## Neural Network Training: Old & New Tricks

Old: (80's)

Stochastic Gradient Descent, Momentum, "weight decay"

New: (last 5-6 years)

Dropout

ReLUs

**Batch Normalization** 



# Reminder: Overfitting, in images

Classification



Regression



## Dropout



#### Each sample is processed by a 'decimated' neural net



## Dropout

Eurographics2019

May 6-10 Genova, Italy



#### Each sample is processed by a 'decimated' neural net

**Decimated nets: distinct classifiers** 

But: they should all do the same job

### **Dropout Performance**



Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.



## Neural Network Training: Old & New Tricks

Old: (80's)

Stochastic Gradient Descent, Momentum, "weight decay"

New: (last 5-6 years) Dropout ReLUs Batch Normalization



#### 'Neuron': Cascade of Linear and Nonlinear Function





7









### Vanishing Gradients Problem

**Gradient signal from above** 

$$\frac{\partial l}{\partial a_k} = \sum_m \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \frac{\partial l}{\partial z_k} g'(a_k) = \frac{\partial l}{\partial z_k} g(a_k)(1 - g(a_k))$$

 $\mathbf{O}$ 





### Vanishing Gradients Problem

Gradient signal from above  $\frac{\partial l}{\partial a_k} = \sum_m \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \begin{bmatrix} \frac{\partial l}{\partial z_k} \\ \frac{\partial l}{\partial z_k} \end{bmatrix} = \frac{\partial l}{\partial z_k} g(a_k)(1 - g(a_k))$ 

Do this 10 times: updates in the first layers get minimal Top layer knows what to do, lower layers "don't get it"

Sigmoidal Unit: Signal is not getting through!





## Vanishing Gradients Problem: ReLU Solves It

 $\mathbf{O}$ 

**Scaling: {0,1}** 

**Gradient signal from above** 

$$\frac{\partial l}{\partial a_k} = \sum_m \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \boxed{\frac{\partial l}{\partial z_k}} g'(a_k)$$

$$g(a) = \max(0, a)$$

$$g'(a) = \begin{cases} 1 & a > 0 \\ 0 & a < 0 \end{cases}$$

$$g'(a) = \begin{cases} 1 & a > 0 \\ 0 & a < 0 \end{cases}$$

### Activation Functions: ReLU & Co



Great! But... no gradient for negative half-space



### Activation Functions: ReLU & Co



Great! But... no gradient for negative half-space Lots of follow up work: LeakyReLU, eLU, etc. Can improve results, but typically fine-tuning only



# Neural Network Training: Old & New Tricks

Old: (80's)

Stochastic Gradient Descent, Momentum, "weight decay"

New: (last 5-6 years) Dropout ReLUs Batch Normalization



### External Covariate Shift: your input changes

10 am

2pm

7pm





Photometric transformation:  $I \rightarrow a I + b$ 



Original Patch and Intensity Values





Brightness Decreased



Contrast increased,

May 6-10 Genova, Italy

Eurographics2019



• Make each patch have zero mean: Photometric transformation:  $I \rightarrow a I + b$ 



Original Patch and Intensity Values





Brightness Decreased



Contrast increased,

May 6-10 Genova, Italy

Eurographics2019



• Make each patch have zero mean: Photometric transformation:  $I \rightarrow a I + b$ 



Original Patch and Intensity Values





Brightness Decreased



Contrast increased,

May 6-10 Genova, Italy

Eurographics2019





• Make each patch have zero mean: Photometric transformation:  $I \rightarrow a I + b$ 



• The

Euroaraphics2019

May 6-10 Genova, Italy





Brightness Decreased





$$\mu = \frac{1}{N} \sum_{x,y} I(x,y)$$
$$Z(x,y) = I(x,y) - \mu$$

• Make each patch have zero mean: Photometric transformation:  $I \rightarrow a I + b$ 





Original Patch and Intensity Values Ince:

