Neural Re-Simulation for Generating Bounces in Single Images

Carlo Innamorati'”, Bryan Russell?, Danny M. Kaufman?, and Niloy J. Mitra'*?

"'University College London
2Adobe Research
http://geometry.cs.ucl.ac.uk/projects/2019/bounce—neural-resim/

Abstract

We introduce a method to generate videos of dynamic
virtual objects plausibly interacting via collisions with a
still image’s environment. Given a starting trajectory, phys-
ically simulated with the estimated geometry of a single,
static input image, we learn to ‘correct’ this trajectory to
a visually plausible one via a neural network. The neural
network can then be seen as learning to ‘correct’ traditional
simulation output, generated with incomplete and impre-
cise world information, to obtain context-specific, visually
plausible re-simulated output — a process we call neural re-
simulation. We train our system on a set of 50k synthetic
scenes where a virtual moving object (ball) has been physi-
cally simulated. We demonstrate our approach on both our
synthetic dataset and a collection of real-life images depict-
ing everyday scenes, obtaining consistent improvement over
baseline alternatives throughout.

1. Introduction

Christopher Robin: You’re next, Tigger. Jump!
Tigger: Er, jump? Tiggers don’t jump, they
bounce.

Winnie the Pooh: Then bounce down.

Tigger: Don’t be “ridick-orous”. Tiggers only
bounce up!

— A. A. Milne, Winnie The Pooh

A single still image depicts an instant in time. Videos, on
the other hand, have the capacity to depict dynamic events
where scene objects may interact with and bounce off each
other over time. We seek to allow users to bring single still
images to life by allowing them to automatically generate
videos depicting a virtual object interacting with a depicted
scene in the image.

*Work initiated at Adobe during CI’s summer internship.

Specifically, we address the problem of dynamic object
compositing in a single still image where a virtual object
physically interacts by contact, such as bouncing, with the
depicted scene. Our goal is to generate visually plausible
virtual object-scene interactions instead of a physically ac-
curate forward prediction. In other words, we seek to gener-
ate an output that looks physically valid to a human observer
even if it does not exactly match an observed physical inter-
action starting from the same initial conditions. Our task is
important for applications in augmented reality and anima-
tion, allowing users to author dynamic events in a depicted
scene without access to sufficient information about the cor-
responding world.

For our study, we focus on the case where we toss a
virtual ball into an everyday scene, such as living rooms,
bedrooms, and kitchens, and seek to have the ball bounce
off different objects in the scene (see Figure 1). This setup
presents many challenges as we need to reason about the
geometric layout of the scene and infer how the virtual ball
will physically interact with the scene. Previous approaches
either do not physically interact with the scene through con-
tact [12, 20], require captured scene depth through multiple
views or active sensing [33, 34], or rely on forward simu-
lation using predicted single-view scene depth. However,
predicted scene depth may be noisy, resulting in inaccurate
and visually implausible forward-simulated trajectory out-
put (see videos in supplemental). Furthermore, there may
be global scaling issues with depth predictions if an algo-
rithm is trained on one dataset and applied to another with
different camera intrinsics.

To address the above challenges, we seek to learn to
‘re-simulate’ the outputs obtained from running a forward
simulation over noisy, estimated scene geometry inferred
for the input image to yield a visually plausible one. Re-
simulation methods are traditionally applied in visual ef-
fects to reuse and combine pre-exisiting physical simula-
tions for new and novel scenarios [22, 39, 45]. Here, in
analogy, we introduce a neural network for learning re-
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Figure 1. Problem statement and approach overview. We take as input a single still image depicting a scene and output a video depicting
a virtual object dynamically interacting with the scene through bouncing. Here, we consider a ball as our virtual object. We achieve this
by our Dynamic Object Generation Network which takes as inputs estimated depth and an initial forward trajectory of the virtual object
from the PyBullet simulator [11] and outputs a ‘corrected’ trajectory via a neural re-simulation step. To visualize all the trajectories in
this paper, we composited the virtual object at each time step with the input image; warmer colors indicate earlier time steps. Please view

output videos in the supplemental.

simulation — a process we call neural re-simulation. In
particular, here we apply neural re-simulation from trajec-
tories with noisy and insufficient data to plausible output.
Our solution is thus also related to recent approaches for
re-rendering scenes with a neural network [21, 27, 29, 44];
here we seek to re-simulate dynamic trajectory outputs.

