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Figure 1: Neural Geometry Processing. We encode input genus-0 surfaces as overfitted neural networks and propose operators on them.
Specifically, we describe how to compute the normals and the First and Second Fundamental Forms, and hence compute curvatures. We
also define a Laplace-Beltrami operator directly using the neural representation, thus enabling processing of scalar (or vector) fields on
the underlying surface, and we find the smallest eigenmodes of the Laplace-Beltrami operator via a novel optimization scheme. We avoid
unnecessary discretization in the estimates, as commonly encountered while using a traditional surface representation (e.g., a polygonal mesh).

Abstract

Neural surfaces (e.g., neural map encoding, deep implicit, and neural radiance fields) have recently gained popularity because
of their generic structure (e.g., multi-layer perceptron) and easy integration with modern learning-based setups. Traditionally,
we have a rich toolbox of geometry processing algorithms designed for polygonal meshes to analyze and operate on surface
geometry. Without an analogous toolbox, neural representations are typically discretized and converted into a mesh, before
applying any geometry processing algorithm. This is unsatisfactory and, as we demonstrate, unnecessary. In this work, we
propose a spherical neural surface representation for genus-0 surfaces and demonstrate how to compute core geometric operators
directly on this representation. Namely, we estimate surface normals and first and second fundamental forms of the surface,
as well as compute surface gradient, surface divergence and Laplace Beltrami operator on scalar/vector fields defined on the
surface. Our representation is fully seamless, overcoming a key limitation of similar explicit representations such as Neural
Surface Maps [MAKM21]. These operators, in turn, enable geometry processing directly on the neural representations without
any unnecessary meshing. We demonstrate illustrative applications in (neural) spectral analysis, heat flow and mean curvature
flow, and evaluate robustness to isometric shape variations. We propose theoretical formulations and validate their numerical
estimates, against analytical estimates, mesh-based baselines, and neural alternatives, where available. By systematically linking
neural surface representations with classical geometry processing algorithms, we believe this work can become a key ingredient
in enabling neural geometry processing. Code is available via the project webpage.

1. Introduction

The use of neural networks to represent surfaces has gained rapid
popularity as a generic surface representation. Many variants of
this formulation [PFS∗19, MON∗18, GFK∗18, QSMG] have been
proposed, such as directly representing a single surface as an over-
fitted network, or a collection of surfaces, as encoder-decoder net-
works. The ‘simplicity’ of the approach lies in the network archi-
tectures (e.g., MLPs, UNets) being universal function approxima-

tors. Such deep representations can either be overfitted to given
meshes [DNJ20, MAKM21] or directly optimized from a set of
posed images (i.e., images with camera information), as popularized
by the NeRF formulation [MST∗21]. Although there are some iso-
lated and specialized attempts [NSS∗22, CYW∗23, YBHK21], no
established set of operators directly works on a neural object, en-
coding an explicit surface, to facilitate easy integration with existing
geometry processing tasks.
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Traditionally, triangle meshes, more generally polygonal meshes,
are used to represent surfaces. They are simple to define, easy to
store, and benefit from having a wide range of available algorithms
supporting them. Most geometry processing algorithms rely on the
following core operations: (i) estimating differential quantities (i.e.,
surface normals, and first and second fundamental forms) at any
surface location; (ii) computing surface gradients and surface diver-
gence on scalar/vector fields; and (iii) defining a Laplace Beltrami
operator (i.e., the generalization of the Laplace operator on a curved
surface) for analyzing the shape itself or functions on the shape.

Meshes, however, are discretized surface representations, and
accurately carrying over definitions from continuous to discretized
surfaces is surprisingly difficult. For example, the area of discrete
differential geometry (DDG) [DPSS06] was entirely invented to
meaningfully carry over continuous differential geometry concepts
to the discrete setting. However, many commonly used estimates
vary with the mesh quality (i.e., distribution of vertices and their
connections), even when encoding the same underlying surface.
In the case of the Laplace-Beltrami operator, the ‘no free lunch’
result [WMKG07] tells us that we cannot hope for any particular
discretization of the Laplace-Beltrami operator to simultaneously
satisfy all of the properties of its continuous counterpart. In practice,
the most suitable choice of discretization, such as triangular or, more
generally, polygonal meshes, can change depending on the specifics
of the target application (see [BAB23] for a recent survey).

In the absence of native geometric operators for neural representa-
tions, the common workaround for applying a geometry processing
algorithm to neural representations is discretizing these representa-
tions into an explicit mesh (e.g., using Marching cubes) and then
relying on traditional mesh-based operators. Unfortunately, this
approach inherits the disadvantages of having an explicit mesh rep-
resentation, as discussed above. A similar motivation prompted
researchers to pursue a grid-free approach for volumetric analysis
using Monte Carlo estimation for geometry processing [SC20] or
neural field convolution [NDS∗23] to perform general continuous
convolutions with continuous signals such as neural fields.

We propose a different approach to discretization-free geometry
processing. First, we create a smooth and differentiable represen-
tation — spherical neural surfaces (SNS) — where we encode
individual genus-0 surfaces using dedicated neural networks. Hav-
ing a differentiable encoding allows one to directly compute surface
normals, tangent planes, and Fundamental Forms directly with con-
tinuous differential geometry. The First Fundamental Form allows
us to compute attributes of the parametrization, such as local area
distortion. The Second Fundamental form allows us to compute
surface attributes such as mean curvature, Gauss curvature, and prin-
cipal curvature directions. Essentially, encoding surfaces as seamless
neural maps unlocks definitions from differential geometry.

Other estimates require more thought. We implement two meth-
ods to apply the continuous Laplace Beltrami operator to any differ-
entiable scalar or vector field (using Equations 13 and 16). Addition-
ally, to enable spectral analysis on the resultant Laplace Beltrami
operator, we propose a novel optimization scheme via a neural rep-
resentation of scalar fields that allows us to extract the lowest k
spectral modes, using the variational formulation of the Dirichlet
eigenvalue problem. We use Monte Carlo estimates to approxi-

mate the continuous inner products and integration of functions on
the (neural) surface. Our framework of spherical neural surfaces
makes optimizing many expressions involving surface gradients and
surface integrals of smooth functions possible. We hope that our
setup opens the door to solving other variational problems posed on
smooth (neural) surfaces.

We evaluate our proposed framework on standard geometry pro-
cessing tasks. In the context of mesh input, we assess the robust-
ness of our estimates to different meshing of the same underlying
surfaces (Figure 11) and isometrically related shapes (Figure 10).
We compare the results against ground truth values when they are
computable (e.g., analytical functions – see Figure 3 and Figure
4) and contrast them against alternatives. Specifically, we compare
against traditional mesh-based methods (e.g., curvature estimates,
cotan LBO, – see Figures 9, 11, 12) or neural alternatives (e.g.,
NGP [YBHK21] and neural implicits [NSS∗22] – see Figure 7).

