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Abstract

In this work we introduce Softmesh, a fully differentiable
pipeline to transform a 3D point cloud into a probabilistic
mesh representation that allows us to directly render 2D im-
ages. We use this pipeline to learn point connectivity from
only 2D rendering supervision, reducing the supervision re-
quirements for mesh-based representations.

We evaluate our approach in a set of rendering tasks,
including silhouette, normal, and depth rendering on both
rigid and non-rigid objects. We introduce transfer learning
approaches to handle the diversity of the task requirements,
and also explore the potential of learning across categories.
We demonstrate that Softmesh achieves competitive perfor-
mance even against methods trained with full mesh super-
vision.

1. Introduction

In this work we aim at making point clouds a first-class
representation for deep geometry processing. The popular-
ity of point clouds is due on the one hand to their minimal
format which has facilitated successful and simple MLP-
based deep architectures [26, 35, 22], and their ubiquitous
nature, being the natural output of SfM pipelines [30, 31]
or depth sensors [8]. At the same time, point clouds are
unstructured, namely come as sets. This impedes the con-
nection of 3D point clouds with the abundant supervision
available for 2D images; a mesh structure is needed to con-
nect points into a surface, which in turn can be rendered
into a two-dimensional image. Unfortunately, meshes are
not directly measured, but rather estimated through heuris-
tics [7], estimated as an indexed faceset from scans [11], or
time-demanding optimization algorithms [37, 18, 9, 17] that
build a triangulated graph on top of a set of points. This ob-
structs the application of deep learning algorithms, making
it hard, or even impossible to train end-to-end. We argue
that tackling this problem would allow deep learning ap-
proaches for 3D point-cloud processing to leverage on the
vast amounts of 2D supervision from real images.

We investigate how to convert a point cloud into an

Figure 1. Our approach takes as input a 3D point cloud, esti-
mates the probability of point grouping into faces, and delivers
a soft mesh representation that allows us to render 2D images in
an end-to-end differentiable manner. We thereby learn a proba-
bilistic mesh estimate from 2D image supervision. (Middle) Soft-
mesh output with probabilistic faces from an input of 512 points.
Low probability faces are shown in transparent and high probabil-
ity faces in red (Left & Right) Sectional views of the interior of
the mesh.

image through a lightweight, mesh-construction operation
that can be seamlessly integrated with neural rendering
pipelines. Our main goal is to enable this with only im-
age supervision. To this end, we propose Softmesh that
learns a distribution over meshes, by training a deep neu-
ral network to deliver the probabilities over different (can-
didate) mesh faces. We bundle our method together with an
appropriately adapted differentiable rendering method [21]
and show that our network allows us to successfully render
multiple surface properties, including normals, depth and
silhouettes without any 3D connectivity supervision. The
different output spaces – e.g., discrete for silhouette, unit-
normR3 vectors for normals – are easily accommodated for
by appropriate losses on the rendering outputs.

We show that our method can be applied on a wide vari-
ety of objects, both rigid or non-rigid objects. In particular,
we experiment with 3D human scans from the MPI-FAUST
dataset [2], as well as the 16 object categories from the
ShapeNet-Part dataset [5]. Our proposed approach signifi-
cantly improves on classical approaches while being on par
with other neural network approaches trained with stronger
3D supervision. We further explore the ability of our net-



work to transfer knowledge across different rendering tasks,
and also across different shape categories.

In summary, our key contributions are:

• Softmesh, a fully differentiable pipeline that can learn
a distribution over non-manifold meshes from 3D
point clouds;

• a pipeline that can be trained end-to-end using only
2D-image supervision for multiple rendering tasks and
object categories; and

• an extensive evaluation demonstrating improvements
over classical methods while achieving similar perfor-
mance to 3D-supervised method.