For the initial forward trajectory, we generate geometry
based on estimated depth from the input image and run a
physical simulator on this estimated geometry. Then, in the
neural re-simulation step, our proposed model ‘corrects’ the
initial trajectory resulting from the noisy depth predictions
conditioned on context information available in the input
image. Furthermore, we introduce an approach that learns
to correct the global scaling of the estimated depths for the
scene conditioned on the initial trajectory. We train our sys-
tem on a dataset of trajectories computed by forward sim-
ulating trajectories with an off-the-shelf physical simulator
(PyBullet [11]) on SUNCG scenes [42]. We find that our
forward trajectories complement the information provided
by the estimated depths. Finally, we use an adversarial
loss [18] during training to allow for learning to generate
visually plausible trajectory outputs.

Evaluating the quality of the dynamic object insertion
task is difficult due to two factors: first, on real images,
there is no available ground truth to compare against; and
second, for target applications such as AR/VR and anima-
tion, ‘visual plausibility’ is more relevant rather than accu-

rate forward trajectory predictions. We evaluate our pro-
posed approach quantitatively both on synthetic data where
we have access to ground truth simulations and on real data
via a user study.

Our contribution is a system that learns to correct an ini-
tial trajectory of a virtual object provided by forward simu-
lation on geometry specified by predicted depth of an input
single still image to output a visually plausible trajectory of
the object. Furthermore, we introduce a network that learns
to update the predicted depth values conditioned on the ini-
tial trajectory. We demonstrate our approach on synthetic
images from SUNCG and on real images and show that our
approach consistently outperforms baseline methods by a
healthy margin.

2. Related Work

Our work is primarily related to previous approaches on
generating video and modeling dynamic object interactions.
Video generation. Prior work has generated dynamic or
video textures by analyzing low-level motion features [ 13,
40]. However, we seek to model and generate motions due
to high-level interactions in a scene. Prior work has looked
at modeling interactions in constrained environments, such
as sports [3]. While these interactions are complex and in-
volve reasoning about the intention of multiple agents in a
scene, we seek to model interactions that occur in every-
day scenes. More recently, there has been work to endow
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Figure 2. Visually implausible trajectories. Examples of the visually implausible trajectories that are generated by simulations with
depth prediction. Left to right: a virtual object bounces in mid air, flies into an object, bounce in an unexpected direction, or has completely

different scale due to globally incorrect depth.

a neural network with the ability to generate video. Ex-
amples include forecasting human dynamics from a single
image [ 0], forecasting with variational auto-encoders [48],
generating visual dynamics [53], and generating the fu-
ture [47]. These works primarily forecast or generate hu-
man actions in video and do not focus on modeling object
interactions. Moreover, making long-term video genera-
tions spanning multiple seconds from a neural network is
challenging. Most relevant to our generation task is prior
work that disentangles underlying structure and from the
generation step [40].

Object interactions and intuitive physics. Prior work in
modeling dynamic object interactions have involved reason-
ing and recovering parameters to a physical system [4, 7, 5,
6, 23, 26, 30, 55, 56]. While these works aim for phys-
ical accuracy, our aim is different as we want to achieve
visual plausibility through learning. Other work has looked
at changing the viewpoint of an object in a scene [20] or
manipulating modal bases of an object [12], but do not
address the problem of object-scene interaction via con-
tact. Recent work has aimed to train a learning system to
reason about physics for understanding the semantics of a
scene [19] or for making future predictions in synthetic 2D
scenarios [2, 9, 16, 50]. Work has aimed to go beyond the
synthetic setting by inferring forces in real-world images
through Newtonian image understanding [31]. More re-
cently, work has aimed to learn to model 3D systems, such
as predicting where toy blocks in a tower will fall [24], mod-
eling a variety of different closed-world systems such as
ramps, springs and bounces [14, 15, 51, 52], and predict-
ing the effect of forces in images by reasoning over the 3D
scene layout and training over 3D scene CAD models [32].
Recent work has also leveraged learning about real-world
interactions by interacting with the world through visual-
motor policies [25], grasping [37], pushing and poking ob-
jects [1, 36], crashing a drone into scene surfaces [17], hit-
ting surfaces with a stick to reason about sound [35], or gen-
erating audible shapes [54]. Closest to ours is recent work
that uses a neural network to make forward predictions of
bounces in real-world scenes [38] and infer scene geom-

etry and physical parameters such as coefficient of restitu-
tion [49]. Note that this work, while similar to ours, aims for
physical accuracy and predicts an immediate short-term tra-
jectory of a ball bounce after making contact with a surface.
We go beyond this work and infer roll outs over multiple
bounces and aim for visual plausibility.