Our main contribution is introducing a novel representation and
associated operators to enable neural geometry processing. We:

(i) introduce spherical neural surfaces as a representation to en-
code genus-0 surfaces seamlessly as overfitted networks;

(ii) compute surface normals, First and Second Fundamental
Forms, curvature, continuous Laplace Beltrami operators with-
out unnecessary discretization;

(iii) approximate the smallest spectral modes of the Laplace Bel-
trami operator on spherical neural surfaces;

(iv) show illustrative applications towards scalar field manipulation
and neural mean curvature flow; and

(v) demonstrate the robustness and accuracy ours on different
forms of input and quantitatively compare against alternatives.

2. Related Works

Neural Representations. Implicit neural representations, such
as signed distance functions (SDFs) and occupancy networks,
have recently been popularized to model 3D shapes. Notably,
DeepSDF [PFS∗19] leverages a neural network to represent the SDF
of a shape, enabling continuous and differentiable shape representa-
tions that can be used for shape completion and reconstruction tasks;
Davies et al. [DNJ20] use neural networks to overfit to individual
SDFs; Occupancy Networks [MON∗18] learn a continuous function
to represent the occupancy status of points in space, providing a
powerful tool for 3D shape modeling and reconstruction from sparse
input data. Explicit neural representations, on the other hand, use
neural networks to directly predict structured 3D data such as meshes
or point clouds. Mesh R-CNN [GMJ19] extends Mask-RCNN to
predict 3D meshes from images using a voxel-based representation
followed by mesh refinement with a graph convolution network
operating on the meshes’ vertices and edges. In the context of point
clouds, PointNet [QSMG] and its variants are widely used as back-
bones for shape understanding tasks such as shape classification and
segmentation. Hybrid representations combine the strengths of both
implicit and explicit methods. For example, Pixel2Mesh [WZL∗18]
generates 3D meshes from images by progressively deforming a
template mesh using a graph convolutional network, integrating
the detailed geometric structure typical of explicit methods with
the continuous nature of implicit representations. More relevant
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to ours is AtlasNet [GFK∗18] that models surfaces as a collection
of parametric patches, balancing flexibility and precision in shape
representation, and Neural Surface Maps [MAKM21], which are
overfitted to a flattened disc parametrization of surfaces to enable
surface-to-surface mapping. Similarly to SNS, Explicit Neural Sur-
faces [WMVB23] were proposed in the context of 3D reconstruction
from images, but the authors did not yet explore the properties of
the differentiable surface representation.

Estimating Differential Quantities Traditionally, researchers have
investigated how to carry over differential geometry concepts [dC76]
to surface meshes, where differential geometry does not directly
apply because mesh faces are flat, with all the ‘curvature’ being at
sharp face intersections. Taubin [Tau95] introduced several signal
processing operators on meshes. Meyer et al. [MDSB02] used av-
eraging Voronoi cells and the mixed Finite-Element/Finite-Volume
method; [CP05] used osculating jets; while [dGBD20] used discrete
differential geometry [DPSS06] to compute gradients, curvatures,
and Laplacians on meshes. Recently, researchers have used learning-
based approaches to ‘learn’ differential quantities like normals and
curvatures on point clouds [GKOM18, BSLF19, PFVM20].

More related to ours is the work by Novello et al. [NSS∗22], who
represent surfaces via implicit functions and analytically compute
differential quantities such as normals and curvatures. We refer to
this method as ‘i3d’ in our comparison 7. Later, Novello et al. pro-
posed a related method, to evolve implicit functions [NdSS∗23],
and [MCR22] describes an alternative approach. With a similar moti-
vation to Novello et al., Chetan et al. [CYW∗23] fit local polynomial
patches to obtain more accurate derivatives from pre-trained hybrid
neural fields; they also use these as higher-order constraints in the
neural implicit fitting stage. A similar idea was explored by Bednarik
et al. [BPG∗20], as a regularizer for the AtlasNet setup, by using
implicit differential surface properties during training. The work by
Yang and colleagues [YBHK21] is closest to ours in motivation -
they also mainly focus on normal and curvature estimates but they
additionally demonstrate how to perform feature smoothing and
exaggeration using the local differential quantities in the target loss
functions and thus driving the modification of the underlying neural
fields. In Section 6, we compare our estimates against those obtained
by others [NSS∗22, YBHK21]. However, we go beyond normal and
curvature estimates and focus on operators such as surface gradient,
surface divergence and Laplace-Beltrami operators for processing
scalar and vector fields defined on the surfaces.

Laplace Beltrami Operators on Meshes The Laplace-Beltrami
operator (LBO) is an indispensable tool in spectral geometry process-
ing, as it is used to analyze and manipulate the intrinsic properties of
shapes. Spectral mesh processing [LZ10] leverages the eigenvalues
and eigenfunctions of the LBO for tasks such as mesh smoothing and
shape segmentation. Many subsequent efforts have demonstrated
the use of LBO towards shape analysis and understanding (e.g.,
shapeDNA [RWP06], global point signatures [Rus07], heat ker-
nel signature [SOG09]), eventually culminating into the functional
map framework [OBCS∗12]. An earlier signal processing frame-
work [Tau95] has been revisited with the LBO operator [LZ10]
for multi-scale processing applications (e.g., smoothing and feature
enhancement). Although the Laplace-Beltrami operator on trian-
gular meshes or, more generally, on polyhedral meshes, can be

computed, these operators depend on the underlying discretization
of the surface (i.e., placement of vertices and their connectivity).
See [BAB23] for a discussion. In the case of triangular meshes, the
commonly used discretizations are the Uniform Laplace Operator
and the cotan LBO. In Section 6, we compare our neural LBO with
the cotan discretization and discuss their relative merits.

3. Spherical Neural Surfaces

We introduce a novel neural representation for continuous surfaces,
called a ‘Spherical Neural Surface’ (SNS). An SNS is a Multi-Layer
Perceptron (MLP) Sθ : R3 → R3, trained such that its restriction to
the unit sphere (S2 ⊂ R3) is a continuous parametrization of a given
surface. In terms of notation, we use Sθ or S as shorthand for the set
Sθ(S2). In our current work, we primarily focus on creating SNSs
from input triangle-meshes and analytically-defined surfaces, but
there is potential to create SNSs from other representations such as
pointclouds, SDFs and NeRFs. For example, Figure 15 shows initial
results for generating an SNS from a neural SDF.