2. Related Works
Deep point cloud processing The now seminal Point-
Net [26] introduced a novel network of MLPs to do both
classification and regression tasks directly on unstructured
point clouds. The work has resulted in a cascade of
followup works [26, 27, 23, 33, 19, 13]. Others have
contributed to working directly on point clouds in the
form of per-point attribute estimation [13], point upsam-
pling [28], estimating surface geodesic distance directly on
point clouds [15], or rendering of an image using a learnt
rendering function [1] to name few applications. In the con-
text of generative models, PointFlow [35] learns to model a
distribution using continuous normalizing flow. There has
been as well several works using transformers and attention
mechanism for point cloud processing [36, 6, 32] but with-
out explicitly building a graph from the input point cloud.
While these works support analysis/synthesis direclty using
point clouds, they do not allow to create a final (rendered)
image as output.

Classical Mesh reconstruction One of the earliest pa-
pers exploring the problem of surface reconstruction from
pointclouds is the work by Hoppe et al. [16]. Subsequently,
several methods have been developed using Fourier-based
reconstruction, wavelet basis, radial basis functions [3] to
approximate the underlying signed/unsigned distance field.
The most celebrated result in this context is the Poisson re-
construction formulation where surface reconstruction from
signed point clouds is cast as a Poisson problem [17].
A final mesh can then be obtained by running marching
cubes [10] on the implicit representation. For a detailed
discussion, please refer to the survey [16]. These classical
methods produce a single mesh as a reconstruction of the
input point cloud.

Deep mesh processing There has been fewer works aim-
ing at obtaining a mesh from a raw scan. One of the
earliest attempts was the Scan2Mesh [11] work that re-
sampled a pointset and produced candidate triangles as a

‘reconstruction’ of the raw pointsets. More recent meth-
ods have been introduced to learn point connectivity using
ground truth mesh information for geodesic distance super-
vision [20, 29]. Recent efforts have also focused on ‘shrink-
wrapping’ a mesh to a point cloud [12, 14]. Alternately,
deep geometric priors [34] overfits to local parameteriza-
tion charts to point cloud patches to produce a dense recon-
struction of the input point cloud. Starting from raw point
clouds, these works attempt to produce a single mesh, man-
ifold or otherwise, as a final underlying surface. We take a
different view.

Acknowledging the space of possible underlying sur-
faces that a discrete point cloud sampling can repre-
sent [25], we venture to directly estimate a distribution over
face probabilities that can be inferred from a raw point
cloud. This, in turn, allows us to link point clouds, through
our Softmesh, to a differentiable rendering approach [21]
that operates on triangle mesh representation for image ren-
dering tasks.

3. Method

Our goal is to establish an end-to-end trainable pipeline
able to handle a wide variety of rendering tasks directly
from point clouds, based on a new representation that we
call Softmesh. This soft representation is learnt via points
affinity that represents how likely an edge connecting two
points is. Triangle faces can then be obtained by com-
bining relevant edges and finally allowing rendering oper-
ations. Thanks to the end-to-end trainable pipeline, we can
back-propagate from the loss through the whole process ef-
fectively allowing us to learn (mesh) connectivity with only
2D image supervision. We now turn to a more in-depth pre-
sentation of the different components.

3.1. Learning point-to-point connectivity

We aim to find a set of soft edges connecting the differ-
ent points from a point cloud. This is the first step before
getting the set of probabilistic faces that could then be ren-
dered. In particular, we use a position and semantic encoder
to map points in a new feature space where point affinity can
be measured easily from the two point features of an edge.

3.1.1 Position and Semantic Encoder

To embed the position of each input point p ∈ P in the
source point set P, we use the embedding initially intro-
duced in the NeRF [24] pipeline. This embedding relies on
the idea that mapping inputs to a higher dimensional space
using high frequency functions helps networks to better fit
to high frequency variations. The function γ maps each co-
ordinate - normalized to [-1,1] - in R to a feature in R2L
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Figure 2. Pipeline of the proposed Softmesh pipeline. Two semantic and position encoders act in parallel to extract an encoding for each
point. The Edge Selection module then shortlists possible edges that are scored by a subsequent Edge Scoring module. Edge scores
are combined into the Face scoring module. The predicted faces, with associated probabilities, are finally rendered by our customized
differentiable soft rasterizer. The whole setup is trained end-to-end with only 2D image level supervision.

as:

γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp))
(1)

To learn a proper encoding for any given task, we process
the output of the γ function with a simple MLP with learn-
able parameters.

