

CreativeAI: Deep Learning for Computer Graphics

Supervised Learning in CG

Niloy Mitra lasonas Kokkinos

Paul Guerrero

Vladimir Kim

Nils Thuerey

Leonidas Guibas

UCL/Adobe

UCL/Ariel Al

UCL/Adobe

Adobe

TU Munich

Stanford University/FAIR

Timetable

		Niloy	lasonas	Paul	Nils	Leonidas
Introduction	9:00	X				
Neural Network Basics	~9:15		X			
Supervised Learning in CG	~9:50	X				
Unsupervised Learning in CG	~10:20			X		
Learning on Unstructured Data	~10:55					X
Learning for Simulation/Animation	~11:35				X	
Discussion	12:05	X	X	X	X	X

Code Examples

PCA/SVD basis Linear Regression Polynomial Regression Stochastic Gradient Descent vs. Gradient Descent Multi-layer Perceptron Edge Filter 'Network' Convolutional Network Filter Visualization Weight Initialization Strategies Colorization Network Autoencoder Variational Autoencoder Generative Adversarial Network http://geometry.cs.ucl.ac.uk/creativeai/

Scan me

Code Examples

```
PCA/SVD basis
Linear Regression
Polynomial Regression
Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron
Edge Filter 'Network'
Convolutional Network
Filter Visualization
Weight Initialization Strategies
Colorization Network
Autoencoder
Variational Autoencoder
Generative Adversarial Network
         http://geometry.cs.ucl.ac.uk/creativeai/
```


Recap CNN

Convolution operators

Pooling operators

Obtain supervision data

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1:k} \ \mathbf{x}_i \in \mathbf{R}^{m \times m}, \ \mathbf{y}_i \in \mathbf{R}^{n \times n}$$

Obtain supervision data

$$\{\mathbf{x}_i,\mathbf{y}_i\}_{i=1:k} \ \mathbf{x}_i \in \mathbf{R}^{m \times m}, \ \mathbf{y}_i \in \mathbf{R}^{n \times n}$$

- Setup architecture
 - choose non-linearity (i.e., activation)
 - optimization parameters $\Theta = \{\theta_i\}$

Obtain supervision data

$$\{\mathbf{x}_i,\mathbf{y}_i\}_{i=1:k} \ \mathbf{x}_i \in \mathbf{R}^{m \times m}, \ \mathbf{y}_i \in \mathbf{R}^{n \times n}$$

- Setup architecture
 - choose non-linearity (i.e., activation)
 - optimization parameters $\Theta = \{\theta_i\}$
- Setup loss function

$$\mathcal{L}(\mathbf{\Theta}) := \sum_{i} \|\mathbf{f}_{\mathbf{\Theta}}(\mathbf{x}_i) - \mathbf{y}_i\|^2$$

local features (style)

$$\mathcal{L}_{content}(\mathbf{p}, \mathbf{x}, l) := \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$

$$\mathcal{L}_{content}(\mathbf{p}, \mathbf{x}, l) := \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$

$$\mathcal{L}_{content}(\mathbf{p},\mathbf{x},l) := \sum_{i,j} \left(F_{ij}^l - P_{ij}^l
ight)^2$$

$$\mathcal{L}_{content}(\mathbf{p},\mathbf{x},l) := \sum_{i,j} \left(F_{ij}^l - P_{ij}^l
ight)^2$$

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$

$$\mathcal{L}_{content}(\mathbf{p},\mathbf{x},l) := \sum_{i,j} \left(F_{ij}^l - P_{ij}^l
ight)^2$$

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$
 $\mathcal{L}_{style}(\mathbf{a}, \mathbf{x}) := \sum_l \sum_{ij} \left(G_{ij}^l - A_{ij}^l \right)^2$

$$\min_{I} \alpha \mathcal{L}_{content}(P_{content}, I) + \beta \mathcal{L}_{style}(A_{style}, I)$$

$$\min_{I} \alpha \mathcal{L}_{content}(P_{content}, I) + \beta \mathcal{L}_{style}(A_{style}, I)$$

$$\min_{I} \alpha \mathcal{L}_{content}(P_{content}, I) + \beta \mathcal{L}_{style}(A_{style}, I)$$

$$\min_{I} \alpha \mathcal{L}_{content}(P_{content}, I) + \beta \mathcal{L}_{style}(A_{style}, I)$$

$$\min_{I} \alpha \mathcal{L}_{content}(P_{content}, I) + \beta \mathcal{L}_{style}(A_{style}, I)$$

[Deep Image Prior, Ulyanov et al. 2018, CVPR]

What We Learned?

• CNN features: style versus content

UNet Architecture

Sketch Simplification: Learning to Simplify

What We Learned?

- CNN features: style versus content
- UNet: for (image) translation problems

UNet or 'Hourglass' with skip connections

Denoising Renderings

[Bako et al. 2017, SIGGRAPH]
[Chaitanya et al. 2017, SIGGRAPH]

Image Decomposition

[Narihira et al. 2015, ICCV]
[Zhou et al. 2015, ICCV]
[Innamorati et al. 2017, EGSR]

Image Decomposition: Decomposing Single Images for Layered Photo Retouching

[Innamorati et al. 2017, EGSR]

→ Resize-convolution

Results: Intrinsic Decomposition

Results: Intrinsic Decomposition

Results: Intrinsic Decomposition

With Inferred Layered Representation

With Inferred Layered Representation

3D CNN: Object Recognition

[Xiao et al. 2015, CVPR]

3D CNN: Object Recognition

[Xiao et al. 2015, CVPR]

VoxNet: Object Recognition

[Maturana et al. 2015, IROS]

VoxNet: Object Recognition

[Maturana et al. 2015, IROS]

Multi-view CNN for 3D

[Su et al. 2015, ICCV]

3D shape model rendered with different virtual cameras

Multi-view CNN for 3D

[Su et al. 2015, ICCV]

regular image analysis networks CNN, bathtub□ CNN, bed□ chair desk == View dresser□ CNN, CNN₂ pooling toilet ___ CNN, 3D shape model output class rendered with our multi-view CNN architecture 2D rendered predictions different virtual cameras images

Mesh Labeling / Segmentation

[Guo et al. 2016, ACM TOG]

Audio-driven Facial Animation

[Karras et al. 2017, SIGGRAPH]

What We Learned?

- CNN features: style versus content
- UNet: for (image) translation problems
- UNet + Skip connection: preserves details

- Let there be Color!, lizuka et al., 2016
- Colorful Image Colorization, Zhang et al. 2016
- Learning Representations for Automatic Colorization, Larsson et al., 2016
- Real-Time User-Guided Image Colorization with Learned Deep Priors, Zhang et al. 2017

Colorization: Let There Be Color!

Colorization: Let There Be Color!

Single-image SVBRDF Capture [Deschaintre et al. 2018, Siggraph]

UNet with Global Features

Importance of Global Features

Importance of Global Features

Realistic Reconstructions

Input (Wood)

What We Learned?

- CNN features: style versus content
- UNet: for (image) translation problems
- UNet + Skip connection: preserves details
- UNet + Skip + global features: access to global/non-local information

Rendering Loss: Render Function inside the Network

Rendering Loss: Render Function inside the Network

comparing parameter values versus effect of the parameters

UNet with Global Features

Extension to Multiple Images

[Deschaintre et al. 2019, EGSR]

Extension to Multiple Images

[Deschaintre et al. 2019, EGSR]

Result

$$\{\mathbf{x}_i, y_i\}$$

$$\{\mathbf{x}_i, y_i\}$$

$$y = f(\mathbf{x})$$

$$\{\mathbf{x}_i, y_i\}$$

$$y = f(\mathbf{x})$$

$$\{\mathbf{x}_i, y_i\}$$

$$y = f(\mathbf{x})$$

$$\{\mathbf{x}_i, y_i\}$$

$$y = f(\mathbf{x})$$

$$\{\mathbf{x}_i, y_i\}$$

$$y = f(\mathbf{x})$$

Input without SVBRDF label

[Henzler et al. 2019, ICCV]

[Henzler et al. 2019, ICCV]

Look back at image formation model (rendering equation)

[Henzler et al. 2019, ICCV]

Look back at image formation model (rendering equation)

3D model

[Henzler et al. 2019, ICCV]

Look back at image formation model (rendering equation)

Differentiable Rendering: Rendering in the Loop

[Henzler et al. 2019, ICCV]

Look back at image formation model (rendering equation)

Differentiable Rendering: Rendering in the Loop

[Henzler et al. 2019, ICCV]

Look back at image formation model (rendering equation)

Image formation, view transformation are known functions/transformations

UNet Revisited

F differential but known (CG) function (e.g., rendering, camera matrix, simulation)

UNet Revisited

F differential but known (CG) function (e.g., rendering, camera matrix, simulation)

What We Learned?