IIIC

Eurographics2019





Brightness Decreased



Contrast increased,

May 6-10 Genova, Italy



$$\mu = \frac{1}{N} \sum_{x,y} I(x, y)$$
$$Z(x, y) = I(x, y) - \mu$$

$$\sigma^2 = \frac{1}{N} \sum_{x,y} Z(x,y)^2$$
$$ZN(x,y) = \frac{Z(x,y)}{\sigma}$$

## **Batch Normalization**

#### Whiten-as-you-go:

- Normalize the activations in each layer within a minibatch.
- Learn the mean and variance (γ, β) of each layer as parameters





Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift S loffe and C Szegedy (2015)



### Batch Normalization: Used in all current systems

- Multi-layer CNN's train faster with fewer data samples (15x).
- Employ faster learning rates and less network regularizations.
- Achieves state of the art results on ImageNet.



number of mini-batches



# **Convolutional Neural Networks**



#### **Fully-connected Layer**





#### **Locally-connected Layer**



Note: This parameterization is good when input image is registered (e.g., face recognition).



#### **Locally-connected Layer**



**Note:** This parameterization is good when input image is registered (e.g., face recognition).



Share the same parameters across different **locations (assuming input is stationary): Convolutions with learned kernels** 
















































### Fully-connected layer



### **#of parameters: K**<sup>2</sup>

| $\begin{bmatrix} y_1 \end{bmatrix}$ | I [ | $-w_{1,1}$ | $w_{1,2}$ | $w_{1,3}$ | $w_{1,4}$ | • • • | $w_{1,K}$ | $\begin{bmatrix} x_1 \end{bmatrix}$ |
|-------------------------------------|-----|------------|-----------|-----------|-----------|-------|-----------|-------------------------------------|
| $y_2$                               |     | $w_{2,1}$  | $w_{2,2}$ | $w_{2,3}$ | $w_{2,4}$ | •••   | $w_{2,K}$ | $x_2$                               |
| $y_3$                               |     | $w_{3,1}$  | $w_{3,2}$ | $w_{3,3}$ | $w_{3,4}$ | •••   | $w_{3,K}$ | $x_3$                               |
| $y_4$                               | =   | $w_{4,1}$  | $w_{4,2}$ | $w_{4,3}$ | $w_{4,4}$ | • • • | $w_{4,K}$ | $x_4$                               |
| •                                   |     |            |           | •<br>•    |           |       |           | :                                   |
| $y_K$                               |     | $w_{K,1}$  | $w_{K,2}$ | $w_{K,3}$ | $w_{K,4}$ | • • • | $w_{K,K}$ | $x_K$                               |





### **#**of parameters: size of window

| Γ | $y_1$ |   | $w_0$ | $w_1$ | $w_2$ | 0     | • • • | 0     | $\begin{bmatrix} x_1 \end{bmatrix}$ |  |
|---|-------|---|-------|-------|-------|-------|-------|-------|-------------------------------------|--|
|   | $y_2$ |   | 0     | $w_0$ | $w_1$ | $w_2$ | • • • | 0     | $x_2$                               |  |
|   | $y_3$ |   | 0     | 0     | $w_0$ | $w_1$ | • • • | 0     | $x_3$                               |  |
|   | $y_4$ | = | 0     | 0     | 0     | $w_0$ | • • • | 0     | $x_4$                               |  |
|   | •     |   |       |       | •     |       |       |       |                                     |  |
|   | $y_K$ |   | 0     | 0     | 0     | 0     | •••   | $w_0$ | $\begin{bmatrix} x_K \end{bmatrix}$ |  |







# Learning an edge filter



$$h_i^n = \max\left\{0, \sum_{j=1}^{\text{\#input channels}} h_j^{n-1} * w_{ij}^n\right\} \begin{array}{l} \text{Still holds,} \\ \text{same structure} \end{array}$$







No real inverse - but convolutions can easily go the other way





No real inverse - but convolutions can easily go the other way "De-convolution" or "Transposed convolution"





No real inverse - but convolutions can easily go the other way "De-convolution" or "Transposed convolution" Also a convolution with transposed weight tensor



### Pooling layer

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?



