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Neural Network Basics
Supervised Learning in CG
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Computer Animation

» Feature detection (image features, point features)
« Denoising, Smoothing, etc.

« Embedding, Distance computation

* Rendering

 Animation
e Motion over time

* Physical simulation .
e Lots of data - expensive...

e Relationships between spatial
57 and temporal changes
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Character Animation

« Target character rigs
 Natural reactions and transitions

* Reinforcement Learning AT

l 54
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Physics-Based Animation

» Leverage physical models
« Examples:
* Rigid bodies
* Cloth
» Deformable objects
 Fluids

CreativeAl: Deep Learning for Graphics 5



Character Animation

CreativeAl: Deep Learning for Graphics




Existing Approaches

* Motion Representations
* Controllers
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Learned Motion Manifolds

Data Preprocessing Training

1. Motion Capture and Processing
I . I ,\
t h ‘\ ﬁ' 4. PFNN Training by
' . Backpropagation

[Learning Motion Manifolds with Convolutional Autoencoders, SGA 2015 Tech. Briefs]

2. Phase Extraction

3. Terrain Fitting

[Phase-functioned neural networks for character control, SIGGRAPH 2017]

CreativeAl: Deep Learning for Graphics 8



Learned Motion Manifolds

[Phase-functioned neural networks for character control, SIGGRAPH 2017]



Reinforcement Learning

» Goal: maximize reward by performing actions in an environment

Reward
Observations

Action

CreativeAl: Deep Learning for Graphics
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RL for Animation

* Learn Controllers that steer character rigs
* Smooth and natural transitions

 Reactions to changes in the environment

r [Terrain-Adaptive Locomotion Skills Using Deep Reinforcement Learning, SIGGRAPH 2016]
2,

[DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, SIGGRAPH 2018]



Reinforcement Learning

Overview
$+ E + @
Character Reference Motion Task: Hit Target

We present a framework that, given a
character, reference motion, and task...

[DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, SIGGRAPH 2018]
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Physics-Based Animation

CreativeAl: Deep Learning for Graphics
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Physics-Based Animation

Skip Theory with Deep Learning?

[No! More on that later...]
- N
s = "

N
s’ 4

Observations / data Model equations Discrete representation

J CreativeAl: Deep Learning for Graphics 14



Physics-Based Animation

 Better goal: suitable physical models

» Nature = Partial Differential Equations (PDEs)
* Hence can aim for solving PDEs with deep learning (DL)
* Requirement: “regularity” of the targeted function

“Bypass the solving of evolution equations when these equations conceptually exist
but are not available or known in closed form.” [Kevrekidis et al.]

Zf f«
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Physics-Based Deep Learning

Machi_ne Numerical
Learning  piothods Physics-based
Design
\ .
Physics Constraints

Physics-based

.. Combined
Optimization

Solvers

Physics
Applications
based on DL



Partial Differential Equations

» Typical problem formulation: unknown
function u(zi,...,7,)

* PDE of the general form:

ou ou 0%*u  O%u ) 0

. 8331 T 8£Cn; (92581 ’ 85171(92172 T
* Solve in domain €2, with boundary

conditions on boundary I'

 Traditionally: discretize & solve numerically.
Here: also discretize, but solve with DL...

CreativeAl: Deep Learning for Graphics
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Methodology 1

 Viewpoints: holistic or partial
[partial also meaning “coarse graining” or “sub-grid / up-res’]
* Influences complexity and non-linearity of solution space
 Trade off computation vs accuracy:
» Target most costly parts of solving

* Often at the expense of accuracy

&



Methodology 2

» Consider dimensionality & structure of discretization

* Fully connected NNs only choice
* Only if necessary...

« Employ convolutional NNs

 Usually well suited

&



Solving PDEs with DL

 Practical example: airfoil flow
* Given boundary conditions solve stationary flow problem on grid
 Fully replace traditional solver
» 2D data, no time dimension

* |.e., holistic approach with structured data

20



Solving PDEs with DL

* Data generation
 Large number of pairs: input (BCs) - targets (solutions

Inference region

Different free stream
Velocities

Airfoil profile Generated mesh

Full simulation domain

'
&7 CreativeAl: Deep Learning for Graphics
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Boundary
Conditions

Solving PDEs with DL

* Data generation

Freestream X

« Example pair

128 x 128 x 1

* Note - boundary conditions (i.e.
input fields) are typically
constant

Freestream Y

 Rasterized airfoil shape present
in all three input fields

Mask

Loy
z CreativeAl: Deep Learning f

Velocity X Pressure

Velocity Y

Target

128 x 128 x 1
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Solving PDEs with DL