To additionally provide semantic context to the final
point encoding, our pipeline relies on a Deep LPN [23] net-
work that extracts semantic context for each point. This se-
mantic embedding complements the previous position em-
bedding by adding some global and local contextual infor-
mation for each point. A second MLP with the same prop-
erty as for the position encoding is applied to the output of
the Deep LPN network.

The two encodings, position epos and semantic esem
based, are then concatenated together as a single vector e.

e = [epos, esem] (2)

3.1.2 Edge Selection and Scoring

To avoid dense connectivity, an Edge Selection module is
designed to shortlist a set of edges to consider for each
point. The Edge Selection module selects the edges based
on the k-nearest neighbors in the spatial xyz-space for each
point. The shortlisted set of E edges is then scored by the
Edge Scoring module. To score an edge (a, b) based on the
point encodings ea and eb, we use the cosine similarity:

πeab =< e∗a, e
∗
b >

with normalised encodings: e∗ = e/‖e‖.

3.2. Point Cloud Rendering

Our aim is to establish triplets of points that are likely
to belong to the surface of an underlying object. This
is meant to favor connections between points that for in-
stance are nearby in the geodesic sense, and triplets that
form roughly equilateral triangles, while being tangential
to the object’s surface. Clearly, these properties are largely
context-dependent, implying an understanding of the under-
lying surface geometry in their definition.

3.2.1 Face scoring

In order to render a point cloud we need to form surface
faces connecting triplets of points in the case of triangu-
lar meshes. As described in Section 3.1, our Edge Weight
module has been designed to compute the score of any given
edge but not triplet of points. Thus, to score each face com-
posed of the triplet (a, b, c), we consider the minimum score
of all three edges {(a, b), (b, c), (a, c)} in the point triplet:

πfa,b,c = min(πea,b, π
e
b,c, π

e
a,c) (3)

where πf denotes face score and πe edge score. This cap-
tures the constraint that all three edges need to be highly
probable in order to form a strong face candidate.

Individual face candidates can be efficiently scored
based on Equation 3, but forming a proper distribution on
faces would require enumerating all possible faces, which
has a O(N3) memory- and time-complexity. Instead, we
rely on the pre-selection from the Edge Selection module
that shortlists for each point a set of E edges. A face will
be kept only if all of its three edges have been shortlisted.
To reduce complexity even further, we select a subset of F
faces such that this set of faces covers most of the initial
surface. This process helps to remove similar and co-planar
faces located in the same local neighborhood. All remain-
ing faces are then scored by Equation 3. This results in a
lightweight approximation with O(NE2) time complexity
andO(NF ) memory complexity that associates each of the
N points with at most E × (E − 1) soft faces. For sake of
simplicity, we will now refer to each face with its index j
and not the index of its three vertices (a,b,c) anymore.

3.2.2 Differentiable Softmesh Rendering

Rendering allows us to turn a discrete function, defined on
the 3D mesh vertices, into a continuous 2D image generated
by observing the mesh through a camera. Being one of the
core components in any graphics pipeline, it has been re-
visited by many works in deep generative models with the
aim of turning rendering into a differentiable module that
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Figure 3. Rendering the point cloud. First, potential edges are selected and scored based on the cosine similarity of (learned) features.
Then, edges are combined into soft faces. The soft mesh is then rendered from multiple views and compared to the ground truth.

facilitates end-to-end training of 3D-based generative mod-
els. These works have replaced several of the inherently
discrete operations involved in rendering, such as ray trac-
ing, with soft, probabilistic counterparts. The multitude of
approaches to this problem indicates that this is far from an
obvious task.

Our work introduces one more challenge that goes be-
yond the ones addressed in these works: the mesh is not
provided in advance, but rather delivered by our pipeline in
the form of a set of triangles that come with different levels
of confidence. We adopt SoftRas [21] a recent state-of-the-
art differentiable rendering pipeline and modify it so as to
operate with soft meshes.

