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Timetable

Niloy lasonas Paul Nils Leonidas
Introduction 9:00 X
Neural Network Basics ~9:15 X
Supervised Learning in CG ~9:50 X
Unsupervised Learning in CG ~10:20 X
Learning on Unstructured Data ~10:55 X
Learning for Simulation/Animation ~11:35 X

Discussion 12:05 X X X X X
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Code Examples

PCA/SVD basis
Linear Regression
Polynomial Regression

Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron

Edge Filter ‘Network’

Convolutional Network

FFilter Visualization

Weight Initialization Strategies

Colorization Network

Autoencoder

Variational Autoencoder

Generative Adversarial Network

http://geometry.cs.ucl.ac.uk/creativeai/ W Scan me




Code Examples

PCA/SVD basis
Linear Regression
chl ncmlal Re-re551on

jStcchastlc Gradient Descent vs. Gradient Descent!
' Multi-layer Perceptron
: Edge Filter ‘Network’
| Convolutional Network
"Filter Visualization
Weight Initialization Strategies
Colorization Network
Autoencoder

Variational Autoencoder
Generative Adversarial Network

o ama IS B W P BRI R S AL WO, SIS s B T P e g VL ST
=— (=t o~ o] - o L <

http://geometry.cs.ucl.ac.uk/creativeai/ W Scan me




Recap CNN

« Convolution operators

e Pooling operators
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Recipe 101: Supervised Learning in CG
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Recipe 101: Supervised Learning in CG

 Obtain
{xi,¥iti=1:k x; € R, y; € R™"

e Setup

» choose non-linearity (i.e., activation)

e Optimization parameters (= — {Qj}
e Setup function

L(O) = Z [fo (xi) — yill°
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Image Classification/Feature Extraction
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Image Classification/Feature Extraction
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Image Classification/Feature Extraction

D conv+pool | conv+pool || conv+pool FC ]
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increased global information

increased number of channels

local features ( ) global features ( )

Deep Learning for Computer Graphics (7



Style Transfer Applications

[Gatys et al. 2016, CVPR]
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Style Transfer Applications [Gatys et al. 2016, CVPR]
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Style Transfer Applications [Gatys et al. 2016, CVPR]
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Style Transfer Applications

Style Reconstructions '
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[Gatys et al. 2016, CVPR]
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[Gatys et al. 2016, CVPR]
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Optimization Formulation (Not Learning)
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Optimization Formulation (Not Learning)
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Optimization Formulation (Not Learning)
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Optimization Formulation (Not Learning)
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[Deep Image Prior, Ulyanov et al. 2018, CVPR]
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What We Learned?

e CNN features: versus
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UNet Architecture
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UNet Architecture: Image Translation
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UNet Architecture: Image Translation
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Sketch Sim plificatiﬂn [Simon-Serra et al. 2016, SIGGRAPH]
[Li et al. 2017, SIGGRAPH]

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG 57,



Sketch Sim plificatiﬂn [Simon-Serra et al. 2016, SIGGRAPH]
[Li et al. 2017, SIGGRAPH]

YR [‘\

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG

8



Sketch Sim plificatiﬂn [Simon-Serra et al. 2016, SIGGRAPH]
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Sketch Simplificatiﬂn [Simon-Serra et al. 2016, SIGGRAPH]
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Sketch Simplificatiﬂn [Simon-Serra et al. 2016, SIGGRAPH]
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Sketch Simplification: Learning to Simplify
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What We Learned?

e CNN features: versus

e UNet: for (image)

CreativeAl: Deep Learning for Computer Graphics
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UNet Architecture: Image Translation

[ ]

Deep Learning for Computer Graphics



UNet Architecture: Image Translation
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UNet Architecture: Image Translation

UNet or ‘Hourglass’ with skip connections
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[Bako et al. 2017, SIGGRAPH]
[Chaitanya et al. 2017, SIGGRAPH]

Denoising Renderings

:“.,Noisy (32°5pp)
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[Narihira et al. 2015, ICCV]
[Zhou et al. 2015, ICCV]
[Innamorati et al. 2017, EGSR]

Image Decomposition
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Image Decomposition: Decomposing

I ti et al. 2017, EGSR
Single Images for Layered Photo Retouching LInnamorati et 2 ]
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Results: Intrinsic Decomposition

Input
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Results: Intrinsic Decomposition
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Directional Decomposition

Normals
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Directional Decomposition
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Directional Decomposition
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With Inferred Layered Representation
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3D CNN: Object Recognition
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3D CNN: Object Recognition
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VoxNet: Object Recognition [Maturana et al. 2015, IROS]

Output
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VoxNet: Object Recognition

Output

32x32x32 128
14x14x14 @ 32

6x6x6 @ 32
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[Maturana et al. 2015, IROS]
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Multi-view CNN for 3D

3D shape model
rendered with
different virtual cameras
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Multi-view CNN for 3D
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Multi-view CNN for 3D [Su et al. 2015, ICCV]

4 CNN,
‘ i CNN, bathtubp
bed D
) chair |
\ | ' - desk[—
) — CNN View CNN dresser|2
. ] sl ! pooling 2
.] toilet—
b 4—[ CNN,
3D shape model
rendered with 2D rendered our multi-view CNN architecture output (Elass
different virtual cameras images predictions

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG 57,



Multi-view CNN for 3D [Su et al. 2015, ICCV]

regular image analysis networks
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Mesh Labeling / Segmentation [Guo et al. 2016, ACM TOG]

(f) fourleg

(g) ant (h) human (i) fish
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Audio-driven Facial Animation ikxarrasetal. 2017, SIGGRAPH]

Formant analysis network Articulation network Output network
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What We Learned?