 U-net NN architecture

Input
¥
128x128x 3 ﬁ
64 x 64 x 64 ﬁ
32x32x 128 ﬁ
Reduce spatial g

dimensions

z

Skip connections

32 x 32 x 256

16 x 16 x 256

64 x 64 x 128

CreativeAl: Deep Learning for Graphics

Increase spatial
dimensions

Output

128x128x 3

; 4 x 4 convo lution
---

* 2 x 2 convo lution

’ 2 x 2 resize-convolution
==

f 4 x 4 resize-convolution

Feature-wise concal tenation

23




Solving PDEs with DL

 U-net NN architecture

Input

I

). -

» Unet structure highly suitable for PDE solving
» Makes boundary condition information available throughout
* Crucial for inference of solution

CreativeAl: Deep Learning for Graphics

Output

s
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Solving PDEs with DL

 Training: 80.000 iterations with ADAM optimizer
» Convolutions with enough data - no dropout necessary
 Learning rate decay stabilizes models



Results

» Use knowledge about
physics to simplify
space of solutions:
make quantities
dimension- less

« Significant gains in
inference accuracy

&

(A) Regular data Target

(B) Dimension less

Pressure

Velocity X

Velocity Y
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Validation loss

Solving PDEs with DL

» Validation and test accuracy for different model sizes
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Code example

Solving PDEs with DL
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Existing Approaches

» Elasticity
* Cloth
* Fluids

&y



Neural Material - Elasticity

« Learn correction of regular FEM simulation for complex materials

« Numerical simulation with flexible NN for material behavior

Inital boundary “Surface frajectory |

Sparse surface

Forward boundary constraints
Simulation (captured trajectory)
F [NNWarp: Neural Network-based Nonlinear Deformation, TVCG 2018]
_}7 [Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data, arXiv 2018] 30



Neural Material - Elasticity

 Learn correction of regular FEM simulation for complex materials

NeoHookean Training
GT: NeoHookean, E = 2e4 Nominal: Co-rotational, E = 3.5e4

Ground Truth Initial Result
I

[Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data, arXiv 2018] 31



Latent Spaces

 Learn flexible reduced representation for physics problems

N

[Deep Fluids: A Generative Network for Parameterized Fluid Simulations, EG 2019]
ﬂ [Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, EG 2019]
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Latent Spaces

 Learn flexible reduced representation for physics problems
« Employ Encoder part (E) of Autoencoder network to reduce dimensions
» Predict future state in latent space with FC network

» Use Decoder (D) of Autoencoder to retrieve volume data

E E
t+1
t-2 t-1 t
FC D
{[» 7 [Deep Fluids: A Generative Network for Parameterized Fluid Simulations, EG 2019]
7 [Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, EG 2019]
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Latent Spaces

 Learn flexible reduced representation for physics problems

Latent Space Simulation: New Source Motion

Perspective View Front View

[Deep Fluids: A Generative Network for Parameterized Fluid Simulations, EG 2019]
[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, EG 2019]
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Latent Spaces - In combination with Reinforcement Learning

Cooperative ball game

Liquid jet 1 Liquid jet 2

'4 M

[Fluid Directed Rigid Body Control using Deep Reinforcement Learning, SIGGRAPH 2018]



Latent Spaces

* For elasticity problems

Ly

[Latent-space Dynamics for Reduced Deformable Simulation, EG 2019]



Latent Spaces

 For elasticity problems
Full-space Comparison

PCA Only Autoencoder (ours)
F With Cubature

[Latent-space Dynamics for Reduced Deformable Simulation, EG 2019]

S
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Latent Spaces

 For cloth (adaptation to different body shapes)

AN
A\

J [Learning-Based Animation of Clothing for Virtual Try-On, EG 2019]
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Temporal Data

* Generative model for 3D plus time

* Input domain: low resolution 3D volumes

* Qutput: high-resolution 3D volumes

 Auxiliary goal: match temporal evolution of target domain (high-res. data)

I

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018] 39



Temporal Data

Xa

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018] 40



Temporal Data

Xa

J [tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Temporal Data

Xa
Xt-1
Xt
Xt+1
Temporal
supervision

N

J [tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Temporal Data

Discretized advection operator
included in loss for G

N

g [tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Temporal Data

N

V-1 Yt Y+l

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Low-res
Input

Result

AN for Super-resolution Fluid Flow , SIGGRAPH 2018]



Temporal Data

J [tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Summary

* Checklist for solving PDEs with DL:
v Model? (Typically given)
v Data? Can enough training data be generated?
v Which NN Architecture?
v Fine tuning: learning rate, number of layers & features?

v Hyper-parameters, activation functions etc.?

N

ﬂ SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
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Summary

« Approach PDE solving with DL like solving with traditional numerical
methods:

- Find closest example in literature
- Reproduce & test
- Then vary, adjust, refine ...

* Main change: Data pipeline

&,
z, SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
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N

SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
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Deep Learning - Outlook

* DL provides a powerful computational tool
* Open challenges:

- Theoretical guarantees

- Ethical questions

- “Next level” of representation learning

= thrive
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The End - Thank you!

[i] Scan me

Course Information (slides/code/comments)
http://geometry.cs.ucl.ac.uk/creativeai/
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