Neural Convolutional Surfaces (NCS)

Place detail on the coarse structure: use the Local Reference Frame (F) to project the displacement on top of the coarse reconstruction.

The use of Local reference Frame (F) enables weight sharing between patches.
Optimize the network to reproduce the original geometry.

Results:
Examples of NCS reconstruction coarse and fine, for different models.

Motivation:

Common shape representation entangle geometric detail with overall shape structure. These descriptions include triangle meshes, neural implicit fields [1,2] and neural atlases [3].
Neural Convolutional Surfaces distentangles the two as show below.

Method:

Neural Convolutional Surfaces offers:

- unsupervised disentanglement
- describes the global structure with an MLP
- exploit weight sharing of CNN for surface detail

Split the mesh into patches and parametrize them as preprocessing.

An MLP defines the coarse surface: it maps point-wise 2D points (q) onto the surface (p), and gives us a Local Reference Frame (F) through auto-diff.

Repeating surface details are auto-decoded with CNN from a latent vector: the CNN upsamples the patch latent vector, then through interpolation feature vector are decoded into displacements.

 (smoothing) CNN feature.

Source Shape
It transfers surface detail to a different shape by copying CNN module.

Summary/Conclusion
Unsupervised disentanglement into coarse and fine Highly accurate reconstruction with low amout of parameters. Enables editing through feature manipulation.

References:
1] Acorn - Martel et al. - SIGGRAPH 2021
2] Neural Geometric Level of Detail - Takikawa et al. - CVPR 2021 3] Neural Surface Maps - Morreale et al. - CVPR 2021 4] IDF - Yifan et al. - ICLR 2022

Project Page:

 (with paper \& code)