« CNN features: Versus
e UNet: for (image) problems
« UNet + Skip connection: preserves
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Colorization llizuka et al. 2016, SIGGRAPH]

o Let there be Color!, lizuka et al., 2016

o Colorful Image Colorization, Zhang et al. 2016

e Learning Representations for Automatic Colorization, Larsson et al., 2016

e Real-Time User-Guided Image Colorization with Learned Deep Priors, Zhang et al. 2017
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Colorization: Let There Be Color!
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Colorization: Let There Be Color!
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UNet + Global Features
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UNet + Global Features
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UNet + Global Features
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Single-image SVBRDF Ca ptu '€ [Deschaintre et al. 2018, Siggraph]
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UNet with Global Features

CreativeAl:
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Importance of Global Features

Specular albedo Roughness Diffuse albedo Normal
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Importance of Global Features

Specular albedo Roughness Diffuse albedo Normal

UNet ground truth

Unet + global f.
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Realistic Reconstructions

Real pictures

Input (Wood)

Ours
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What We Learned?

« CNN features: Versus
e UNet: for (image) problems
« UNet + Skip connection: preserves

 UNet + Skip + global features: access to

CreativeAl: Deep Learning for Computer Graphics
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Rendering Loss: Render Function inside the Network

Renderer

Prediction

Renderer

Ground truth

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG




Rendering Loss: Render Function inside the Network
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UNet with Global Features
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Extension to Multiple Images  [Deschaintre et al. 2019, EGSR]
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Extension to Multiple Images  [peschaintre etal. 2019, EGsR]

Global

," U-Net /’ \ Q‘ 4:

r ) (o] b

' — X {

", x m "

: | § > . -»I-v- — g :I:

P 2o X

b = ~ Vo) F,

1 L Output maps

c N .

- .- - Normal Diffuse

max pool

256 x 256 x3

Input

256 x 256 x 64 |

256 x 256 x64

Global

! .
features 13 :
- o o vt 9 R S S — B —> SRR A
. > N ;ut.'-" & s -,)'“t;?:‘i{
“ ; ,’ b 4 .-‘
G s P e o L - ~ < i .

Rodgr{neés | Specular

> —_

o

x
Yo
un
o~

x
Xo]
un
™~

e
-
Q.
=

256 x 256 x64 |

> =
- 20

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG 57,

max pool




Renderings Diffuse albedo Roughness Specular albedo
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Self-supervision: Regression
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Self-supervision: Regression
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Self-supervision: Regression
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Self-supervision: Regression
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Self-supervision: Regression [Li et al. 2018, Siggraph]

Input
without SVBRDF label
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Self-supervision: Regression

 ONN |

——-

Forward prediction

[Li et al. 2018, Siggraph]

Input Predicted SVBRDF from unlabeled data

without SVBRDF label
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Self-supervision: Regression [Li et al. 2018, Siggraph]
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Self-supervision: Regression [Li et al. 2018, Siggraph]
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Differentiable Rendering: Rendering in the Loop

[Henzler et al. 2019, ICCV]
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Differentiable Rendering: Rendering in the Loop

[Henzler et al. 2019, ICCV]

« Look back at image formation model (rendering equation)

view sample color, material, [llumination

image-formation model
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Differentiable Rendering: Rendering in the Loop

[Henzler et al. 2019, ICCV]

« Look back at image formation model (rendering equation)

view sample color, material, [llumination

image-formation model =3 image examples
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Differentiable Rendering: Rendering in the Loop

[Henzler et al. 2019, ICCV]

« Look back at image formation model (rendering equation)

view sample color, material, [llumination

image-formation model =3 image examples

Image formation, view transformation are known functions/transformations

Deep Learning for Computer Graphics 1/'7



UNet Revisited

F differential but known (CG) function (e.g., rendering, camera matrix, simulation)
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UNet Revisited

F differential but known (CG) function (e.g., rendering, camera matrix, simulation)
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What We Learned?

e CNN features: Versus

e UNet: for (image) problems

« UNet + Skip connection: preserves

 UNet + Skip + global features: access to information

o CG-specific functions: embedded into networks
(e.g., camera model, differentiable rendering)

CreativeAl: Deep Learning for Computer Graphics



Encoder Decoder
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Encoder Decoder

B b | |pe

encoder-decoder L@ ¢ — E
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Encoder Decoder

autoencoder E@ .« —
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Design Options

1. sketching
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DESign Opti0n5 [Wang et al. 2018, Siggraph Asia]