3. Dynamic Object Generation Network

Given an input image Z depicting a scene, we seek to
output a video V of time length 7" where a virtual moving
object with initial conditions p has been composited into the
image depicting physical interaction with the scene. Exam-
ple scene interactions include the virtual object flying in the
air, making contact with several scene objects, and chang-
ing its trajectory after bouncing off scene objects. While
one could learn to generate the video directly from train-
ing data using a neural network, such long-term generations
are currently hard due to fundamental issues such as tempo-
ral flickering and decaying visual signal to the mean [28].
Recent work in long-term video generation has shown suc-
cess by disentangling the prediction of the underlying scene
structure and generation of the video pixels [46]. We seek
to leverage this insight for our video generation task.

Our approach starts by computing an initial depth map
Z of the input image, which is then passed, after geome-
try processing, to a physical simulator S along with initial
conditions p. The initial conditions consist of the initial
state of the virtual object (velocity and position) and ma-
terial parameters (e.g., coefficients for friction and restitu-
tion). The output of the physical simulator is an initial tra-
jectory Xo = S(Zy, p) represented as a sequence of object
states Xo = (x1,...,27). We assume access to depth pre-
dictions for the scene from an off-the-shelf algorithm. For
our work, we use the depth prediction system of Chakrabarti
et al. [8], which is a top performer on predicting depth on
the NYUv2 dataset [41]. We run forward simulations using
the PyBullet physical simulator [11].

Given the initial forward trajectory X, one could simply
generate the final video V by passing the trajectory and the
image Z to a composing function R to yield V = R(Z, Xj).
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Figure 3. System overview. Our system takes as inputs an image depicting a scene and initial conditions for the object that is tossed in the
scene and outputs a video showing a visually plausible predicted trajectory of the object interacting with the scene. Our approach predicts
depth at every pixel in the image and consists of two networks — a forward trajectory update network G. and a depth correction network

H. See text for more details.

However, this step often yields visually implausible output
videos where the virtual object may or may not change di-
rection at inappropriate times or bounce in a direction that
is not congruent with a depicted surface due to inaccurate
depth predictions. Example visually implausible outputs
are shown in Figure 2. Such visually implausible artifacts
cause the viewer to perceive the virtual object to bounce in
mid-air, fly into a scene object or surface, or bounce in an
unexpected direction, and are due to inaccurate predictions
in the depth estimates.

Our insight is to correct such visually implausible arti-
facts by correcting the initial depth Z; and initial forward
trajectory X to yield a visually plausible final result — we
call this step neural re-simulation. We introduce two net-
works G, and H that generate updated forward trajectory
X and updated depth map Z, respectively. The forward tra-
jectory update network G, is a generative neural network
parameterized by scalar z that takes as inputs the image 7
and a forward trajectory X and returns an updated trajec-
tory,

X' =G.(T,X). (1)

The depth correction network H is a neural network that re-
turns an updated depth map given the image Z, initial depth
map Zy, and initial trajectory X as inputs,

Z:%(I7 Z07X0> (2)

The final video can be generated by composing the two
networks,

V =R(Z,G.(Z,S(H(Z, Zo, X0), p)))- 3)

We describe both networks in the following subsections and
outline our overall approach in Figure 3.

3.1. Trajectory update network

We assume a neural network for the trajectory update

network. The network takes as inputs the input image Z,
the virtual object’s forward trajectory X resulting from the
corrected depth predictions for the scene, and a value z sam-
pled from a Gaussian distribution z ~ A(0,1). The net-
work first consists of a multilayer perceptron (MLP) that
takes as input a concatenation of the trajectory X and sam-
pled value z and outputs an encoded representation of the
trajectory. The MLP is followed by a second MLP that
takes as input a concatenation of the encoded trajectory rep-
resentation and an encoding of the image Z. We obtain
the image encoding through a pre-trained Inception-ResNet
model [43] that has been pre-trained on ImageNet. The en-
coding is extracted from the penultimate layer. The second
MLP outputs the updated trajectory X”.
Learning. One could train our trajectory update network
using an Lo loss to ground truth trajectories with the aim of
making physically accurate predictions. However, this strat-
egy would yield over-smooth predictions to the mean distri-
bution over trajectories. Moreover, our goal is to generate
visually plausible trajectories and not necessarily physically
accurate ones.