In particular the probabilistic nature of our meshes re-
sults in two major differences: firstly, the contribution of a
face depends not only on its position but now on its prob-
ability as well and secondly, the number of faces hit by a
ray can be much higher, meaning that a soft accumulation
of many bits of incoherent information can result in an un-
differentiated average.

At the core of SoftRas [21] rendering pipeline, the asso-
ciation of a pixel i with the mesh face j is computed as a
soft value. Denoting by dij the euclidean distance between
the pixel and the face edges, we determine the affinity of
triangle j to pixel i through the following expression:

Dij = σ

(
δij ·

d2ij
s

)
, δij =

{
1, i ∈ fj
−1, i /∈ fj

(4)

where σ is the sigmoid function, s is a learnable sharpness
parameter, and δ results in an increase of the influence the
closer ray i hits the center of the face (i ∈ fj) and a decrease
as soon as the ray does not intersect the face (i /∈ fj). Above
a certain distance τ , the affinity is set to 0. We define the set
Ri as the set of all faces with a non-zero affinity with pixel
i:

Ri = {j | Dij 6= 0} (5)

Hard rendering would pick the closest face where δij =
1 but this would not allow for back-propagating through the

rendering operation. Instead we allow multiple faces to in-
fluence the value of a single pixel through two modifica-
tions. Firstly, Equation 4 allows a face to ‘bleed’ outside
its strict, deterministic projection to the image plane - this
underlines soft rasterization. Secondly, a single ray can hit
multiple faces of an object. In the standard case of a differ-
entiable renderer [21] these faces are known in advance and
limited. In our case, there is a multitude of options as our
pipeline predicts a distribution over faces.

Putting these aspects together, we determine the weight
by which each face j influences pixel i according to the
following distribution:

wij = απfj + βDij exp(−zij/γ) with j ∈ Ri (6)

where we accommodate the score of face j, πfj and com-
bine it with the affinity function Dij , defined in Equation 4,
and the opposite distance −zij of face j to pixel i - allowing
closer faces to have higher influence. Two learnable param-
eters α and β are used to combine the face score and its
depth position. This avoids accumulating information from
faces located on the other side of an object.

Based on these weights, the value of pixel i is not deter-
mined by a single, hard-assigned face, but rather through an
accumulation function AS over all faces hit by the ray:

Iic = AS({Cij}) =
∑
j∈Ri

exp(wij)C
i
j∑

j∈Ri
exp(wij)

, (7)

where Cij is the value of the rendered attribute at face j, and
Iic is the value induced on pixel i.

Beyond introducing face probabilities, one further de-
viation from common soft rendering pipelines consists in
learning a figure-ground mask Iis in tandem with the color
Iic value function. This has the same functionality as alpha-
matting, allowing us to disentangle learning of appearance
rendering from the figure-ground segmentation task. The
rendered image is obtained by the element-wise product be-
tween those two maps: I = Ic ◦ Is.

Due to the fact that Equation 7 accumulates the contri-
bution of each face, statistics can be biased by a large set



of faces even with a low probability. Hence, in particular
for the figure-ground generation we propose a max-pooling
alpha map aggregation function to predict the alpha channel
of our rendered image:

Iis = AO({pbj}|j∈Ri
) = max

j∈Ri

{pbj} (8)

with pbj = σ(πfj ) = 1/(1 + e−νπ
f
j ) and ν a learnable pa-

rameter. pbj represents the probability of face j to be lo-
cated within the ground truth silhouette boundary and not
the background on all views. However, pbj does not prior-
itize any specific face j in Ri when rendering a given at-
tribute (i.e. normals, depth) on pixel i if all faces only span
over the ground truth silhouette.

This ensures that many low-probability faces do not ac-
cumulate to a large value and delivers sharper segmentation
masks.

3.2.3 Computing face probabilities

As explained in Sec 3.2.1, a global score can be computed
for any face by Equation 3. However, even with a high
global score, a face hidden within an object will never be
rendered and should be assigned a low probability. Thus
the probability of a face should be based on its ability to in-
fluence output pixels on rendered images which is defined
by Equation 6.