1. sketching 2. sewing patterns
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DESign Opti()ns [Wang et al. 2018, Siggraph Asia]
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DESign Opti()ns [Wang et al. 2018, Siggraph Asia]

-
-
A\l

1. sketching 2. sewing patterns 3. draped garment

= interaction(sewing pattern, material, body shape)
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Interaction through Simulation
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Interaction through Simulation
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realistic simulations but NOT interactive
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Learning a Latent Space (AutoEncoder)

wl

| S sketch PCA _
input sketch (S) descriptor (S coeff. (M) draped garment (M)
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Learning a Latent Space (AutoEncoder)

\\/)
‘ DenselNet

sketch PCA ~
input sketch descriptor (S coeff. (M) draped garment (M)

: ——— — S
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Learning a Latent Space (AutoEncoder)

wl

. ~ sketch PCA
input sketch (S) descriptor (S coeff. (M)

draped garment (M) |
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Learning a Latent Space (AutoEncoder)

DenseNet I@ latent space @I

. ~ sketch PCA
input sketch (S) descriptor (S coeff. (M) draped garment (M)

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG




Learning a Shared Latent Space (3-way AutoEncoder)

wl

| S sketch PCA _
input sketch (S) descriptor (S coeff. (M) draped garment (M)

garment
stretch’ blend’ shear} Parameters (G)

bodyshape
parameters (B
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Learning a Shared Latent Space (3-way AutoEncoder)

(8 / \\’)) wl

sketch PCA ~
input sketch descriptor (S coeff. (M) draped garment (M)

N

garment l
stretch’ blend’ shear} Parameters (G)

bodyshape
pa rameters (B
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Learning a Shared Latent Space (3-way AutoEncoder)

DenseNet I@ latent space @I

. ~ sketch PCA
input sketch (S) descriptor (S coeff. (M) draped garment (M)

‘ i '_é garment

stretch blend shear} Pafameters (G)

body shape
parameters (B
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Network as a Learned ‘Basis’
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Network as a Learned ‘Basis’
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What We Learned?

e CNN features: Versus

e UNet: for (image) problems
 UNet + Skip connection: preserves
 UNet + Skip + global features: access to
e Autoencoder: category-specific

CreativeAl: Deep Learning for Computer Graphics
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Conditional Decoder
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Conditional Decoder
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Network for Compression

Original BTF
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Network for Compression

Original BTF
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Network for Compression

Original BTF
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ing in

Conv. Net

Supervised Learn

ICS

Deep Learning for Computer Graph

Learning Volumetric Deformation [vumner et al. 2016, eccv)
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Network for (BTF) Compression
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Network for (BTF) Compression

ABRDF
b\/{:} N O T~ : Encoder < e Decoder
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Sequence Prediction (past matters)

7,07% M/Q/ el FOREIGN MINISTER.

—))  THE SOUND OF

x = bringen sie bitte das auto zuriick

KX/

= please return the car

CreativeAl: Deep Learning for Computer Graphics



Neural Nets

X
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Neural Nets

yi < fo(xi)

Xij —] ™
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Recurrent Neural Nets

Xi —] ™
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Recurrent Neural Nets

Yit1 < f@(me@')

Xi —] ™
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Recurrent Neural Nets

Yit1 < f@(me@')

Xi —] ™
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Single Image Facial Relighting

Desired Light

Input Image
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Single Image Facial Relighting

Desired Light

Input Image
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What We Learned?

e CNN features: Versus

e UNet: for (image) problems
 UNet + Skip connection: preserves
 UNet + Skip + global features: access to
e Autoencoder: category-specific

« Conditional decoder: input
(e.g., user control, environmental variables)

CreativeAl: Deep Learning for Computer Graphics
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Network as a Parameterization

Bootstrapping

Single top view  Single image
measurement initialization

SVBRDF s
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Network as a Parameterization

Bootstrapping

/ | ~

Single top view  Single image
measurement initialization

SVBRDF s

arg min Z »C(]za R(Sv C’L>>
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Network as a Parameterization

Bootstrapping

/ I |

Single top view  Single image
measurement initialization

SVBRDF s

arg min Z [1(17,7 R(S7 CZ)>

arg msin Z L(I;, R(D(z),C}))

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG




Network as a Parameterization

Bootstrapping

/ | ~

Single top view  Single image
measurement initialization

B argmin Z L(1;, R(s,C;))

SVBRDF s

S
O
=

CreativeAl: Deep Learning for Computer Graphics Supervised Learning in CG




Network as a Parameterization

Bootstrapping Refinement

Deep inverse rendering
Z
Single top view  Single image

SVBRDF auto-encoder Multiple measurements
measurement initialization SVBRDF s SVBRDF s P

B argmin Z L(1;, R(s,C;))

S
O
=
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What We Learned?

 CNN features: Versus

e UNet: for (image) problems

« UNet + Skip connection: preserves

« UNet + Skip + global features: access to information

« Conditional decoder: input
(e.g., user control, environmental variables)

« Autoencoder: category-specific

e CG-specific functions: embedded into networks
(e.g., camera model, differentiable rendering)

e Learned regularizer: over learned network (e.g., decoder)
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Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/
creativeai/
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