- CNN features: style versus content
- UNet: for (image) translation problems
- UNet + Skip connection: preserves details
- UNet + Skip + global features: access to global/non-local information
- CG-specific functions: custom blocks embedded into networks (e.g., camera model, differentiable rendering)

Encoder Decoder

Encoder Decoder

encoder-decoder

$$\mathcal{L}_{\Theta} := \sum_{i} \|D(E(x_i) - y_i)\|^2$$

Encoder Decoder

encoder-decoder

$$\mathcal{L}_{\Theta} := \sum_{i} \|D(E(x_i) - y_i)\|^2$$

autoencoder

$$\mathcal{L}_{\Theta} := \sum \|D(E(x_i) - x_i)\|^2$$

[Wang et al. 2018, Siggraph Asia]

1. sketching

[Wang et al. 2018, Siggraph Asia]

1. sketching

2. sewing patterns

[Wang et al. 2018, Siggraph Asia]

1. sketching

2. sewing patterns

3. draped garment

[Wang et al. 2018, Siggraph Asia]

= interaction(sewing pattern, material, body shape)

Interaction through Simulation

Interaction through Simulation

realistic simulations but NOT interactive

Learning a Shared Latent Space (3-way AutoEncoder)

Learning a Shared Latent Space (3-way AutoEncoder)

Learning a Shared Latent Space (3-way AutoEncoder)

Sketch editing:

What We Learned?

- CNN features: style versus content
- UNet: for (image) translation problems
- UNet + Skip connection: preserves details
- UNet + Skip + global features: access to global/non-local information
- Autoencoder: category-specific non-linear basis

Conditional Decoder

Conditional Decoder

Network for Compression

[Rainer et al. 2019, Eurographics]

Network for Compression

[Rainer et al. 2019, Eurographics]

Network for Compression

[Rainer et al. 2019, Eurographics]

Learning Volumetric Deformation [Yumner et al. 2016, ECCV]

Learning Volumetric Deformation

[Yumner et al. 2016, ECCV]

Network for (BTF) Compression

Network for (BTF) Compression

Sequence Prediction (past matters)

Neural Nets

Neural Nets

$$\mathbf{y}_i \leftarrow f_{\Theta}(\mathbf{x}_i)$$

$$\mathbf{x}_i$$
 — NN — \mathbf{y}_i

Recurrent Neural Nets

Recurrent Neural Nets

$$\mathbf{y}_{i+1} \leftarrow f_{\Theta}(\mathbf{x}_i, \mathbf{y}_i)$$

Recurrent Neural Nets

$$\mathbf{y}_{i+1} \leftarrow f_{\Theta}(\mathbf{x}_i, \mathbf{y}_i)$$

Single Image Facial Relighting

[Sun et al. 2019, Siggraph]

Single Image Facial Relighting

[Sun et al. 2019, Siggraph]

What We Learned?

- CNN features: style versus content
- UNet: for (image) translation problems
- UNet + Skip connection: preserves details
- UNet + Skip + global features: access to global/non-local information
- Autoencoder: category-specific non-linear basis
- Conditional decoder: auxiliary input (e.g., user control, environmental variables)

$$\arg\min_{s} \sum_{i} \mathcal{L}(I_i, R(s, C_i))$$

$$\underset{i}{\operatorname{arg\,min}} \sum_{s} \mathcal{L}(I_i, R(s, C_i))$$

$$\arg\min_{s} \sum_{i} \mathcal{L}(I_i, R(D(z), C_i))$$

$$\sum_{i} \mathcal{L}(I_i, R(s, C_i))$$
 arg min $\sum_{i} \mathcal{L}(I_i, R(D(z), C_i))$

What We Learned?

- CNN features: style versus content
- UNet: for (image) translation problems
- UNet + Skip connection: preserves details
- UNet + Skip + global features: access to global/non-local information
- Conditional decoder: auxiliary input (e.g., user control, environmental variables)
- Autoencoder: category-specific non-linear basis
- Sequences: RNN, LSTM, GRU (not covered in this course)
- CG-specific functions: custom blocks embedded into networks (e.g., camera model, differentiable rendering)
- Learned regularizer: Optimize over learned network (e.g., decoder)

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/

