
Stochastic Gradient Descent, Momentum, “weight decay”

Dropout
ReLUs
Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

Reminder: Overfitting, in images

 2

Classification

Regression

just right

 3

Each sample is processed by a ‘decimated’ neural net

Dropout

 3

Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers
But: they should all do the same job

Dropout

 4

Dropout Performance

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout
ReLUs
Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

 5

 6

Sigmoidal (“logistic”) Rectified Linear Unit (RELU)

‘Neuron’: Cascade of Linear and Nonlinear Function

 7

Outputs

Reminder: a network in backward mode

 7

Outputs
Gradient signal from above

Reminder: a network in backward mode

 7

Outputs
Gradient signal from above

Reminder: a network in backward mode

 7

Outputs
Gradient signal from above

Reminder: a network in backward mode

 7

Outputs
Gradient signal from above scaling: <1 (actually <0.25)

Reminder: a network in backward mode

 8

Gradient signal from above
scaling: <1 (actually <0.25)

Vanishing Gradients Problem

 8

Gradient signal from above
scaling: <1 (actually <0.25)

Do this 10 times: updates in the first layers get minimal

Top layer knows what to do, lower layers “don’t get it”

Sigmoidal Unit: Signal is not getting through!

Vanishing Gradients Problem

 9

Scaling: {0,1}

Vanishing Gradients Problem: ReLU Solves It
Gradient signal from above

 10

Activation Functions: ReLU & Co

Great! But… no gradient for negative half-space

 10

Activation Functions: ReLU & Co

Great! But… no gradient for negative half-space

Lots of follow up work: LeakyReLU, eLU, etc.

Can improve results, but typically fine-tuning only

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout
ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

 11

 12

10 am 2pm 7pm

External Covariate Shift: your input changes

 13

Photometric transformation: I → a I + b

“Whitening”: Set Mean = 0, Variance = 1

• Make each patch have zero mean:

 13

Photometric transformation: I → a I + b

“Whitening”: Set Mean = 0, Variance = 1

• Make each patch have zero mean:

 13

Photometric transformation: I → a I + b

“Whitening”: Set Mean = 0, Variance = 1

• Make each patch have zero mean:

• Then make it have unit variance:

 13

Photometric transformation: I → a I + b

“Whitening”: Set Mean = 0, Variance = 1

• Make each patch have zero mean:

• Then make it have unit variance:

 13

Photometric transformation: I → a I + b

“Whitening”: Set Mean = 0, Variance = 1

 14

Whiten-as-you-go:

Batch Normalization

 15

Batch Normalization: Used in all current systems

Convolutional Neural Networks

 16

 17

Example: 200x200 image
 40K hidden units

 ~1.6B parameters!!!

- Spatial correlation is local
- Waste of resources
- We don’t have enough training samples anyway…

Fully-connected Layer

 18

Example: 200x200 image
 40K hidden units
 Filter size: 10x10

 4M parameters

Locally-connected Layer

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

 19

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

Example: 200x200 image
 40K hidden units
 Filter size: 10x10

 4M parameters

Locally-connected Layer

 20

Share the same parameters across different
locations (assuming input is stationary):
Convolutions with learned kernels

Convolutional Layer

 21

Convolutional Layer

 22

Convolutional Layer

 23

Convolutional Layer

 24

Convolutional Layer

 25

Convolutional Layer

 26

Convolutional Layer

 27

Convolutional Layer

 28

Convolutional Layer

 29

Convolutional Layer

 30

Convolutional Layer

 31

Convolutional Layer

 32

Convolutional Layer

 33

Convolutional Layer

 34

Convolutional Layer

 35

Convolutional Layer

 36

Convolutional Layer

 37

Fully-connected layer

#of parameters: K2

 38

#of parameters: size of window

Convolutional layer

 39

*
-1 0 1
-1 0 1
-1 0 1

=

Convolutional layer

Learning an edge filter

 40

 41

Learn multiple filters.

E.g.: 200x200 image
 100 Filters
 Filter size: 10x10

 10K parameters

Convolutional layer

 42

Conv.
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

output
feature map

input feature
map

kernel

Convolutional layer with ReLU activation

 42

Conv.
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

output
feature map

input feature
map

kernel

Convolutional layer with ReLU activation

ReLU
Activation

 43

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

output
feature map

input feature
map

kernel

Convolutional layer with ReLU activation

 44

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

output
feature map

input feature
map

kernel

Convolutional layer with ReLU activation

 45

De-convolutional layer with ReLU activation

De-conv.
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

Still holds,
same structure

 45

De-convolutional layer with ReLU activation

No real inverse - but convolutions can easily go the other way

De-conv.
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

Still holds,
same structure

 45

De-convolutional layer with ReLU activation

No real inverse - but convolutions can easily go the other way

De-conv.
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

“De-convolution” or “Transposed convolution”

Still holds,
same structure

 45

De-convolutional layer with ReLU activation

No real inverse - but convolutions can easily go the other way

De-conv.
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

“De-convolution” or “Transposed convolution”

