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Timetable

Niloy lasonas Paul Nils Leonidas
Introduction 9:00 X
Neural Network Basics ~9:15 X
Supervised Learning in CG ~9:50 X
Unsupervised Learning in CG ~10:20 X
Learning on Unstructured Data ~10:55 X
Learning for Simulation/Animation ~11:35 X

Discussion 12:05 X X X X X
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e Provide a quick overview of and

« Many extra slides in the course notes + example code
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Course Objectives

e Provide an overview of the popular used in CG

e Provide a quick overview of and

« Many extra slides in the course notes + example code

« Summarize progress in the last 3-5 years
 We have attempted to organize them

e Discuss the main specific to CG
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Help Us Improve

e Our aim is to convey what we found to be relevant so far

 You are invited/encouraged to give feedback
e Speakup. Please send us your criticism/comments/suggestions
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Help Us Improve

e Our aim is to convey what we found to be relevant so far

 You are invited/encouraged to give feedback

e Speakup. Please send us your criticism/comments/suggestions
e Ask questions, please!

e Thanks to the many who helped so far with slides/comments

CreativeAl: Deep Learning for Computer Graphics



Representations in Computer Graphics

CreativeAl: Deep Learning for Computer Graphics



Representations in Computer Graphics

e Images (e.g., pixel grid)
e Volume (e.g., voxel grid)

e Meshes (e.g., vertices/edges/faces)
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Representations in Computer Graphics

e Images (e.g., pixel grid)

e Volume (e.g., voxel grid)

e Meshes (e.g., vertices/edges/faces)

» Point clouds (e.g., collection of points)

o Animation (e.g., skeletal positions over time; cloth dynamics over time)
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Representations in Computer Graphics

e Images (e.g., pixel grid)

e Volume (e.g., voxel grid)

e Meshes (e.g., vertices/edges/faces)

» Point clouds (e.g., collection of points)

» Animation (e.g., skeletal positions over time; cloth dynamics over time)

e Physics simulations (e.g., fluid flow over space-time, multi body interaction)

CreativeAl: Deep Learning for Computer Graphics



Problems in Computer Graphics

 Feature detection (image features, point features) RMXm _ 7

e Denoising, Smoothing, etc.

« Embedding, Metric learning

e Rendering

e Animation

e Physical simulation

e Generative models

CreativeAl: Deep Learning for Computer Graphics
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Problems in Computer Graphics

 Feature detection (image features, point features) RMXm _ 7

e Denoising, Smoothing, etc.

« Embedding, Metric learning

e Rendering

e Animation

e Physical simulation

e Generative models
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Goal: Learn a Parametric Function

f@ZX%Y

4 X : source domain Y : target domain
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f@ZXHY

4 X : source domain Y : target domain
Examples:
. o . . yw X h X
Image Classification: o : g {07 L,...,k— 1}
w X h %X ¢ :image dimensions I.: class count
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Goal: Learn a Parametric Function

f@ZXHY

4 X : source domain Y : target domain
Examples:
. o . . yw X h X
Image Classification: fo : > 10,1,...,k — 1}
w X h X ¢ :image dimensions I.: class count
Image Synthesis: fp : R — RWXhXe
n . latent variable count w X h x ¢ :image dimensions
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Semantic Segmentation

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturell.pdf
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Pose Detection using CNNs

CreativeAl: Deep Learning for Computer Graphics



Image Denoising
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I m age De n OiSi ng [Chaitanya et al. 2017, Siggraph]
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Image Translation Problems

Labels to Street Scene

Labels to Facade

.HPF_"." sl |

| 2 1481 :
miwm e
:.' T 1B i -.E —I
DEERALN

- out
Day to Night

output

output
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[Isola et al. 2017, CVPR]

BW to Color

output
Edges to Photo

iInput output



Sketch to Face! (Han et al. 2017, Siggraph]

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling
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SkEtCh tO Fa Ce ! [Han et al. 2017, Siggraph]

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling
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[Wang et al. 2018, Siggraph Asia]

Real Images



[Wang et al. 2018, Siggraph Asia]

Real Images









Machine Learning 101: Classifier
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Machine Learning 101: Classifier
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Data-driven Algorithms (Supervised)

Labelled data
(supervision data)
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Data-driven Algorithms (Supervised)

Labelled data VT
- ——— | MLalgorithm |
(supervision data) ]

Test data
(run-time data)
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Data-driven Algorithms (Supervised)

Labelled data S
. ——— | ML algorithm |
(supervision data) e |

—

Test data

(run-time data)
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Data-driven Algorithms (Supervised)

Labelled data BV
. —— | MLalgorithm |
(supervision data) -

|

Validation data
«<— (supervision data)

Test data

. —_— Prediction
(run-time data)

' Trained model|

1

Implementation Practice: Training: 70%; Validation: 15%; Test 15%
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Training versus Validation Loss/Accuracy

underfitting overfitting

validation error

error

training error

model parameter
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Training versus Validation Loss/Accuracy

underfitting overfitting

validation error
y

error

training error

model parameter
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Data-driven Algorithms (Unsupervised)

Training data — | MLalgorithm |

|
'1}

——— Validation data

Test data

, — Prediction
(run-time data)

' Trained model|

)

Implementation Practice: Training: 70%; Validation: 15%; Test 15%
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Various ML Approaches (Supervised approaches)
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. . http://scikit-Iearn.orgjstabIe/auto_exampIes/classification/plot_classifier_comparison.html
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Various ML Approaches (Supervised approaches)

Input data Nearest Neighbors

. . http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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Various ML Approaches (Supervised approaches)

Input data Nearest Neighbors Linear SVM

. . http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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Various ML Approaches (Supervised approaches)

Input data Nearest Neighbors Linear SVM RBF SVM Gaussian Process Decision Tree Random Forest

. . http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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Various ML Approaches (Supervised approaches)

Neural Net

Input data Nearest Neighbors Linear SVM RBF SVM Gaussian Process Decision Tree Random Forest

.
(]
{

. . http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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Rise of Learning

¢« 1958: Perceptron

¢« 1974: Backpropagation

¢ 1981: Hubel & Wiesel wins Nobel prize for ‘visual system’
¢ 1990s: SVM era

¢« 1998: CNN used for handwriting analysis

«2012: AlexNet wins ImageNet
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What is Special about CG?
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What is Special about CG?