3.1. Overfitting an SNS to a Triangle Mesh

Given a genus-0 manifold triangle mesh, we first find an injective
embedding of the mesh vertices onto the unit sphere, using a spheri-
cal embedding algorithm [SPK23,PH03]. We extend the embedding
to a continuous embedding by employing barycentric coordinates,
so that every point pi on a (curved) triangle on the sphere corre-
sponds to a unique point qi on a (flat) triangle on the target surface.
We overfit the network Sθ to this parametrization by minimizing the
MSE between the ground truth and predicted surface positions:

LMSE :=
1
N

N

∑
i=1

∥Sθ(pi)−qi∥2 . (1)

Further, to improve the fitting, we encourage the normals derived
from the spherical map to align with the normals of points on the
mesh, via a regularization term,

Lnormal :=
1
N

N

∑
i=1

∥nSθ
(pi)−nmesh(qi)∥2 =

2
N

N

∑
i=1

(1−cosαi). (2)

In this expression, nmesh(qi) is the (outwards) unit-normal on the
mesh at qi, and nSθ

(pi) is the corresponding (outwards) unit-normal

input surface

S θ
SNS

Figure 2: Spherical Neural Surface. Given an input surface — a
mesh in this case — we progressively overfit an MLP to a spherical
mesh-embedding, to represent the surface as Sθ. The loss term is
simply the MSE between the ground truth and predicted surface
positions, plus a (scaled) normals regularization term (Equation 2).
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of the smooth parametrization at Sθ(pi), which is derived analyt-
ically from the Jacobian of Sθ at pi (see Section 3.2); the angle
αi is the angle between nmesh(qi) and nSθ

(pi). Figure 2 shows an
example of an SNS over training stages.

3.2. Computing Differential Quantities using SNS

One of the advantages of Spherical Neural Surfaces as a geometric
representation is that one can compute important quantities from
continuous differential geometry - without any need for approximate
numerical formulations or discretization. We just need to use the
automatic differentiation functionality built into modern machine
learning setups, and algebraically track some changes of variables,
before applying the formulas from classical differential geometry.

For example, to compute the outwards-pointing normal nS, we
first use autodiff to compute the 3×3 Jacobian of S,

J(S) :=
[

∂S
∂x ,

∂S
∂y ,

∂S
∂z

]
,

and then turn this into a 3× 2 Jacobian in local coordinates, by
composing it with a 3×2 orthonormal matrix (R):

Jlocal
S = J(S)R. (3)

The matrix R maps vectors in 2D local coordinates to tangent vectors
on the sphere at a particular point, and the matrix J(S) maps tangent
vectors on the sphere to tangent vectors on the surface S. If u and
v are the local coordinates on the tangent plane of the sphere, then
the columns of Jlocal

S are equal to the partial derivatives Su and Sv
respectively:

Jlocal
S =

 | |
Su Sv
| |

 , (4)

and these vectors lie in the tangent plane. The normalized cross
product of Su and Sv is the outward-pointing unit normal:

nS =
Su ×Sv

∥Su ×Sv∥
. (5)

In terms of standard spherical polar coordinates (θ and φ), we chose
to use the following rotation matrix:

R =

cosθcosφ −sinφ

cosθsinφ cosφ

−sinθ 0

 . (6)

The trigonometric quantities here are simple functions of x,y and z.

The matrix R is an orthonormal version of the usual spherical
polar coordinates Jacobian. We avoid degeneracy at the poles by
selectively re-labeling the x, y, and z coordinates so that θ is never
close to zero or π. (This is equivalent to choosing a different chart
for the points within some radius of the poles.)

Now, from Jlocal
S , we can simply write the First Fundamental

Form of the sphere-to-surface map as:

IS =

(
E F
F G

)
= (Jlocal

S )T Jlocal
S . (7)

To compute the Second Fundamental Form, we first compute the
second partial derivatives of the parametrization with respect to

normal field mean curv. Gauss curv. crossfieldmin curv. dir. max curv. dir.

SN
S

an
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Figure 3: First and Second Fundamental Forms. We show an ana-
lytically defined surface, star (bottom) and an SNS (top row) that
has been overfitted to a mesh of the surface (with 40962 vertices).
We show various differential quantities computed symbolically using
Matlab (bottom) and computed on the SNS using our method (top).
Our results align very closely with the analytically-computed results.

the local coordinates, and then find the dot products of the second
derivatives with the normal, n = nSθ

. The second derivatives are:

Suu = J(Su)Su, Suv = J(Su)Sv, Svv = J(Sv)Sv. (8)

We can now express the Second Fundamental Form as:

IIS =

(
e f
f g

)
=

(
Suu ·n Suv ·n
Suv ·n Svv ·n

)
. (9)

In terms of the Fundamental Forms, the Gauss curvature is

K =
eg− f 2

EG−F2 , (10)

and the mean curvature is

H =
Eg−2F f +Ge

2(EG−F2)
. (11)

Furthermore, the solutions to the quadratic equation
det(IS − λIIS) = 0 give us explicit expressions for the principal
curvatures, that we then use to find the principal curvature direc-
tions directly on the Spherical Neural Surface. In Figure 3, we
compare our differential estimates against analytical computations
for an analytic surface; in Figure 6 we also show curvature estimates
and principal curvature directions on other SNSs overfitted to non-
analytic surfaces (ground truth values are not available). In Section 6,
we evaluate the quality of our estimates and also evaluate how the
estimates change as we fit SNSs to different mesh resolutions as
proxies to the same underlying (continuous) surface.

4. Laplace-Beltrami Operator

This section briefly summarizes the relevant background for contin-
uous surfaces that we need to develop a computation framework for
Laplace-Beltrami and spectral analysis using SNS (Section 5).

© 2025 The Author(s).
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4.1. Laplace-Beltrami Operator on Smooth Surfaces

The (Euclidean) Laplacian ∆ of a scalar field f : Rn → R is defined
as the divergence of the gradient of the scalar field. Equivalently,
∆ f is the sum of the unmixed second partial derivatives of f :

∆ f :=∇·∇ f =
n

∑
i=1

∂
2 f

∂x2
i
. (12)

The Laplace-Beltrami operator, or surface Laplacian, is the natu-
ral generalization of the Laplacian to scalar fields defined on curved
domains. If Σ ⊂ R3 is a regular surface and f : Σ → R is a scalar
field, then the Laplace-Beltrami operator on f is defined as the sur-
face divergence of the surface gradient of f , and we denote this by
∆Σ f to emphasize the dependence on the surface Σ. Thus,

∆Σ f :=∇Σ ·∇Σ f . (13)

The surface gradient of the scalar field f (written ∇Σ f ), and the
surface divergence of a vector field F : Σ → R3 (written ∇Σ ·F),
can be computed by smoothly extending the fields to fields f̃ and F̃
respectively, which are defined on a neighborhood of Σ in R3.

The surface gradient is defined as the orthographic projection of
the Euclidean gradient of f̃ into the local tangent plane:

∇Σ f =∇ f̃ − (∇ f̃ ·n)n, (14)

where n is the unit surface normal at the point. One can show that
this definition is independent of the choice of extension. The surface
divergence of the vector field F is defined as

∇Σ ·F =∇· F̃−nT J(F̃)n, (15)

where J(F̃) :=
[

∂F̃
∂x1

, ∂F̃
∂x2

, ∂F̃
∂x3

]
is the Jacobian of F. Since J(F̃)n

is the directional derivative of F̃ in the normal direction, then
nT J(F̃)n = J(F̃)n ·n can be thought of as the contribution to the
three-dimensional divergence of F̃ that comes from the normal
component of F̃, and by ignoring the contribution from the normal
component, we get the two-dimensional ‘surface divergence’. Al-
though these expressions depend a-priori on the particular choice
of extension, the surface gradient and surface divergence are in fact
well-defined (i.e., any choice of extension will give the same result).

By expanding out the definitions of surface gradient and surface
divergence, we can derive an alternative formula for the surface
Laplacian (∆Σ f ) in terms of the (Euclidean) Laplacian (∆ f̃ ), the
gradient (∇ f̃ ) and the Hessian (H( f̃ ) = J(∇ f̃ )T ) as

∆Σ f = ∆ f̃ −2H∇ f̃ ·n−nT H( f̃ )n. (16)

The dependence on the surface is captured by the normal function n,
and the mean curvature H. (Refer to [Rei82,XZ03] for a derivation.)
In the case when f̃ is a ‘normal extension’ — i.e., it is locally
constant in the normal directions close to the surface — then the
second and third terms disappear, so that ∆Σ f is consistent with ∆ f̃ .

If we substitute in the coordinate function x for f̃ , then the first
and third terms disappear, and we are left with the familiar equation

∆Σx =−2Hn. (17)

This formula is often used in the discrete setting to compute the
mean curvature from the surface Laplacian.

As in Section 3.2, these formulae are easily implemented for func-
tions defined on an SNS. All that is required to implement Equation
16 is that we have access to an extension f̃ and its first and second
derivatives. Therefore it can be applied when f is (the restriction
to the surface of) a closed-form function on the embedding space
(e.g., Figures 11 and 12), or when f and f̃ are defined by a network,
allowing us to use autodiff (see Section 4.2).

We have provided Equation 16 as an alternative formula to the
standard definition (Equation 13) because where a field evolves on a
domain that remains constant, it allows us to precompute the mean
curvature H and normal n, and then only the Euclidean quantities
(∇ f̃ , H( f̃ ), and ∆ f̃ ) need to be updated. In Figure 9 (2nd and 3rd

row) we demonstrate both methods and there is no visible difference.

4.2. Spectrum of the Laplace-Beltrami Operator

Given two scalar functions, f and g, defined on the same regular
surface Σ, their L2 inner product is

⟨ f ,g⟩L2(Σ) :=
∫

Σ

f gdA . (18)

Then, the L2 norm of a scalar function can be expressed as,

∥ f∥L2(Σ) =
√

⟨ f , f ⟩L2(Σ) =

√∫
Σ

| f |2 dA . (19)

The Laplace Beltrami operator, ∆Σ, is a self-adjoint linear operator
with respect to this inner product. This means that there is a set of
eigenfunctions of ∆Σ that form an orthonormal basis for the space
L2(Σ) - the space of ‘well-behaved’ scalar functions on Σ that have
a finite L2-norm. This basis is analogous to the Fourier basis for the
space of periodic functions on an interval.

In the discrete mesh case, the eigenfunctions of the Laplace-
Beltrami operator are computed by diagonalizing a sparse ma-
trix [LZ10, BAB23] based on the input mesh. In the continuous
case, however, we no longer have a finite-dimensional matrix rep-
resentation for ∆Σ. Instead, we exploit a functional analysis result
that describes the first k eigenfunctions of ∆Σ as the solution to a
minimization problem, as described next.

First, we define the Rayleigh Quotient of a scalar function f to be

1.99 (2.00)

1.99 (2.00) 1.99 (2.00)

6.04 (6.00)

6.02 (6.00)

Figure 4: Neural Spectral Basis against Analytical Solutions. The
sphere is a genus-0 surface for which the eigenspaces of the Laplace-
Beltrami operator are very well understood: the eigenspaces are
the spaces spanned by linear combinations of the spherical har-
monics for each frequency. This means that each of our optimized
eigenfunctions should belong to one of these eigenspaces, and there-
fore, the Rayleigh quotient should match the energy level of the
corresponding spherical harmonics. For evaluation, we compute the
Rayleigh quotient using a large number of samples for Monte Carlo
integration, since we cannot analytically compute the integral. For
reference, we present the ground truth Rayleigh quotients, in green.
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the Dirichlet energy of the scalar function, divided by the squared
L2-norm of the function:

QΣ( f ) :=
∥∇Σ f∥2

L2(Σ)

∥ f∥2
L2(Σ)

. (20)

Then, the first k eigenfunctions of ∆Σ are the minimizers of the
Rayleigh Quotient, as given by,

Ψ0,Ψ1, ...,Ψk−1 = argminΨ∗
0 ,...,Ψ

∗
k−1

k−1

∑
i=0

QΣ(Ψ
∗
i )

such that
〈
Ψi,Ψ j

〉
L2(Σ)

= 0 for all i ̸= j. (21)

We use Ψ0 to denote the first eigenfunction, which is always a
constant function. The constraint states that the eigenfunctions are
orthogonal inside the inner-product space L2(Σ).

In addition, the Rayleigh Quotient of the eigenfunction Ψi is the
positive of the corresponding (negative) eigenvalue, i.e.,

∆ΣΨi(x) =−QΣ(Ψi)Ψi(x) ∀x ∈ Σ. (22)

Physically, the eigenfunctions of ∆Σ represent the fundamental
modes of vibration of the surface Σ. The Rayleigh Quotient of
Ψ0 is zero. As the Rayleigh quotient increases, the energy increases,
and the eigenfunctions produce higher frequency patterns.

5. Spectral Analysis using SNS

To find the continuous eigenmodes of the Laplace-Beltrami operator
on an SNS, we require a continuous and differentiable representation
for scalar functions defined on the surface. In our framework, we
represent smooth scalar fields on the sphere S2 by MLPs, gη, from
R3 to R, which are parametrized by η. We only ever evaluate the
MLP gη on S2 ∈R3, but because the network’s domain is R3 then it
defines an extension of the scalar field, and this allows us to compute
the Euclidean gradient ∇gη. Then, if Sθ : R3 → R3 is an SNS, any
smooth scalar field h whose domain is the surface defined by SΘ can
be defined implicitly by the equation

h◦Sθ = gη. (23)

Applying the chain rule, we can compute the gradient of h:

∇h = (J(Sθ)
T )−1∇gη, (24)

S θ
h

gη = h ◦ S θ

Figure 5: Encoding Scalar Fields on Neural Surfaces. We encode
scalar fields on the sphere (and corresponding extensions into R3)
as MLPs gη : R3 → R, with parameters η. Because Sθ, considered
as a parametrization, is bijective, then we can implicitly define any
smooth scalar field h on the surface in terms of one of the functions
gη (restricted to S2). We visualize the one-to-one correspondence
between scalar fields defined on the surface, and scalar fields defined
on the sphere, by using vertex-colours to display the fields.

which allows us to compute ∇Sθ
h (Equation 14) and QSθ

(h) (Equa-
tion 20) without explicitly computing h.

To optimize for a (smooth) scalar function gηk so that h approxi-
mates the kth non-constant eigenfunction of the Laplace-Beltrami
operator, we use gradient descent to optimize the weights, ηk. Specif-
ically, we use a combination of two loss terms:

LRayleigh := QS(h) and Lortho :=
k−1

∑
i=0

⟨h,hi⟩2
L2(S) , (25)

where we sequentially compute the eigenfunctions, and hi is the ith

smallest eigenfunction. Recall that we represent each such eigen-
function using a dedicated MLP (except for h0, which is the constant
eigenfunction). The loss term Lortho encourages the scalar field h
to be orthogonal to all previously-found eigenfunctions (including
the constant eigenfunction). The quantity QSθ

(h) depends on the
Jacobian of Sθ, through ∇Sθ

h and ∇h. However, since the surface
does not change during optimization and θ stays fixed, we pre-
compute (J(Sθ)

T )−1. Note that, if we were to optimize over the
subspace of the unit-norm functions in L2(Σ), then we could replace
the Rayleigh Quotient with the Dirichlet energy. However, it is diffi-
cult to construct a function, based on an MLP, that produces only
unit-norm functions (in the L2 sense). In initial experiments, we
used a unit-norm loss in combination with the Dirichlet Energy and
orthogonality loss, but we observed some robustness issues, such
as a tendency for the functions to collapse to zero. We found that
robustness increased when we replaced the Dirichlet Energy by the
Rayleigh Quotient, and we think that this is the Rayleigh Quotient,
by cancelling out the effect of magnitude, is less in opposition to
the unit-norm loss than the Dirichlet energy is. The Rayleigh Quo-
tient design choice greatly reduces the importance of the unit-norm
loss, but we retained it as a regularizer, to prevent functions from
collapsing to zero.

Although functions h are not required to have unit norm, we
used a regularization term to prevent the L2-norm of h from either
exploding or vanishing:

Lreg := (∥h∥L2(S)−1)2. (26)

The combined loss term is expressed as,

L= LRayleigh +λorthoLortho +λregLreg. (27)

We choose large initial values for the coefficients because we find
that this improves stability, and then we reduce the coefficients so
that the Rayleigh Quotient is the dominant term during the later
stages of optimization (see Section 6 for details).

Finally, since we cannot exactly compute the integrals for the
inner products in these loss terms, we approximate the inner products
using Monte-Carlo sampling. Specifically, we approximate,

⟨h,hi⟩L2(S) ≈
Area(S)

N

N

∑
j=1

h(q j)hi(q j), (28)

where {q j}1≤ j≤N is a set of uniformly distributed points on the
surface Sθ, corresponding to points {p j}1≤ j≤N on the sphere; h(q j)
and hi(q j) are evaluated by applying scalar field MLPs gη and gηi to
p j. (In the overfitting stage, we normalize all our Spherical Neural
Surfaces to have an area equal to 4π.) For the Monte Carlo step, we
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normal field mean curv. Gauss curv. crossfieldmin curv. dir. max curv. dir.

Figure 6: First and Second Fundamental Forms. An SNS represents a smooth, seamless parametrization of a genus-0 surface, and we can
compute the partial derivatives of this parametrization using automatic differentiation. We compute the normals and the First Fundamental
Form of the parametrization from the first derivatives. Subsequently, computing the second derivatives enables us to construct the Second
Fundamental Form of the parametrization. Hence, we compute Mean Curvature, Gaussian Curvature, and Principal Curvature Directions at
any point without any unnecessary discretization error. To render scalar fields, we took samples at the 2.6 million vertices of an icosphere.

generate N uniformly distributed points on the surface Sθ via the
following steps (rejection sampling):

(i) Generate M ≫ Ntarget samples (p j) from the 3D normal distri-
bution N (µ = 0,Σ = I). Normalize, to unit norm, to produce
a dense uniform distribution of points on the sphere S2 ⊂ R3.

(ii) Compute the local area distortion (d j =
√

E jG j −F2
j ), for

each point p j, using the First Fundamental Form.
(iii) Perform rejection sampling, such that the probability of keep-

ing point pk is equal to dk
∑

M
j=1 d j

Ntarget .

(iv) Push the samples p j (on the sphere) through the map Sθ.

Following this process, the expected number of sample points will
equal Ntarget — a specified parameter — however, the actual number
of sample points (N) may vary.

6. Evaluation

Dataset We evaluate our method on various meshes of the unit
sphere, various meshes of the Igea model, and four analytic shapes.
In order to evaluate the robustness of our method, we included
several ‘bad’ meshes (e.g. with many thin triangles) and unusual
meshes such as those with a very sharp contrast in triangle size
across different regions, and two polygonal meshes. (See Figures 11
and 12.)

The four analytic shapes, which we designed for this experiment,
are: mushroom, flower, bobble, and star. In Figure 7, we
show results on the mushroom only. Refer to the supplemental, for
the analytic parametrizations of all four shapes, and for additional
results on the flower, bobble, and star. The advantage of

using analytic shapes for evaluation is that we can compute the
ground truth for any derived geometric quantity (such as curvature).
We used symbolic Matlab to compute the ground truth differential
quantities, given the analytic parametrization. We provide text files,
in the supplemental, which contain the symbolic expressions.

Evaluation Metrics To evaluate the quality of the surface represen-
tation, we measure:

(i) The distance from each point on the reconstructed surface, to
the analytic surface (geometric error).

(ii) The angle deviation of the surface normal at each (recon-
structed) surface point, compared to the ground truth surface
normal at the the closest analytic surface point.

(iii) The angle deviation of the minimum curvature direction at
each (reconstructed) surface point, compared to the ground
truth minimum curvature direction at the the closest analytic
surface point.

(iv) The absolute error of the Gaussian curvature and Mean cur-
vature at each (reconstructed) surface point, compared to the
ground truth curvatures at the the closest analytic surface point.