To achieve our goal, we aim to fool a discriminator given
a dataset of trajectories and the set of initial trajectories
provided by running a forward simulation on the geometry
from the initial depth map Z,. We train the trajectory up-
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Figure 4. Dataset. Histogram of scene depth (left) and sampled
trajectories from our dataset (right), illustrating the dataset’s vari-
ety over depth and trajectory.

date network using an adversarial loss [18]. Given training
examples of visually plausible trajectories ppiqusivie and a
set of initial trajectories P;pitiqal, We seek to optimize the fol-
lowing adversarial loss over the trajectory update network G
and a discriminator architecture D,

mgin mgx EXNpplausible [IOg (D(Z, X))]

+ Exapipinia [log (1 - D(Z,6:(Z, X)))]. 4
2~N(0,1)

The discriminator network consists of an MLP that takes
as input a trajectory X and outputs its encoded representa-
tion. The MLP is followed by a second MLP that takes as
input a concatenation of the encoded trajectory representa-
tion and an Inception-ResNet encoding of the image Z. The
second MLP outputs a prediction label.

To help with the early stages of training, the adversar-
ial loss is aided by an L2 loss of decreasing relevance over
training epochs. In particular, the L2 loss is weighted down
by 0.5% after every epoch, resulting in a complete adver-
sarial loss after the 200th epoch. The network is run for a
total 1k epochs.

3.2. Depth correction network

A major source of error is when an initial depth map Z,
is grossly out of range of the expected depth values for a
given depicted scene. To correct this issue, we seek to have
a network learn to output calibration parameters Z,,;, and
Zmaz that will be used to scale the initial depth values into
the expected range. To achieve this result, we assume the
depth correction network H is a MLP followed by a depth
calibration update that takes as input a concatenated vector
consisting of an encoded representation of the input image
Z, an encoding of the initial depth map Z, and the output of
the trajectory update network with the initial trajectory X
passed as input. The MLP outputs (Z,in, Zmaz ), Which is
then used to scale the min and max input depth map values
in Zj to match the newly computed normalization values.
The updated depth map Z is returned as output.

Learning. The depth correction network is trained using Lo
loss to regress the two normalization parameters given the
trajectory Xy, an encoding of the image Z and an encoding
of the initial depth map Zy. The network is run for a total
of 1k epochs.

Geometry processing. To obtain the input trajectories of
the model X from the input depth map, we leverage pro-
jection and view matrices to obtain a point cloud, where
each vertex corresponds to a pixel of the depth map. We
then turn the point cloud into a mesh by connecting neigh-
boring vertices. The mesh is then passed through PyBullet
to obtain a corresponding trajectory.

4. Synthetic Trajectory Generation

A critical aspect of training our system is the ability
to learn from a large collection of examples depicting an
object interacting with an everyday scene. This aspect is
challenging as such data is relatively scarce. For exam-
ple, while one could consider real videos, the largest known
dataset of a ball interacting with a scene contains about
5000 videos [38]. Moreover, the ball starts with different
initial velocity (speed and direction) in each video.

To overcome this challenge, we leverage recent datasets
containing large stores of 3D CAD models. We consider the
SUNCG dataset for our study [42]. The SUNCG dataset
contains 45k 3D scenes. We equip the 3D CAD models
with a physics simulator, namely PyBullet [11]. To render
forward trajectories, we import a scene into PyBullet and
specify a camera viewpoint. We leverage the pre-computed
camera locations provided by the SUNCG toolbox, which
depicts viewpoints where the camera is held upright with
the pitch angle rotated up by 30 degrees and pointing to-
ward the interior of the scene geometry. We filtered the
cameras to not directly face walls and other large surfaces
and adjusted the cameras to match PyBullet’s intrinsic pa-
rameters. We use 50k of the available 828k cameras.

For our study, we assume that the object is a spherical
ball and starts with an initial velocity of 0.6 meters per sec-
ond in the direction away from the camera center. We set
the coefficients for friction and restitution to 0.5 and gen-
erate forward trajectories of length 1.5 seconds, sampled at
20Hz. At each time point, we record the output of the 3D
center-of-mass location of the ball in camera space from Py-
Bullet. After processing the trajectory, we render the new
frames by re-creating the object in PyBullet and re-updating
the coordinate system.