### Pooling layer

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Eurographics20 The 40° Annual Conference of the European May 6-

### Pooling layer: receptive field size



If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:





### Pooling layer: receptive field size



If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:





# **Receptive field**

- 1 -

K

A second descent and

-0-

2 & second second

ľć.

k

H




## **Receptive field: layer 8**

## **Modern Architectures**



#### CNNs, late 1980's: LeNet



May 6-10 Genova, Italy

#### https://www.youtube.com/watch?v=FwFduRA\_L6Q



Gradient-based learning applied to document recognition, Eurographics2019 J. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

60

#### CNNs, late 1980's: LeNet



May 6-10 Genova, Italy

#### https://www.youtube.com/watch?v=FwFduRA\_L6Q



Gradient-based learning applied to document recognition, Eurographics2019 J. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

60

#### CNNs, late 1980's: LeNet



May 6-10 Genova, Italy

#### https://www.youtube.com/watch?v=FwFduRA\_L6Q



Gradient-based learning applied to document recognition, Eurographics2019 J. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

60

#### What happened in between?







### What happened in between?





deep learning = neural networks (+ big data + GPUs)



### What happened in between?





deep learning = neural networks (+ big data + GPUs) + a few more recent tricks!



# CNNs, 2012



#### AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6): 84-90 (2017)



# CNNs, 2014: VGG



#### VGG

Karen Simonyan, Andrew Zisserman (=Visual Geometry Group) Very Deep Convolutional Networks for Large-Scale Image Recognition, arxiv, 2014.



## CNNs, 2015: ResNet



#### ResNet

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, CVPR 2016.



### Going Deeper - The Deeper, the Better

- Deeper networks can cover more complex problems
  - Increasingly large receptive field size & rich patterns



ImageNet Classification top-5 error (%)



# **Going Deeper**

- From 20 to 100/1000
  - Residual networks



ImageNet Classification top-5 error (%)



### **Residual Network**

Naïve solution

• If extra layers are an identity mapping, the





#### Residual Modelling: Basic idea in image processing

• Goal: estimate update between an original image and a changed image



### **Residual Network**

- Plain block
  - Difficult to make identity mapping because of multiple non-linear layers





### **Residual Network**

- Residual block
  - If identity were optimal, easy to set weights as 0
  - If optimal mapping is closer to identity, easier to find small fluctuations

х

F(x)

 $H(x) = F(x) + x \bigoplus_{r \in \mathcal{F}} \mathbf{f}_{r \in \mathcal{F}}$ 

relu

Appropriate for treating perturbation as keeping a base information  $\int x$ 



identity

#### **Residual Network: Deeper is better**

• Deeper ResNets have lower training error





#### **Residual Network: Deeper is better**





# CNNs, 2017: DenseNet

Densely Connected Convolutional Networks, CVPR 2017 Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger



**Recently proposed, better performance/parameter ratio** 





#### Image-to-Image



# **Graphics:** Multiresolution









# Image-to-image

- So far we mapped an image image to a number or label
- In graphics, output often is "richer":
  - An image
  - A volume
  - A 3D mesh
  - ...
- Note: "*image*" just placeholder name here for any Eulerian data

#### Architectures

- Fully convolutional
- Encoder-Decoder
- Skip connections



FCNN



















FCNN









#### Flexible - works with varying input sizes



### **Fully Convolutional Neural Networks in Practice**



32-fold decimation 224x224 to 7x7



Flexible - works with varying input sizes Typically reduces input by fixed factor



#### **Encoder-Decoder**





# Interpretation

- Encoder: turns data set (e.g. image) into vector
- This vector is a very compact and abstract "code"
- Lives in the "latent space" of the neural network
- Decoder: turns code back into image



# **Encoder-decoder + Skip connections**

input

image 🖪

- 1<sup>st</sup>: Reduce resolutions as before
- 2<sup>nd</sup>: Increase resolution
- Transposed convolutions
- Preserves information
- But cannot be split into en- and decoder anymore





U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015

# Thank you!

http://geometry.cs.ucl.ac.uk/creativeai/





SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

## **Recurrent Neural Networks**



# **Recurrent Neural Networks**

- Time dependent problems: repeated evaluations with internal "state"
- State xt at time t, depends on previous times
- Recurrent Neural Networks (RNNs)
- Specialized back-prop possible: Back-propagation through time (BPTT)
- Unrolled:





# **Common Building Block: LSTM Units**

- Long short term memory (LSTM) networks
- Three internal states: input, output, forget




- Long short term memory (LSTM) networks
- Three internal states: input, output, forget





- Long short term memory (LSTM) networks
- Three internal states: input, output, forget





- Long short term memory (LSTM) networks
- Three internal states: input, output, forget





- Long short term memory (LSTM) networks
- Three internal states: input, output, forget

May 6-10 Genova, Italy



- Long short term memory (LSTM) networks
- Three internal states: input, output, forget

May 6-10 Genova, Italy



- Long short term memory (LSTM) networks
- Three internal states: input, output, forget



- Long short term memory (LSTM) networks
- In equation form:

$$\begin{split} i_t &= \sigma \left( W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right) \\ f_t &= \sigma \left( W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right) \\ c_t &= f_t c_{t-1} + i_t \tanh \left( W_{xc} x_t + W_{hc} h_{t-1} + b_c \right) \\ o_t &= \sigma \left( W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right) \\ h_t &= o_t \tanh(c_t) \end{split}$$



## **Recurrent Neural Networks**

- LSTM networks powerful tool for sequences over time
- Alternatives:
  - Gated Recurrent Units (GRUs)
  - Time convolutional networks (TCNs)

[Chung et al., "Empirical evaluation of gated recurrent neural networks on sequence modeling",2014] [Bai et al., "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling", 2018]



#### **Deep Learning Frameworks**



#### Main frameworks





(Python, C++, Java) (Python, backends support other languages)



(Python)



#### Currently less frequently used





## Popularity

Google Trends for search terms: "[name] github"



PYTORCH

Caffe

#### Google Trends for search terms: "[name] tutorial"



# **Typical Training Steps**

for i = 1 .. max\_iterations

input, ground\_truth = load\_minibatch(data, i)

output = network\_evaluate(input, parameters)

loss = compute\_loss(output, ground\_truth)

# gradients of loss with respect to parameters
gradients = network\_backpropagate(loss, parameters)

parameters = optimizer\_step(parameters, gradients)



#### Tensors

- Frameworks typically represent data as tensors
- Examples:



4D convolution kernel: OC x IC x KH x KW



output channels



# What Does a Deep Learning Framework Do?

- Tensor math
- Common network operations/layers
- Gradients of common operations
- Backpropagation
- Optimizers
- GPU implementations of the above
- usually: data loading, network parameter saving/loading
- sometimes: distributed computing



#### Automatic Differentiation & the Computation Graph



loss

loss

are the same size as the parameters



#### Automatic Differentiation & the Computation Graph





## Static vs Dynamic Computation Graphs

- Static analysis allows optimizations and distributing workload
- Dynamic graphs make data-driven control flow easier
- In static graphs, the graph is usually defined in a separate 'language'
- Static graphs have less support for debugging



```
x = Variable()
loss = if_node(x < parameter[0],
    x + parameter[0],
    x - parameter[1])
for i = 1 .. max_iterations
    x = data()
    run(loss)
    backpropagate(loss, parameters)
```

define implicitly by running operations, a new graph is created in each evaluation **Dynamic** 

```
for i = 1 .. max_iterations
  x = data()
  if x < parameter[0]
    loss = x + parameter[0]
  else
    loss = x - parameter[1]
  backpropagate(loss, parameters)</pre>
```



## Tensorflow



- Currently the largest community
- Static graphs (dynamic graphs are in development: Eager Execution)
- Good support for deployment
- Good support for distributed computing
- Typically slower than the other three main frameworks on a single GPU



# PyTorch

# PYTÖRCH

- Fast growing community
- Dynamic graphs
- Distributed computing is in development (some support is already available)
- Intuitive code, easy to debug and good for experimenting with less traditional architectures due to dynamic graphs
- Very Fast







- A high-level interface for various backends (Tensorflow, CNTK, Theano)
- Intuitive high-level code
- Focus on optimizing time from idea to code
- Static graphs



## Caffe



- Created earlier than Tensorflow, PyTorch or Keras
- Less flexible and less general than the other three frameworks
- Static graphs
- Legacy to be replaced by Caffe2: focus is on performance and deployment
  - Facebook's platform for Detectron (Mask-RCNN, DensePose, ...)