For the Laplace Beltrami operator, we compare our LBO to other
LBOs when applied to a frequency-varying sine-wave type scalar
field, and in the case of a sphere, we compute the absolute error with
respect to the analytic LBO (see supplemental for details).

Comparison Methods We compare the SNS against three alterna-
tive methods for estimating geometric quantities. (These methods
do not support LBO computation or spectral analysis.)

© 2025 The Author(s).
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Figure 7: Accuracy of Differential Quantity Estimation. As shown
by the colourmaps, the quality of the estimation of differential quanti-
ties (mean curvature, Gauss curvature, minimum curvature direction
and normals) decreases gradually as mesh-resolution decreases. We
show results for an SNS overfitted to analytical parametrization,
with 102400 sample points (top), and SNSs fitted to meshes with
40962, 10242 and 2562 vertices. (The errors are sampled at a much
higher resolution, at 655362 points.) The level of error for the finest
level mesh is close to the level of error for the ‘analytical’ SNS
and we argue that this demonstrates the ‘interpolation’ capability
of our method: it shows that fitting an SNS to an appropriately
high-resolution mesh successfully interpolates the underlying sur-
face (even for meshes where the analytic parametrization is not
available). We also show plots of the error on the various differen-
tial quantities, compared against three additional methods (when
functions are available): Monge-fitting, NFGP and i3d. A minimum
curvature direction function was not available for NFGP.

• Monge-fitting [PC24]] is a classical mesh-based method that
uses osculating jets to approximate differential quantities of the
underlying curved surface. We used the official implementation
available via CGAL.

• NFGP [YBHK21] is a method with similar motivation to ours,
in the sense that they fit a neural representation to a mesh and
compute differential quantities in order to perform edits in the

Figure 8: Spectral Modes on Neural Surfaces. We propose how
to compute the lowest few spectral modes of the neural Laplace
Beltrami operator ∆Sθ

via minimization of the Rayleigh quotient,
without requiring any unnecessary discretization. Here we show the
lowest few spectral modes of different SNSs. The lowest spectral
mode is constant, and not included in this figure. Each of the spectral
modes is represented by a dedicated MLP (see Equation 23).

shape. However, they use a deep-implicit representation, so their
differential quantities additionally depend on the representation’s
adherance to the Eikonal property, whereas we use an explicit
representation.

• i3D [NSS∗22] is also a deep implicit method that computes differ-
ential quantities, and it improves the overfitting process itself by
encouraging the curvature of the deep implicit to match the com-
puted curvature of the input mesh. Because our method, NFGP,
and Monge fitting do not require the curvature information from
the mesh, we did not provide the mesh-curvature information to
this method either and we found that the method suffered as a
result.

(i) What is the effect on the estimates when we fit the SNS to
different resolution meshes of an analytic shape? In Figure 7, we
fit SNSs to analytic shapes (mushroom), and plot the absolute error
of derived geometric quantities (against the ground truth, which is
computed from the analytic parametrization using symbolic Matlab).
We fit SNSs to a coarse, medium and fine mesh (with 2562, 10242
and 40962 vertices, respectively) and, for reference, we also fit an
SNS directly to the analytic parametrization (without meshing).

As expected, the accuracy of the derived quantities is highest
when we fit the SNS directly to the analytic parametrization, and the
accuracy of the mesh-fitted SNSs approaches the analytically-fitted
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Figure 9: Laplace Beltrami on Neural Scalar Fields. We present
two ways to compute Laplace Beltrami operators on any smooth
scalar field, f , defined on a neural surface Sθ (top): first, using
mean curvature estimates (top-middle) (Equation 16) and sec-
ond, using the divergence of gradient definition (divgrad) (bottom-
middle) (Equation 13). We represent scalar fields on surfaces using
dedicated MLPs. (Bottom) For comparison, we also show results
using the cotan LBO (with a lumped mass matrix) on a dense mesh,
whose vertices are the image of the vertices in a dense icosphere
mesh under the transformation Sθ.

SNS as the mesh resolution increases. Since the accuracy of the SNS
fitted to the fine-resolution mesh (40962 vertices) is consistently
close to the accuracy of the analytically-fitted SNS, we argue that
fitting the SNS to a reasonably fine mesh is a good way to find a
smooth approximation of an underlying smooth surface, when no
analytic parametrization is available. We also show the distribution
of errors for one of the shapes (mushroom), for SNSs fitted to
each resolution of the mesh, and for the three comparison methods:
Monge-fitting, NFGP and i3D.

(ii) How do the position, normals and curvature estimates of
SNS compare to those from other methods? In Figure 7, along-
side the SNS errors, we show the absolute errors of computing the

Figure 10: Spectral SNS Modes across Isometric Poses. If
we compute the first few eigenfunctions on SNSs that represent
near-isometric surfaces, and order the functions according to their
Rayleigh quotients, we see a clear correspondence between corre-
sponding eigenfunctions on each surface. Although our computation
of the LBO and its spectrum involves extrinsic terms such as mean
curvature and normals, the Laplace Beltrami operator is intrinsic
so its spectrum does not depend on the particular embedding of a
surface into R3, therefore the eigenmodes of isometric SNSs should
appear similar (up to a possible sign change).

same geometric quantities on the fine-resolution mesh, using three
alternative methods. The first method is Monge-fitting, which fits a
piecewise polynomial surface to the mesh and allows us to compute
the geometric quantities on the vertices. The other two methods (i3d
and NFGP) are deep implicit methods, which fit a neural signed-
distance function (a deepSDF) to the mesh. The i3D method has the
option to use mesh-curvature information to improve the fitting, but
for consistency, we did not provide this, because the other neural
methods (ours, and NFGP) do not require additional mesh-curvature
information. We use the CGAL implementation for Monge-fitting,
and the original author -implementations for the two deep-implicit
methods. The geometric quantities on a deepSDF are computed us-
ing automatic differentiation. (Although this appears at first glance
to be similar to computing geometric quantities on an SNS, the
computations are different due to deepSDF being an implicit repre-
sentation while SNS is explicit. In contrast to SNS, deepSDFs use a
soft constraint enforced by an Eikonal loss term, without which the

© 2025 The Author(s).
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Figure 11: Robustness of Neural LBO (Analytic). We demonstrate that our neural LBO is largely unaffected by differences in mesh density
and mesh quality on the starting mesh. While the common mesh-based LBOs are sensitive to the quality and the density of the mesh, the neural
LBO is more consistent when applied to a scalar field defined on an SNS that is generated from different meshes of the same surface. The
mesh-based LBO is the cotan LBO for the triangle-meshes and the virtual-refinement Laplace [BHKB20] for polygonal meshes. The scalar
field is analytic (a variable frequency sine-wave) on a sphere (for which the mean-curvature is one and the normals are trivial), because this
allows us to compute hessian, gradient, normals and mean curvature analytically, so that we can compare against the ground truth LBO using
equation 16. Please refer to the supplemental for further details. The error colourmap runs from white (no error) to red (higher error).

deepSDF can only be used for mesh-reconstruction and not for the
estimation of geometric quantities.)

We observe that given only a fine-resolution mesh, the most
accurate method is consistently the SNS, except on the flower
shape where it is Monge-fitting. The second most accurate method
appears, on average, to be the Monge-fitting, but impressively the
medium-resolution SNS is sometimes able to perform similarly
well, showing that SNS has can robustly interpolate from limited
geometric data.

On all shapes, i3D performed worse than the fine-resolution SNS
and the Monge-fitting. The NFGP method produces consistently
poor results. We believe that this method struggles to capture finer
surface details (e.g. on the mushroom) and thin structures (e.g. on
the flower), at least with the default settings. However, we were lim-
ited by compute resources and it is possible that better results could
be achieved given a longer training time (please see the ‘NFGP Note’
in the Supplemental). Observations of the reconstructed meshes
show that neither of the deep implicit methods capture the input

geometry well, leading to poor results in the estimation of geometric
quantities.

(iii) How consistent is the SNS LBO, when we fit an SNS to
different meshes of the same shape? In Figure 11 and 12, we
put a test-function (a variable-frequency sine-wave scalar field) on
two different surfaces: the sphere and Igea, respectively. We fit the
SNS to various different meshings of these shapes, and in each case
compute the result of the applying the SNS LBO to the scalar field.
To fit an SNS to a polygonal mesh, we first convert to a triangle
mesh by splitting the faces.

For reference, we also show the result of applying a mesh-based
LBO to the scalar field (sampled at the vertices). For triangle meshes,
we use the cotan LBO (with vertex area as 1/3 the one-ring area,
and a lumped mass matrix). For polygonal meshes, we use the
Virtual Refinement Laplace operator from Polygon Laplacian Made
Simple [BHKB20], with the default Area Minimizer setting.

Visually, the SNS LBO produces more consistent and less noisy
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Figure 12: Robustness of Neural LBO (Non-Analytic). For non-
analytic surfaces, we do not have access to a ground-truth LBO,
because the precise underlying surface geometry is ambiguous.
However, we show that the neural LBO is more consistent than mesh-
based LBOs when fitted to different meshes of the same surface. This
is because the smooth geometry of the SNS remains quite consistent
when fitted to different meshes of the same surface, and the neural
LBO is defined everywhere on the smooth surface - not just at the
mesh-vertices. The neural LBO on mesh 2 does display some visible
differences, however this is because the hair of Igea contains some
high-frequency details. This is a signal which was lost in the lower-
resolution meshes, so it is not an artefact or noise.

results across different meshings. This is in part because the SNS
LBO is discretization-free, so we can sample at any point (not just
vertices of the original mesh), and partly because the SNS LBO
is able to leverage information from the derivatives of the scalar
field (which is always available when the scalar field is analytic, or
neural) whereas the mesh-based methods cannot use this additional
available information.

(iv) How does the SNS LBO compare to the ground truth LBO,
when the analytic operator is available? In the case of a sphere,
we know the mean curvature and normals analytically at every point,
so we can use Equation 16 to compute the ground-truth result of
applying the LBO to the (analytically-defined) scalar field. We show
this result in Figure 11 , and also display the error maps of the mesh-
based LBOs and the neural LBO. Clearly, the error of the neural
LBO is smaller than the error of the mesh-based LBO, and the error
is smallest where the scalar field is low-frequency.

(v) Neural LBO on scalar fields on non-analytic surfaces. To
evaluate the accuracy of our Laplace-Beltrami operator on SNSs,

we generated random scalar fields using sine waves, and visually
compared the results of applying three different forms of the LBO,
on five different surfaces (see Figure 9). To compute ∆Sθ

f using
the mean curvature formulation (Equation 16), we computed the
gradient and Hessians of the scalar field analytically and combined
these with the SNS estimates of the normals and mean curvature.
We also computed ∆Sθ

f using the ‘divergence of gradient’ definition
(Equation 13) - in this version, all of the differential calculations
were carried out by autograd. We show the results using vertex-
colours, on a dense icosphere mesh.

Finally, we computed the result of applying the cotan LBO to the
scalar field (sampled at the vertices of the dense icosphere mesh).
At this resolution, all three versions of the LBO are extremely close,
however, we notice that the cotan estimate on the star (row 2)
contains a small discontinuity, not present in the SNS estimates.
From a smooth shape and a smooth scalar field, the resulting ∆S
should be smooth, which is the case for the SNS estimates.

(vi) What is the effect of different levels of distortion in the spher-
ical mesh embedding? Figure 13 shows area-distortion colourmaps
for four different spherical embeddings of the frog mesh. Spheri-
cal embeddings were computed by performing explicit deforma-
tions of the mesh-embedding produced by multi-resolution embed-
ding [SPK23]. The distortion colourmap is shown on the original
mesh. The area-distortion at a single vertex is computed as the
one-ring area on the sphere mesh divided by the corresponding one-
ring area on the surface mesh. The second and third rows show the
SNS trained on each parametrization, with colouring based on the
normals and the mean curvature. We see that first order estimates
(normals) are more consistent than second order estimates (curva-
ture). We also see that, although the geometry is close to the input
surface in all cases, artefacts such as ‘ripples’ occur more frequently
in white areas, where the MLP maps a large area on the sphere to a
small area on the surface.

area
distortion

normals

mean curvatures

Figure 13: We show area-distortion colourmaps for four different
spherical embeddings of the frog mesh, and demonstrate the effect
of different patterns of distortion on the accuracy of fitting, and
normals and curvature estimates.

Implementation Details All of our networks in our experiments
were trained on Nvidia GeForce P8 GPUs. The SNS network is a
Residual MLP with input and output of size three, and eight hidden
layers with 256 nodes each. The networks used to represent scalar
fields (in the eigenfunction and heat flow experiments) are very
small Residual MLPs with input size three, output size three and
two hidden layers with 10 nodes each. (To make the output value
a scalar, we take the mean of the three output values.) This rather
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small network-size appears to be sufficient to represent the smallest
eigenfunctions, however it might be necessary to add more nodes
if we aim to represent highly complex scalar fields. For both scalar
fields and SNS, we use softplus as the activation function. We
use the RMSProp optimizer with a learning rate of 10−4 and a
momentum of 0.9. We trained each SNS for up to 20,000 epochs
(eight to ten hours), and fixed the normal regularization coefficient
to be 10−4. The time per epoch increases slightly with the number
of vertices in the mesh, but for simpler shapes (such as the sphere)
the optimization converges in fewer epochs.