However, such an equation is view dependent which
should not be the case for face probabilities. Thus we com-
pute the probability of a face Pj as the maximum nor-
malised weight wv,ij of face j across a set V of different
views and all pixels i.

Pj = min

{
max
v∈V

max
i|j∈Ri

exp(wv,ij )∑
k exp(w

v,i
k )

, pbj

}
(9)

Of course, a face lying outside of the silhouette boundary
will be visible under certain views and thus should be scaled
down to the probability pbj .

3.2.4 Training the renderer

Once our probabilistic mesh representation is bundled to-
gether with a differentiable renderer, we have a fully-
differentiable pipeline for converting a point cloud into a
2D image. As such, we can learn about mesh connectivity
by training our network in an end-to-end manner based on
2D images generated from ground-truth meshes.

The global loss function is defined as a weighted sum of
intermediate losses, adapted to the tasks at hand. In par-
ticular for continuous outputs we use `1 losses Lnorm1 and
Ldepth1 for the normals and depth, respectively; we add a
cross-entropy loss Lsilhcross for the silhouette task which can

be seen as binary classification; finally we use an `0.5 spar-
sity loss on the face probabilities assigned to each pixel i

Lireg =
(∑

j p
1/2
j

)2
to minimize the number of faces with

non-zero probabilities. The combination weights for these
losses are determined by cross-validation on a small subset
of the training set.

L = wnorm1 · Lnorm1 +wdepth1 · Ldepth1 +wsilhcross · Lsilhcross

+ wreg ·
∑
i

Lireg (10)

The `1 losses are applied only within the object boundary
as the rendered attributes (normals, depth) are learnt sepa-
rately from the silhouette as explained in Section 3.2.2. For
the depth, we have for example:

Ldepth1 =
∑
i

|Iidepth ◦ Iis − Iidepth| (11)

with Iis and Iidepth the ground truth silhouette and the
ground truth depth map respectively at pixel i.

4. Evaluation
We extensively evaluate Softmesh on three rendering

tasks, (i) silhouette, (ii) normals and (iii) depth from a 3D
point cloud from any given camera position. We use two
datasets in our benchmarks to assess our approach on both
rigid and non-rigid objects. We further analyze the effect of
noise level and input point cloud resolution on the quality
of the output rendering.

4.1. Datasets

We evaluate Softmesh on two datasets, one with non-
rigid human bodies and the second with rigid objects from
humanmade models.

(i) MPI-FAUST [2]: The training data is composed
of 100 watertight meshes with 6 890 vertices each, corre-
sponding to 10 human bodies, each in 10 different poses.
All the shapes in the training set come with vertex level
registration. The test data is composed of 200 scans but
in different poses.

(ii) ShapeNet-Part [5]: ShapeNet-Part is a subset of
13 998 objects from the bigger ShapeNet dataset. It is com-
posed of a set of humanmade models organized across 16
different categories.

4.2. Data Processing

To generate the input point clouds, we randomly sample
points on the surface of each object until the given resolu-
tion is reached. To make the task more complex, very low
resolution point clouds are sampled for each dataset. If not



Table 1. Quantitative comparisons across our Softmesh pipeline, other baseline methods (rows 1 to 6), and ablation on transfer across tasks
(rows 7 to 13) on the MPI-FAUST [2] dataset sampled at resolution 512. Performance is evaluated in terms of `1 difference to the ground
truth images for all three tasks (silhouette, normals and depth). mIoU is also measured for the Silhouette task. Check marks indicate which
image renderings are available to Softmesh during training.

.

Id Method
Silhouette Normals

`1 (× 10−2) ↓
Depth

`1 (× 10−2) ↓`1 (× 10−2) ↓ mIoU (%) ↑
1 KNN10 1.196 91.19 7.611 3.706
2 KNN17 1.508 89.34 7.615 4.446
3 Poisson [17] w/ N 1.369 90.08 7.311 4.099
4 Poisson [17] w/o N 4.513 73.98 13.223 13.112
5 IER Meshing [20] 1.391 89.99 12.005 4.112
6 Softmesh (ours) 1.441 89.84 7.386 4.302

Silhouette Normals Depth Transferring across tasks

7 X 1.389 90.13 9.958 4.337
8 X 1.670 88.24 7.654 4.945
9 X 1.606 88.64 7.567 4.779

10 X X 1.357 90.35 7.339 4.076
11 X X 1.604 88.64 7.570 4.766
12 X X 1.407 90.09 7.314 4.214
13 X X X 1.441 89.84 7.386 4.302

mentioned otherwise, the point clouds used as input to our
network are at a resolution of 512 points. To further analyze
the effect of resolution, two additional point cloud versions
are sampled for each shape at resolutions 1 024 and 2 048.
To generate noisy point clouds, each point is (uniform) ran-
domly displaced along the ground truth normal direction,
computed using underlying mesh, with a magnitude sam-
pled in the range [−ν, ν].

Each mesh is also rendered with different camera poses
to provide the 2D supervision signal required at training
time. We choose the camera calibration to be the same as
our soft rasterizer and rotate the camera around the object
at fixed elevation to get 8 equally spaced views. For each
object and each view, the silhouette, the rendered normals
and rendered depth are saved as ground truth signal.

In all experiments, we consider that the 3D attributes to
be rendered is known. For example, to render the normals,
we use the ground truth per-point normals that we feed to
the renderer. However, we suppose that our network has not
access to any of these attributes to learn point connectivity.

For fair comparison, we also estimate 3D point normals
directly from the point cloud by jet fitting [4] (using CGAL
function) for the Poisson solver. We report Poisson perfor-
mance both with ground truth normals (Poisson w/ N) and
with estimated normals (Poisson w/o N).

Differently to IER Meshing [20], our pipeline does not
require to know the distance ratio geodesic/Euclidean for
each edge nor the distance of a face to the ground truth
mesh. Only 2D images of the object are required to build
and render our soft mesh representation.

4.3. Evaluation metrics

To compare the different methods on the same ground,
we use two types of metrics, 2D-based and 3D-based.

2D-based: The output of each method is rendered us-
ing the same camera calibration used to generate the ground

truth images. For baseline methods, we use the same
generic rasterizer as in Section 4.2. For our pipeline, we
use the output of our soft-rasterizer but we binarize the sil-
houette map. All pixels above 0.5 are assigned to 1 and the
rest of the pixels set to 0.

We compute and report the `1 difference between the
predicted and the ground truth images obtained from the
original mesh. As a second metric, we use the IoU (Inter-
section over Union) in % between the predicted and ground
truth silhouette.

3D-based: To assess the 3D outputs of each method,
we measure the distance between the predicted faces and
the ground truth mesh. The distance of a face to a (soft)
mesh is simplified as the distance of its centroid to the (soft)
mesh. The distances are then averaged to get our 3D metric.
We report on this metric in the Supplemental material.

4.4. Baselines

In our evaluation, we evaluate our method against three
baselines, (i) KNN (with k = 10 and k = 17), (ii) Pois-
son [17], w/ or w/o ground truth normals N and (iii) IER
Meshing [20].

KNN: KNN builds edges between each pair of neighbors
and then extracts the faces from the set of edges.

Poisson [17]: Poisson reconstruction, as implemented in
CGAL, estimates the implicit function of a shape from an
input point cloud and its associated normals. Then, a mesh
is generated by extracting an iso-surface from this function.

IER Meshing [20]: For IER Meshing [20], we use the
same default parameters as the official implementation from
the author.

4.5. Results

We compare our method with the three aforementioned
baselines. We also report KNN performance on MPI-
FAUST [2] for intermediate k values in Figure 4. We show



Table 2. Performance of KNN, Poisson [17], IER Meshing [20] and Softmesh for silhouette reconstruction on each of the 16 ShapeNet-
Part [5] categories sampled at resolution 512. Results are shown as the L1 difference (- the lower the better -) to the ground truth (×10−2).