Our dataset consists of 50k examples, with each example
coming from a multi-room 3D model containing on average
eight different rooms. We generate data using less than 10%
of the available cameras; the majority of the rooms have less
than two sampled viewpoints out of maximum five. We split
our dataset into training, validation, and testing sets of sizes
40k, 5k and 5k, respectively. Figure 4 shows a histogram of



Table 1. Quantitative evaluation on synthetic scenes. We report
L5 distances in 2D and 3D and a perceptual loss (top — baselines,
bottom — ablations). Notice how our approach out-performs all
baselines and ablations across all criteria.

Method Ly (2D) Lo (3D)  Perc. loss

(1x10%) (1x10%) (1x10%)
Dataset prior 616.4 797.8 6.3
Depth + fwdsS. 186.5 255.1 4.9
DepthEq + fwdsS. 144.1 196.3 4.5
2D regression 4.9 N/A N/A
3D regression 4.9 6.5 3.1
DepNet 101.2 133.5 29
TrajNet 33 43 2.4
Ours 1.5 2.1 1.3

the span of depth values over the dataset in centimeters, in
addition to a set of randomly selected trajectories from the
dataset, illustrating the dataset’s variety.

5. Experiments

In this section, we show qualitative and quantitative re-
sults of our system. To better appreciate our final results, we
encourage the reader to view videos of our dynamic com-
posite outputs in the supplemental material.

5.1. Results on synthetic data

As a first experiment, we evaluate the effectiveness
of our approach on synthetic scenes from the SUNCG
dataset [42], which allows us to directly compare against
trajectories resulting from forward simulation.

Dataset and evaluation criteria. We use the generated tra-
jectories resulting from forward simulation as outlined in
Section 4. We evaluate our predicted trajectories by com-
paring against ground truth trajectories using Lo distance
averaged over time. While this criterion evaluates physi-
cal accuracy of the predicted trajectory, it does not evalu-
ate the trajectory’s visual plausibility. In addition to report-
ing time-averaged Lo distance, we also report a perceptual
loss over the rendered video by computing the Lo distance
between the image encoding of each frame with the cor-
responding ground truth frame. We obtain the image en-
codings through a pre-trained Inception-ResNet model that
has been pre-trained on ImageNet [43] and compare the re-
sponses from the penultimate layer.

Baselines. We evaluate a number of baselines for our task.
First, we consider a baseline (Dataset prior) where we com-
pute the average 3D forward trajectory over the training set.
Second, we train a neural network to regress to 2D and 3D
trajectories (2D regression and 3D regression) given the in-
put single image. For fair comparison, the networks share
the same architecture as the trajectory update network out-

lined in Section 3.1 except the sampled value z is with-
held as input; for 2D, we used only two dimensions for in-
put/output. We trained the networks for the same number of
epochs while monitoring the validation loss to avoid over-
fitting. Third, we consider a baseline of a forward phys-
ical simulation of the ball using geometry from the pre-
dicted depth (Depth + fwdS.). We used the same depth-
prediction algorithm [8] as in our proposed method. Fi-
nally, we consider performing histogram equalization over
histogrammed ground truth and predicted depth values over
the training set (DepthEq + fwdsS.).

Ablations. We consider the following ablations of our
model. First, we consider running our full pipeline with-
out the depth correction network (7rajNet). Second, we
consider running our full pipeline without the last trajectory
update network (DepNet).

Results. To evaluate the improvement we achieve with our
depth correction network, in addition to standard L, mea-
sures, we computed the difference in time to the first bounce
event (lower is better): Dataset prior — 3.8, Depth + fwdS.
— 3.0, DepthEq + fwdS. — 2.6, DepNet — 1.8; our depth cor-
rection network outperforms the baselines on this criterion.
We show final quantitative results in Table 1. Notice how
we outperform all baselines and ablations across all crite-
ria.

5.2. Results on real data

As a second experiment, we evaluate the effectiveness of
our approach on single still images depicting real scenes.
As per the synthetic experiments, we trained our system on
the synthetic data from Section 4.