1. and easy to parallelize
(e.g., image translation)

2. Many sources of input data —
(e.g., images, scanners, motion capture)
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(e.g., image translation)

2. Many sources of input data —
(e.g., images, scanners, motion capture)

3. Many sources of — Can serve as supervision data
(e.g., rendering, animation)
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What is Special about CG?

1. and easy to parallelize

(e.g., image translation)

2. Many sources of input data —

(e.g., images, scanners, motion capture)

3. Many sources of
(e.g., rendering, animation)

4. Many problems in

CreativeAl: Deep Learning for Computer Graphics
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Main Challenges and Scope for Innovation
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Main Challenges and Scope for Innovation

How is the data organised and structured?

s it synthetic or real, or mixed?
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How is the data organised and structured?
s it synthetic or real, or mixed?

End-to-end or in small steps?
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Main Challenges and Scope for Innovation

How is the data organised and structured?
s it synthetic or real, or mixed?
End-to-end or in small steps?

Hand-crafted or learned from data?
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Data is the New Currency

e Synthetic data
+ photo-realistic
e Object geometry + physical

e Object geometry + synthetic materials + realistic simulations

e Real data
e Collected from images, scans, mocap sessions

e Collected using specialized equipments (e.g., light-field, pressure gloves)

CreativeAl: Deep Learning for Computer Graphics Z/‘7



End-to-end: Learned Features
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End-to-end: Learned Features

e Before

 Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
 Mostly with linear models (PCA)

e Now

ihput Image  edge image 21/2-D sketch 3-D model

=
>
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End-to-end: Learned Features

e Before

 Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
 Mostly with linear models (PCA)

e Now
« End-to-end
« Move away from hand-crafted representations

input image  edge image 2112-0 sketch 3-D model

=
>
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End-to-end: Learned Loss
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End-to-end: Learned Loss

e Before
e Evaluation came after

|t was a bit optional

« You might still have a good algorithm without a good way of quantifying it
« Evaluation helped publishing

e Now
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End-to-end: Learned

e Before
e Evaluation came after

|t was a bit optional

« You might still have a good algorithm without a good way of quantifying it
« Evaluation helped publishing

e Now

e |t is essential and build-in
o |f the loss is not good, the result is not good
» (Extensive) Evaluation happens automatically

e While still much is left to do, this makes graphics much more reproducible

CreativeAl: Deep Learning for Computer Graphics 1/'7



End-to-end Training: Real/Generated Data
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End-to-end Training: Real/Generated Data

e Before
» Test with some toy examples

e Deploy on real stuff
« Maybe collect some performance data later

e Now
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End-to-end Training: Real/Generated Data

e Before
» Test with some toy examples

e Deploy on real stuff
« Maybe collect some performance data later

e Now

e Test and deploy need to be as identical
(in distribution)

e Need to collect data first
 No two steps
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Course Plan

e Understand (supervised and unsupervised) used in CG

e Understand the

« Commonly used architectures, loss function, training advice

e Opportunities to develop
e ML methods for CG-specific domains (e.g., points, meshes, graphs)

« How to mix synthetic/real data (and distributions)

CreativeAl: Deep Learning for Computer Graphics Z[‘.



Code Examples

PCA/SVD basis
Linear Regression
Polynomial Regression

Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron

Edge Filter ‘Network’

Convolutional Network

FFilter Visualization

Weight Initialization Strategies

Colorization Network

Autoencoder

Variational Autoencoder

Generative Adversarial Network

http://geometry.cs.ucl.ac.uk/creativeai/ W Scan me




Other Courses at Siggraph 2019

e Deep Learning: A Crash Course

Andrew Glassner
Sunday 9:00-12:15

« Geometric Computing with Python

Sebastian Koch, Teseo Schneider, Francis Williams, Daniele Panozzo
Tuesday 2:00-3:30

e Differential Graphics with Tensorflow
Sofien Bouaziz, Martin Wicke, Julien Valentin, Paige Bailey, Josh Gordon,
Christian Haene, Alexander Mordvintsev, Shan Carter
Thursday 9:00-12:15

CreativeAl: Deep Learning for Computer Graphics
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Examples in Graphics

Image
manipulation

Rendering
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Animation



Examples in Graphics

Geometry
procedural Mesh segmentation Learning
Colorization modelling deformations
Sketch
simplification I M age
manipulation
Animation
BRDF estimation Boxification
Fluid
Real-time rendering Anlmatlon
Rendering
Denoising Facial animation PCD processing
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Examples in Graphics

X 9
X

Mesh segmentation

Deformed with F1-32 output

Procedural

N Learning
modelling deformations
Sketch
simplification

Animation

.

'ﬂ
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.
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-
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Real-time rendering

1angsth
L

Vertex positions

Denoising Facial animation
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