Category Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motorbike Mug Pistol Rocket Skate Table

Nb. Objects 2299 68 50 817 3362 63 709 357 1404 407 176 168 253 58 137 4683

KNN10 1.268 4.958 4.143 3.411 4.940 4.228 1.578 1.309 2.704 5.667 5.146 5.844 2.363 1.056 1.420 4.777
KNN17 1.049 3.674 2.252 2.704 4.442 3.611 0.987 0.761 2.272 2.713 4.680 4.094 1.576 0.679 1.315 4.151

Poisson [17] w/ N 5.353 14.213 34.418 13.943 11.755 7.903 6.774 0.976 16.072 11.091 5.853 9.7832 4.238 1.737 6.562 14.444
Poisson [17] w/o N 23.650 14.758 21.419 27.912 32.932 36.810 48.856 43.500 13.980 12.892 43.371 15.695 30.473 15.844 27.754 25.478

IER Meshing [20] 1.480 3.991 2.839 12.119 3.869 3.047 1.353 1.114 2.206 4.395 4.909 4.220 2.329 1.750 1.391 3.323

Softmesh (ours) 1.006 3.424 2.143 2.836 3.495 3.520 0.941 0.713 1.971 2.360 4.364 3.404 1.537 0.652 1.204 3.427

Table 3. Quantitative comparisons across our Softmesh pipeline,
other baseline methods on the full ShapeNet-Part [5] dataset sam-
pled at resolution 512.

Tasks Silhouette Normals ↓
`1 (× 10−2)

Depth ↓
`1 (× 10−2)`1 (× 10−2) ↓ mIoU (%) ↑

KNN10 3.799 76.71 16.243 11.518
KNN17 3.188 79.335 15.606 10.100

Poisson [17] w/ N 11.725 62.083 28.511 33.677
Poisson [17] w/o N 27.745 36.166 53.079 78.244

2D 3D IER Meshing [20]

X 3.468 78.46 21.664 10.664

2D 3D Softmesh (ours)

X 2.683 83.40 14.827 8.006

on Figure 5 the output meshes of our approach and the base-
line methods for different input shapes.

MPI-FAUST dataset: The performance of Softmesh
and the three baselines are reported on Table 1. For some
very specific (manually selected) values for k (i.e., k = 10),
KNN achieves better than all the other baselines. However,
as shown on Figure 4, only a very tiny range of k values can
give this higher performance and this range also depends
on the task. IER Meshing [20] has similar issues as it re-
quires the user to define the intrinsic-extrinsic ratio thresh-
old τ to classify a face as correct or incorrect. With the
default parameters, IER Meshing [20], even with access to
ground truth connectivity during training, is on par with our
method. The choice of τ is not suited for all shapes and
thus may not classify correctly the potential faces. Pois-
son [17] is efficient under the assumption that the ground
truth normals are known. Otherwise, the performance de-
grades significantly (+230% for the silhouette loss). Due to
the very different poses contained in the test set, learning
based methods are challenged on this dataset.

ShapeNet-Part dataset: We report the performance of
our approach compared to the baselines on ShapeNet-Part
in Table 3 and further detail the performance per category
in Table 2. Softmesh performs consistently better than the
baselines for each of the three tasks and for most of the
ShapeNet-Part categories. KNN is efficient overall espe-
cially for genus 0 shapes such as Cars but fails on more
complex categories (Chairs, Tables). IER Meshing [20] is
also competitive on few classes but not all classes as the

Table 4. Quantitative comparisons across our Softmesh pipeline
and other baseline methods on the MPI-FAUST [2] dataset of the
effect of input resolution and noise scale ν. Here, Poisson [17] is
fed with estimated normals from jet fitting [4]

KNN10 KNN17 Poisson [17] IER Meshing [20] Softmesh

Resolution Varying resolution

512 91.19 89.34 73.98 89.99 89.84
1024 94.52 94.34 82.01 93.65 92.16
2048 96.34 96.60 85.77 96.04 96.44