Dataset, baselines, ablations. We collected a dataset of
30 in the wild natural images depicting indoor scenes from
royalty-free sources and compared our approach against the
baselines and ablations described in Section 5.1. Addition-
ally, we randomly selected a set of 20 NYUv2 images [41]
and compared our approach against forward simulation on
the provided depths from an active-sensing camera. Lastly,
we compared our method to the work described in [38].

Qualitative results. We show qualitative results in Fig-
ure 5. Notice how our approach generally improves over
the initial trajectories and out-performs the 3D trajectory re-
gression baseline that returns trajectories close to the mean.
User study. As we do not have noise-free ground truth tra-
jectories for either sets of images, we conducted a user study
where we asked humans to judge the visual plausibility of
the outputs. More specifically, we presented a user with
two outputs from different systems and asked the user to
choose which output looks more realistic. We randomized
the order in which we showed each output to the user. The
experiments were conducted with workers from thehive.ai.

For the set of 30 natural images, we compared our re-
sults against forward simulation on predicted depth (Depth



(a) input image (c) initial tra_jectory (d) our optimized trajectory
Figure 5. Qualitative results on real images. We show (a) the input image depicting a real scene, (b) output from the 3D trajectory
regression baseline, (c) our initial trajectory resulting from forward simulation on predicted depth, and (d) our output optimized trajectory.
Notice how the visual plausibility of our output trajectories improve over the initial trajectory. Last row — failure example.



+ fwdS.) and our full pipeline without the last trajectory
update network (DepNet). Additionally, we also compared
Depth + fwdS. against DepNet. Each experiment was con-
ducted by 80 unique users and the users casted 4.5k votes
over the three tasks. Users preferred our method over Depth
+ fwdS. and DepNet 71% and 59% of the time (p < .0001
— all p-values from binomial test), respectively, illustrating
the effectiveness of our approach. Moreover, users pre-
ferred DepNet over Depth + fwdS. in 63% of the cases
(p < .0001), illustrating that the depth correction network
helps improve results. For the NYUv2 images, we eval-
uated our method against forward simulation on the pro-
vided active-sensing depths over 98 unique users casting 2k
votes. Users preferred our method 49% of the time (no sta-
tistical significance), demonstrating the effectiveness of our
approach and the level of noise in the active-sensing depths.

Finally, we compared to the work of [38]. As a di-
rect comparison with [38] is not feasible due to the addi-
tional information it requires, we designed a ground-truth-
augmented version of the method. The work in [38] re-
quires a ground-truth input trajectory up to the first bounce,
which we can provide by running PyBullet with appropri-
ate parameters over the geometry obtained from the kinect
depths of the NYUv2 dataset. Further, as [38] outputs a
post-bounce trajectory spanning only 0.1s and our approach
outputs multiple bounces and roll-out trajectories over 1.5s,
we manually extended the output from [38] to 1.5s via 3D
parabola fitting (note that this step is comparable to simu-
lating post-bounce free fall). We show a qualitative com-
parison of the resulting trajectories in Figure 6.

For the experiment conducted on the aforementioned
data, 130 users cast a total of 2.5k votes. Users preferred
our method in 59% of the cases (p < .0001), which is
noteworthy given that [38] has access to ground-truth about
when and where in the scene the bounce occurs and indi-
rect access to kinect depths for the scene. Additionally, we
performed a second study, where our trajectories were ex-
tended after the first bounce through free fall — note that
this is an ablated version of our method as it lacks multi-
bounces and roll-outs. For this study, 90 users cast a total
of 1.8k votes. Users preferred our outputs 56% of the time
(p < .0001).

6. Conclusion

We introduced neural re-simulation as a ‘correction’
mechanism that learns to generate visually plausible bounce
interactions of a virtual ball in depicted scenes in single still
images. Our system learns to update an initial depth esti-
mate of the depicted scene through our depth correction net-
work and uses this update to correct an initial trajectory ob-
tained via forward simulation through our trajectory update
network. We demonstrated our system on not only synthetic
scenes from SUNCG, but also on real images. We showed
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Figure 6. Sample user study trajectories. We show our results
versus results obtained by providing access to ground-truth depth
and extending the work of [38] through free fall. Note that, in
ground-truth augmented [38] (see text), the ball passes through
scene objects, such as the cubicle (row 1) and table (row 2).

via a human study that our approach on real images yields
outputs that are more visually plausible than baselines. Our
approach opens up the possibility of generating more com-
plex interactions in single still images, such as inserting ob-
jects with different geometry and physical properties and
modifying the depicted environment.
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