Can our optimization process reproduce eigenfunctions of the
LBO when the analytic solution is known? In the eigenfunc-
tion experiment, we used the initial parameter values λortho = 103

and λunit = 104 and then we reduced the coefficients linearly to
λortho = 1 and λunit = 102, over 10,000 epochs. These settings pre-
vent the scalar field from collapsing to the zero-function during the
initial stages of optimization, whilst allowing the Rayleigh Quotient
to dominate the loss in the later stages. We optimized each eigen-
function for up to 40,000 epochs (approximately six hours on our
setup).

We generate M = 100,000 points for the initial uniform distri-
bution on the sphere, and we use Ntarget = 10,000 in the rejection
sampling process. The points stay fixed during each optimization
stage. We believe that this is a possible reason why the Rayleigh
Quotient computed on the training points is often slightly lower than
the Rayleigh Quotient that is computed with a different, larger set
of uniform samples, and a better sampling strategy might improve
the accuracy of our optimization.

f t = ∆ S θ f

X t = ∆ S θ ( t ) X

Figure 14: Heat Flow (top) and Mean Curvature Flow (bottom).
(Top) We can evolve a given scalar field, f , specified over the sur-
face of an SNS, Sθ, using the Partial Differential Equation (PDE)
ft = ∆Sθ

f (the heat equation). We represent the evolving scalar field
as a small MLP, whose weights are ‘finetuned’ for up to 100 epochs
after every time step. Darker colours denote low values (cold) with
lighter colours being high (hot). (Bottom) Taking advantage of the
differentiable nature of our representation, we can also compute a
mesh-free Mean Curvature Flow (MCF) in which the Mean Cur-
vature and normals are updated at every iteration (the coordinate
function evolves according to the PDE Xt = ∆Sθ(t)X). We update
the Spherical Neural Surface using up to 100 finetuning steps, af-
ter every iteration of the flow. This formulation of MCF prevents
singularities from forming, without any special handling to prevent
them [KSBC12].

Heat Flow and Mean Curvature Flow We can approximate the
evolution of any initial scalar field f on an SNS Sθ, according to
the process defined by the heat equation, ft = ∆Sθ

f . In our imple-
mentation, we represent the field f implicitly, using Equation 23.
In each time step, we compute ∆Sθ

f for the current scalar field f ,
using the divergence of gradient formula in Equation 13. Then we
select a small value (d = 10−3) and we compute f +d∆Sθ

f at some
fixed sample points (in Figure 14-left, we used 10,242 points). We
then update the scalar field, by finetuning the network for up to 100
epochs to fit the new sample points, using a simple MSE loss. Quali-
tatively, the experiment aligns with our expectations. The scalar field
gradually becomes more smooth over time, and cold areas warm up
to a similar heat level as the surroundings.

Similarly, we approximate a Mean Curvature Flow of an SNS by
updating the SNS to Sθ −dHn at each time step, and finetuning for
up to 100 epochs, so that the surface evolves according to the PDE
Xt = ∆Sθ(t)X The results in Figure 14-right show the spiky analytic
shape becoming closer to a sphere, over 150 iterations.

SNS normal map cross field SNS normal map cross field

Figure 15: Handling Neural Implicits. Spherical Neural Sur-
faces can be generated from other neural representations, such as
DeepSDF. Here, we have produced an SNS from a DeepSDF repre-
sentation for a camera, by overfitting the SNS to a low-resolution
marching-cubes mesh reconstruction and then finetuning this SNS
to better align with the SDF.

Neural Implicits To demonstrate robustness to the input represen-
tation, we provide an illustratory example of an SNS generated from
a DeepSDF [PFS∗19], and show the normals and principal curva-
ture directions on its SNS. We took a pretrained DeepSDF network
and the optimized latent code for the camera shape [Com23]. Then,
as initialization, we overfitted an SNS to a coarse marching-cubes
mesh. Then we took a set of samples on the SNS and projected them
to deepSDF representation defined by the signed distance function
(SDF), by moving them in the direction of the gradient of the SDF
(which approximates the surface normal) by the signed distance at
that point, and use them to finetune the SNS.

7. Conclusion

We have presented spherical neural surfaces as a novel representation
for genus-0 surfaces. Our smooth and differentiable neural surface
representation inherently supports the computation of continuous
differential geometric quantities and operators such as normals,
First and Second Fundamental Forms), surface gradients and surface
divergence. We also presented how to compute a continuous Laplace
Beltrami operator and its lowest spectral modes.

We demonstrate that SNSs, by avoiding the pitfalls of discretiza-
tion, produce robust and consistent differential geometric estimates
for surfaces both across meshing parameters such as sampling and
vertex connectivity, and when compared to alternate neural and
mesh-based surface representations.
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Limitations and Future Work

Beyond Genus-0 Surfaces Since our SNSs rely on a sphere for the
parametrization, it limits us to genus-0 surfaces. We chose the sphere
as a domain, because it allows us to process many common shapes
without needing to ‘cut’ them into a disc-topology (as shown in, e.g.,
Neural Surface Maps [MAKM21]). If we could choose from a range
of canonical surfaces (e.g., torus), this would allow us to seamlessly
process higher genus shapes and, possibly, to also produce neural
surfaces without such high distortions. Another option would be to
rely on local parametrizations, but then we would have to consider
blending across overlapping parametrizations.

Solving Variational Problems We are optimistic that the tech-
niques demonstrated in our work have the potential to allow us
to solve other variational problems, beyond the example of com-
puting a spectral basis via energy minimization. We would like to
know whether similar energy minimizations may be used on neural
surface-paths, to compute geodesics, and on scalar- and vector-fields,
to compute heat-flow/mean-curvature flow without fine-tuning the
network at every step.

Speed A limitation of our current realization is its long running time.
While we expect that better and optimized implementations would
increase efficiency significantly, we also need to make changes
to our formulation. Specifically, our current spectral estimation is
sequential, which is not only slow, but leads to an accumulation of
errors for later spectral modes. Hence, in the future, we would like
to jointly optimize for multiple spectral modes.

SNS from Neural Representations We demonstrated our setup
mainly on mesh input and also on neural input in the form of
deepSDF. In the future, we would like to extend our SNS to other
neural representations in the form of occupancy fields or radiance
fields. However, this will require locating and sampling points on
the surfaces, which are implicitly encoded – we need the repre-
sentation to provide a projection operator. We would also like to
support neural surfaces that come with level-of-detail. Finally, an
interesting direction would be to explore end-to-end formulation
for dynamic surfaces encoding temporal surfaces with SNS, and
enabling optimization with loss terms involving first/second funda-
mental forms as well as Laplace-Beltrami operators (e.g., neural
deformation energy).
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