## **Converting Between Frameworks**

- Example: develop in one framework, deploy in another
- Currently: a large range of converters, but no clear standard
- Standardized model formats are in development / github.com/ysh329/deep-learning-model-convertor

| convertor  | tensorflow                                                                                           | pytorch                                                                                                 | keras                                                                                                                   | caffe                                               | caffe2               | CNTK                                                 | chainer | mxnet                                                                                          |
|------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|------------------------------------------------------|---------|------------------------------------------------------------------------------------------------|
| tensorflow | -                                                                                                    | <u>pytorch-tf</u> /<br><u>MMdnn</u>                                                                     | <u>model-converters</u> /<br><u>nn_toolsconvert-to-</u><br><u>tensorflow</u> / <u>MMdnn</u>                             | <u>MMdnn</u> /<br>nn_tools                          | None                 | <u>crosstalk</u> / <u>MMdnn</u>                      | None    | <u>MMdnn</u>                                                                                   |
| pytorch    | <u>pytorch2keras</u> (over<br>Keras)                                                                 | -                                                                                                       | Pytorch2keras/<br>nn-transfer                                                                                           | Pytorch2caffe/<br>pytorch-caffe-<br>darknet-convert | onnx-caffe2          | ONNX                                                 | None    | None                                                                                           |
| keras      | nn_tools /convert-to-<br>tensorflow/<br>keras to tensorflow/<br>keras_to_tensorflow/<br><u>MMdnn</u> | <u>MMdnn</u> /<br>nn-transfer                                                                           | -                                                                                                                       | <u>MMdnnnn_tools</u>                                | None                 | <u>MMdnn</u>                                         | None    | <u>MMdnn</u>                                                                                   |
| caffe      | <u>MMdnn/nn_tools</u> /<br><u>caffe-tensorflow</u>                                                   | <u>MMdnn</u> /<br><u>pytorch-caffe-</u><br><u>darknet-</u><br><u>convert</u> /<br><u>pytorch-resnet</u> | caffe_weight_converter<br>/ caffe2keras/nn_tools/<br>kerascaffe2keras/<br>Deep_Learning_Model<br><u>Converter/MMdnn</u> | -                                                   | <u>CaffeToCaffe2</u> | <u>crosstalkcaffe/</u><br><u>CaffeConverterMMdnn</u> | None    | <u>mxnet/tools/</u><br><u>caffe_converter</u> /<br><u>ResNet_caffe2mxnet</u> /<br><u>MMdnn</u> |
| caffe2     | None                                                                                                 | ONNX                                                                                                    | None                                                                                                                    | None                                                | -                    | ONNX                                                 | None    | None                                                                                           |
| CNTK       | MMdnn                                                                                                | ONNX MMdnn                                                                                              | MMdnn                                                                                                                   | MMdnn                                               | ONNX                 | -                                                    | None    | MMdnn                                                                                          |
| chainer    | None                                                                                                 | <u>chainer2pytorc</u><br><u>h</u>                                                                       | None                                                                                                                    | None                                                | None                 | None                                                 | -       | None                                                                                           |
| mxnet      | MMdnn                                                                                                | MMdnn                                                                                                   | MMdnn                                                                                                                   | MMdnn/MXNet2Caffe/<br>Mxnet2Caffe                   | None                 | MMdnn                                                | None    | -                                                                                              |

ONNX

- Standard format for models
- Native support in development for Pytorch, Caffe2, Chainer, CNTK, and MxNet
- Converter in development for Tensorflow

 Converters available for several frameworks

MMdnn



• Common intermediate representation, but no clear standard



## Thank you!



#### http://geometry.cs.ucl.ac.uk/creativeai/



SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics