of-ikeas-catalog-is-computer-generated-imagery
https://www.youtube.com/watch?v=q0WpIzi8sc4
https://www.youtube.com/watch?v=wrsvFKNgxgU
https://www.youtube.com/watch?v=wrsvFKNgxgU

Bibliography 124

[110] Morgan McGuire. Computer graphics archive, August 2011. http://

graphics.cs.williams.edu/data.

[111] Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block

designs: I. the method of paired comparisons. Biometrika, 39((3/4)), 1952.

[112] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-

image translation with conditional adversarial networks. CVPR, 2017.

[113] Johanna Delanoy, Adrien Bousseau, Mathieu Aubry, Phillip Isola, and

Alexei A. Efros. What you sketch is what you get: 3d sketching using multi-

view deep volumetric prediction. CoRR, 2017.

[114] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron Hertzmann, and

Eli Shechtman. Controlling perceptual factors in neural style transfer. 2016.

http://graphics.cs.williams.edu/data
http://graphics.cs.williams.edu/data

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Assistive Tools
	Multimodal Correlation Analysis
	Contributions
	Organisation

	Related Work
	Image Manipulation
	Sketching and Sketch-based Interfaces
	Edit and Style Transfer

	An Image Degradation Model for Depth-augmented Image Editing
	Introduction
	Overview
	Method
	Scene Decomposition and Completion
	Image Degradation Model
	Novel view synthesis

	Results
	Closing Remarks

	Generating Easy-To-Follow Tutorials for Sketching 3D Objects
	Introduction
	Learning How to Sketch
	Generating Sketch Sequences
	Generating Primitives and Inter-part Relations
	Creating Candidate Primitives
	Selecting Candidate Primitives
	Implementation details

	Presenting Sketch Sequences
	Results and Discussion
	Evaluation
	Closing Remarks

	Transferring Image-based Edits for Multi-Channel Compositing
	Introduction
	System Overview
	Transferring Parameterized Edits
	Augmented Render Channels
	Mask Synthesis via Adaptive Image Analogies
	Finding Edit-Dependent Weights
	Adjustment Parameter Transfer
	Implementation Details

	Interface
	Render Channel Selection For Editing
	Parameterized Adjustments

	Results
	Limitations
	Baseline Comparisons
	User Study

	Closing Remarks

	Conclusion
	Summary
	Future Work

	Appendices
	How2Sketch Tutorials
	Derivation of Optimal Channel Selection
	Renderer Specific Augmented Render Channels
	Adjustment Parameters Implementation Details
	Scene, Edit and Transfer Descriptions
	Bibliography

