
3INGAN: Learning a 3D Generative Model from Images of a Self-similar Scene
Supplementary Material

Figure 1: Architecture of the Generator GN at a stage ‘N’.

In this supplementary, we provide additional details about
the architectures used for the Generator, the Discrimina-
tor, and about the stage-wise training schedules used in our
method. We also provide additional ablation experiments on
the use of the fixed-seed reconstruction noise, as mentioned
in the main paper.

Finally, we plan to make the code, pre-trained models and
the newly acquired 3D scenes available, under appropriate
licences, to the research community.

1. Architecture Details
Generator. We employ a residual generator architecture
similar to the one used by SinGAN [7] in the image case. As
shown in Fig. 1, the input to the generator at any particular
stage N is the output of the previous stage (N − 1), up-
sampled appropriately (in order to match the size at current
stage exactly) and perturbed using 3D spatial random noise
sampled from a standard Gaussian distributionN (0, I). The
N -th stage generator GN then models residual details that
are added back to the upsampled output of previous stage
N − 1. For stage N = 1, we consider the output of the pre-
vious stage to be zero, thereby making the generation purely
from the random noise. The generator itself consists of 5
convolution layer blocks, each containing a Conv operation
followed by a BatchNorm and a LeakyReLU. We pad the
input to the generator before inputting so that the Convs in
the generator do not have to apply any additional padding.

Discriminator. We employ a combination of two discrimi-
nators: (a) the 3D feature patches DN

3D and (b) the 2D image
patches DN

2D in our full method Ours.
As shown in Fig. 2 (a), the 3D discriminator DN

3D for a
certain stage N is a 3D convolutional block, which has a

receptive field of (11 × 11 × 11) and outputs a real/fake
score for each 3D-feature patch extracted from all possible
overlapping 3D feature patches in either the reference-grid
or the generated grid.

As shown in Fig. 2 (b), for the 2D discriminator, we first
render random views of the reference-grid or the generated-
grid for camera poses sampled on the top-hemisphere sur-
rounding the grid such that each camera always points to
the center of the hemisphere which coincides with the cen-
ter of the grid. Subsequently, we extract a random set of
(11 × 11) patches from these views as input to the 2D dis-
criminator DN

2D. For efficiency, we only render the rays for
which random patches are to be extracted instead of render-
ing the full image in order to avoid unnecessary computation.
The 3D discriminator DN

3D mirrors the architecture of the
generator GN while the 2D discriminator also has the same
architecture containing 2D Conv operations instead of 3D.

2. Training Details
Most of our input 3D scenes are represented on a grid size

of (128×128×64). Hence, in order to strike a good balance
between quality (realism) and diversity in the “remix”ed
scenes, we train two versions of our full model Ours and
Ours 6. The Ours version has 7 stages where each stage
is upsampled by a factor of 1.33, similar to [7], in order to
allow modelling of the frequency content at all stages of
the pyramid. In contrast, the version Ours 6 has 6 stages
which improves the diversity at the cost of a slight loss in
perceptual realism of the “remix”ed versions of the scene.
Please refer to the supplementary webpage to explore this
diversity versus quality tradeoff. We refer to (sec. 4) for
visual results.

Training proceeds from the coarsest stage (lowest grid res-
olution) to the the finest stage (highest grid resolution). Once
a stage is complete, we freeze the weights of the generator
so that the subsequent training is less likely to diverge. Note
that we tried lowering the learning rate at the earlier stages,
similar to Hinz et al. [3], but still observed divergence in
training, and hence decided to use the freezing approach. We
do note that the freezing approaches requires to use bigger
(more features) generator models at higher resolutions in
order to model the high-frequency content and flag it as a

1



Figure 2: Architecture of the (a) 3D Discriminator DN
3D and (b) the 2D Discriminator DN

2D.

Table 1: Raw unscaled values for the Quality Metric computed for all 8 scenes for all 8 methods under comparison.

Fish FishR Balloons Dirt Forest Plants Blocks Chalk

PiGAN 1.04E-05 5.92E-06 1.07E-05 2.39E-05 7.86E-06 1.89E-05 2.16E-05 1.74E-06
Graf 1.74E-04 7.36E-06 2.41E-05 4.22E-05 9.97E-06 2.07E-05 1.73E-05 9.19E-07

OursPlatoGAN 3.06E-04 1.10E-04 1.32E-05 1.64E-05 4.15E-06 4.05E-05 4.32E-05 4.59E-05
OursSinGAN3D 5.91E-06 6.49E-06 7.08E-05 1.51E-04 1.26E-05 2.89E-05 7.84E-05 7.28E-05

OursPlatonicNoRecon 6.90E-05 1.71E-04 1.05E-04 3.73E-05 8.38E-05 5.20E-05 3.41E-05 5.16E-05
OursSinGan3DNoRecon 7.10E-05 5.12E-05 1.06E-05 4.47E-05 8.90E-05 1.11E-04 4.19E-05 3.65E-04

OursNoRecon 1.22E-04 1.44E-04 8.52E-05 1.28E-05 1.70E-04 1.75E-05 3.01E-05 2.16E-04
Ours 6.58E-07 2.40E-06 7.40E-06 2.49E-05 5.90E-06 3.16E-06 2.37E-05 8.54E-05

Table 2: Raw unscaled values for the Diversity Metric computed for all 8 scenes for all 8 methods under comparison.

Fish FishR Balloons Dirt Forest Plants Blocks Chalk

PiGAN 1.01E-07 2.53E-07 1.01E-07 1.99E-07 7.42E-08 1.26E-07 8.30E-07 1.74E-08
Graf 1.38E-07 5.85E-07 2.03E-06 3.32E-07 1.26E-07 3.14E-07 1.27E-06 9.15E-08

OursPlatoGAN 8.79E-07 1.44E-06 2.05E-06 9.92E-08 1.39E-07 6.99E-08 1.24E-06 2.53E-08
OursSinGAN3D 1.28E-07 9.77E-08 3.52E-07 1.24E-07 6.89E-08 1.58E-07 1.22E-06 1.00E-08

OursPlatonicNoRecon 2.19E-06 -3.73E-20 3.65E-06 2.20E-06 -3.73E-20 2.62E-06 3.44E-06 2.35E-08
OursSinGan3DNoRecon 4.17E-08 4.14E-07 6.91E-07 3.14E-07 1.11E-07 4.40E-09 6.48E-07 8.92E-07

OursNoRecon 5.24E-07 1.62E-06 1.54E-06 2.70E-07 1.41E-06 4.15E-07 5.85E-07 3.76E-07
Ours 3.85E-07 5.75E-07 4.25E-06 7.54E-07 1.57E-07 4.85E-07 3.71E-06 2.86E-07

Table 3: Visual Quality and Scene Diversity for different methods (columns) and different data sets (rows). To simplify
comparison, we normalize the numbers so that ours is always 1. The best for each metric on each dataset is bolded and second
best is underlined.

OursSinGan3DNoRecon OursPlatonicNoRecon OursNoRecon Ours

Qual. ↓ Div. ↑ Qual. ↓ Div. ↑ Qual. ↓ Div. ↑ Qual. ↓ Div. ↑

FISH 104.86 5.69 107.88 0.11 185.32 1.36 1.00 1.000
FISHR 71.14 0.00 21.35 0.72 60.22 2.81 1.00 1.000

BALLOONS 14.22 0.86 1.44 0.16 11.51 0.36 1.00 1.000
DIRT 1.50 2.91 1.79 0.42 0.51 0.36 1.00 1.000

FOREST 14.20 0.00 15.08 0.71 28.89 9.00 1.00 1.000
PLANTS 16.47 5.40 35.02 0.01 5.54 0.86 1.00 1.000
BLOCKS 1.44 0.93 1.77 0.17 1.27 0.16 1.00 1.000
CHALK 0.60 0.08 4.27 3.12 2.53 1.31 1.00 1.000



limitation of our current method.
We optimize for 2000 steps in the GAN training per stage

while doing 3 updates for the generator and the discriminator
per step. We use the Adam optimizer [5] with the beta values
set to (0.5, 0.999) and a learning rate of 0.0005. The value
of the learning rate is reduced to 0.00005 after 1600 steps
for applying fine optimization.

3. Additional Ablations
As shown in Table 3, we present three more ablations

of our full method Ours. In OursSinGan3DNoRecon,
we use only a 3D discriminator D3D for train-
ing without the fixed-seed reconstruction loss. In
OursPlatonicNoRecon and OursNoRecon, we ap-
ply only the 2D discriminator loss D2D without the recon-
struction loss and use only the two discriminators D3D and
D2D without either of the reconstruction losses respectively.
As evident from Table 3, Ours still produces the best quality
for most of the scenes.

As for diversity, the numbers are higher for other methods
in most scenes because they produce broken incoherent struc-
tures which accounts for diversity in the generations, but at
unacceptable quality. We refer to the qualitative samples for
more information on these.

We also provide the raw unscaled values for the Quality
and the Diversity metrics in table 1 and table 2 respectively.

4. Storage requirements
The trained CNN based generator models are quite mem-

ory efficient, requiring ∼12MB for storage. The generated
grids, on the other hand, require the following sized Py-
Torch tensors in GPU memory during the forward pass for
our 7-stage models: 0.10MB, 0.23MB, 0.54MB, 1.20MB,
2.84MB, 6.75MB and 16.0MB, respectively. All the results
were rendered at a resolution of 512×512 while our biggest
volumetric grids are of resolution 128×128×64.

5. Potential negative impact of the work.
Our work contributes a method for generating novel static

3D scenes with view-consistent camera control. This could
be used to generate synthetic (fake) content, or to edit ex-
isting 3D content. Similar to what we have seen in the 2D
domain, e.g., with DeepFakes, once photorealistic quality
is obtained, such methods have the potential to be used to
spread disinformation. Future work on media forensics, as
well as provenance may be needed to moderate these risks.

6. Result Quality
We want to highlight that our current results are not

photorealistic quality; they contain visual artifacts such as
“splotchyness”, blur and blemishes. But it can be observed

Figure 3: Qualitative comparison between the GT synthetic
mesh renders and corresponding reconstructed grid renders.

that even with these artifacts our results look much better
compared to the baselines, namely PiGAN [1], GRAF [6]
and PlatonicGAN [2]. This indicates that the specific prob-
lem of creating a 3D generative model from a single 3D
exemplar scene is particularly challenging. We believe that
our proposed approach makes substantial strides towards
solving this challenging problem. Often the first work at-
tempting a new problem domain has low resolution or low
quality results (e.g., 2D GANs) but serve to inspire follow
up works that resolve the issues.

Real scene Qualitative results Figure 4 provides different
qualitative samples for the two real-captured scenes BLOCKS
and CHALK. As seen in Table 2 (main paper), the results on
the real-captures are of lower quality.

7. Evaluation on real scenes
We captured two scenes used for experimentation named

BLOCKS and CHALK, reconstructed from real multi-image
mobile-phone captures, calibrated using Colmap (for pose
estimation) and reconstructed by our grid-based pipeline [4].

8. Stage-1 reconstruction quality:
The stage-1 of our pipeline, which reconstructs the 3D-

grids from the posed-images, is robust and yields good qual-
ity reconstructions. We therefore think it is likely that lack
in result quality is entirely from the stage-2 (GAN) of the
proposed pipeline. Figure 3 shows the renders of our recon-
structed 3D grids for visual inspection, and Table 4 sum-
marizes the quantitative performance. The PSNR scores

Blocks

Chalk

Figure 4: Qualitative results for BLOCKS and CHALK real
scenes.



are reported on a hold-out test set of views not used in the
training (reconstruction). In spite of our Lambertian approxi-
mation for the reconstructed scenes, all of them have > 20.0
PSNR except for DIRTPILE and PLANTSBUSH. As apparent
from Figure 3, these two scenes have content outside of our
defined AABB which affects the score. This is done to en-
sure that the scenes remain amenable to “remixing” instead
of sticking to a fixed grid structure.

Scene Balloons DirtPile Fish Forest PlantsBush

PSNR 25.96 9.853 26.76 25.88 14.88

Table 4: Quantitative evaluation of the grid reconstructions

9. Rendering Details
We indeed apply trilinear-interpolation for obtaining con-

tinuous feature values on the grid. As noted in Section 3.1
(main paper), we apply a ReLU to the interpolated feature-
values to make them [0− 1] range compatible with the ren-
dering algorithm. This can be viewed as a “post-activation”
on the minimal neural feature-grid. We use the Emission-
Absorption ray-marching algorithm for the rendering oper-
ation similar to PlatonicGAN [25], NeRF [43], and their
variants. Please refer to [4] for more details.

10. Geometric Quality
Our 3D discriminator uses reconstructed density values

as ground truth. At test time, in absence of actual ground
truth this is the second best source of 3D priors in our setup.
We already demonstrated the importance of using both the
2D and 3D discriminators in our ablation studies. Addition-
ally, we compared our reconstruction quality to ground truth
data for the synthetic scenes and found the quality to be
satisfactory (e.g., similar accuracy as Planoxels, ReluField,
etc.).

References
[1] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. In IEEE
CVPR, pages 5799–5809, 2021. 3

[2] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escaping
plato’s cave: 3d shape from adversarial rendering. In ICCV,
pages 9984–9993, 2019. 3

[3] Tobias Hinz, Matthew Fisher, Oliver Wang, and Stefan
Wermter. Improved techniques for training single-image gans.
In Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 1300–1309, 2021. 1

[4] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J.
Mitra. ReLU fields: The little non-linearity that could. In
Proc. of SIGGRAPH, volume 41, pages 13:1–13:8, 2022. doi:
10.1145/3528233.3530707. 3, 4

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
3

[6] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. arXiv preprint arXiv:2007.02442, 2020. 3

[7] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan:
Learning a generative model from a single natural image. In
ICCV, pages 4570–4580, 2019. 1


	. Architecture Details
	. Training Details
	. Additional Ablations
	. Storage requirements
	. Potential negative impact of the work.
	. Result Quality
	. Evaluation on real scenes
	. Stage-1 reconstruction quality:
	. Rendering Details
	. Geometric Quality