Noise scale Increasing noise level

ν = 0.000 91.19 89.34 73.98 89.99 89.84
ν = 0.005 90.87 89.01 71.97 89.13 89.18
ν = 0.010 90.18 88.36 71.20 87.40 88.44
ν = 0.020 88.07 86.04 64.91 82.78 86.40
ν = 0.050 79.85 77.26 40.84 68.85 77.69
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Figure 4. Evolution of KNN performance with different values for
K in rendering silhouette, depth and normals on the MPI-FAUST
dataset. Choosing the correct value for k requires a complex tun-
ing: KNN can achieve better performance (lower `1 losses) than
Softmesh with some very specific values for k.

hyperparameters it relies on are class-specific. At such a
resolution, as shown in Figure 5, Poisson [17] may fail to-
tally to retrieve the object surface which penalizes its overall
performance.

Table 5. Quantitative comparisons for Softmesh on Shapenet-
Part [5] at resolution 512 when training on a single class (Single)
or on all classes (Multi). Softmesh consistently performs better in
the multi category setup.

Category Airplane Chair Table

Method Single Multi Single Multi Single Multi

Silhouette 1.112 1.006 4.518 3.495 4.068 3.427
Normals 6.571 5.809 18.868 15.723 19.270 16.625

Depth 3.408 3.058 12.736 10.033 11.704 10.046
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Figure 5. Qualitative comparisons across baseline approaches on both MPI-FAUST [2] and ShapeNet-Part [5] at input resolution 512.

Impact of the noise level: We add noise to all 3D point
clouds following the process described in Section 4.2. We
vary the scale of the noise ν from 0 to 0.050 and report the
silhouette IoU of our method and all baselines in Table 4.
We observe that our method is more robust than IER Mesh-
ing [20] as a learning based method. IER Meshing [20] is
better for noise-free point clouds (+0.05%) but its perfor-
mance degrades quickly. At noise scale ν = 0.005, our
approach becomes better (+0.05%) and the gap increases
at very high noise level (+8.84% at scale ν = 0.05). Pois-
son [17] is also sensitive to the noise when estimating the
normals from the point cloud.

Impact of point cloud resolution: We evaluate how
performance changes when increasing the resolution of the
input point cloud in Table 4. Increasing the resolution of
the input point cloud simplifies the problem as there will
be less ambiguous areas in each point cloud. All methods
obtain better performance at higher resolution. We notice
however that the performance gap between all four meth-
ods reduces as the resolution increases. A strong learning
pipeline will be even more crucial at low resolution where
classical approaches are more challenged.

Transfer across tasks: We report in Table 1 (rows 7-
13) the performance of Softmesh when training on a subset
of all three rendering tasks. Rows 7-9 show the performance
when training the pipeline with a single task. Training with
multiple task (rows 10-13) tends to improve the general per-
formance of the pipeline which proves synergy across tasks.
As our training disentangles silhouette from other tasks, the
network needs to be supervised on silhouette to make sure
that the correct silhouette will be used to mask out back-

ground pixels.

Transfer across categories: We demonstrate that our
approach is able to generalize efficiently across many object
categories from ShapeNet-Part [5]. In Table 5, we compare
the performance of our approach on three categories, (i) Air-
plane, (ii) Chair and (iii) Table when training the network
on that single category (Single) or on all ShapeNet-Part cat-
egories at once (Multi). We observe the performance con-
sistently improves when trained on multiple categories. By
learning the common patterns across multiple categories,
the network can efficiently generalize over the dataset to
improve its performance on all three rendering tasks.

5. Conclusion

We presented Softmesh, a fully differentiable pipeline
that learns a distribution over non manifold-meshes from
3D point clouds. Our approach differs from previous work
that requires stronger 3D supervision that can be very costly
to acquire. Our pipeline consists of two steps: (i) learning
a probabilistic score for a selection of potential faces and
(ii) rendering the probabilistic mesh with our customized
soft rasterizer. Our approach outperforms classical ap-
proach while being on par with 3D-supervision learning
based approach for both rigid and non-rigid objects. In fu-
ture work, we would like to explore potential other applica-
tions that could benefit from our Softmesh representation.
We also plan to explore impact of pose estimation networks
to remove the requirement of known camera poses.
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