Also a convolution with transposed weight tensor

Still holds,
same structure

 46

Pooling layer

 47

Pooling layer

 48

Pooling layer: receptive field size

 49

Pooling layer: receptive field size

Receptive field

 50

Receptive field: layer 1

 51

Receptive field: layer 2

 52

Receptive field: layer 3

 53

Receptive field: layer 4

 54

Receptive field: layer 5

 55

Receptive field: layer 6

 56

Receptive field: layer 7

 57

Receptive field: layer 8

 58

Modern Architectures

 59

 60

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Gradient-based learning applied to document recognition,
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

https://www.youtube.com/watch?v=FwFduRA_L6Q

CNNs, late 1980’s: LeNet

 60

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Gradient-based learning applied to document recognition,
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

https://www.youtube.com/watch?v=FwFduRA_L6Q

CNNs, late 1980’s: LeNet

 60

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Gradient-based learning applied to document recognition,
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

https://www.youtube.com/watch?v=FwFduRA_L6Q

CNNs, late 1980’s: LeNet

 61

What happened in between?

 61

deep learning = neural networks (+ big data + GPUs)

What happened in between?

 61

deep learning = neural networks (+ big data + GPUs) + a few more recent tricks!

What happened in between?

AlexNet  
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: 
ImageNet classification with deep convolutional neural
networks. Commun. ACM 60(6): 84-90 (2017)

CNNs, 2012

 62

VGG
Karen Simonyan, Andrew Zisserman (=Visual Geometry Group)
Very Deep Convolutional Networks for Large-Scale Image Recognition, arxiv, 2014.

CNNs, 2014: VGG

 63

ResNet
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
Deep Residual Learning for Image Recognition, CVPR 2016.  

CNNs, 2015: ResNet

 64

• Deeper networks can cover more complex problems
• Increasingly large receptive field size & rich patterns

 65

Going Deeper - The Deeper, the Better

• From 20 to 100/1000
• Residual networks

 66

Going Deeper

Naïve solution
• If extra layers are an identity mapping, then training errors can not increase

 67

Residual Network

• Goal: estimate update between an original image and a changed image

 68

Some
Network

residual

Preserving base information

can treat
perturbation

Residual Modelling: Basic idea in image processing

• Plain block
• Difficult to make identity mapping because of multiple non-linear layers

 69

Residual Network

• Residual block
• If identity were optimal, easy to set weights as 0
• If optimal mapping is closer to identity, easier to find small fluctuations

Appropriate for treating perturbation as keeping a base information

 70

Residual Network

• Deeper ResNets have lower training error

 71

Residual Network: Deeper is better

 72

Residual Network: Deeper is better

CNNs, 2017: DenseNet

 73

Densely Connected Convolutional Networks, CVPR 2017
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

Recently proposed, better performance/parameter ratio

Image-to-Image

 74

Graphics: Multiresolution

 75

• So far we mapped an image image to a number or label

• In graphics, output often is “richer”:
• An image
• A volume
• A 3D mesh
• …

• Note: “image” just placeholder name here for any Eulerian data
• Architectures

• Fully convolutional
• Encoder-Decoder
• Skip connections

Image-to-image

 76

FCNN

Fully-convolutional Neural Networks

 77

FCNN

Fully-convolutional Neural Networks

 78

FCNN

Fully-convolutional Neural Networks

 79

FCNN

Fully-convolutional Neural Networks

 80

FCNN

Fully-convolutional Neural Networks

 81

Flexible - works with varying input sizes

FCNN

Flexible - works with varying input sizes
Typically reduces input by fixed factor

32-fold decimation
224x224 to 7x7

Fully Convolutional Neural Networks in Practice

 82

Encoder-Decoder

 83

S
pa

ce
S

pace

Features

• Encoder: turns data set (e.g. image) into vector

• This vector is a very compact and abstract “code”

• Lives in the “latent space” of the neural network

• Decoder: turns code back into image

Interpretation

 84

• 1st: Reduce resolutions as before
• 2nd: Increase resolution
• Transposed convolutions
• Preserves information
• But cannot be split into en- and decoder anymore

Encoder-decoder + Skip connections

 85

U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

http://geometry.cs.ucl.ac.uk/creativeai/

Thank you!

 86

Recurrent Neural Networks

 87

• Time dependent problems: repeated evaluations with internal “state”
• State xt at time t, depends on previous times
• Recurrent Neural Networks (RNNs)
• Specialized back-prop possible: Back-propagation through time (BPTT)
• Unrolled:

Recurrent Neural Networks

 88

• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

standard

• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

standard standard

• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

standard standard

history, stored data

• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

standard standard

history, stored data

weight new vs. stored data

• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

standard standard

history, stored data

weight new vs. stored data

forget stored data

• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

standard standard

history, stored data

weight new vs. stored data

forget stored data

control amount of data output

• Long short term memory (LSTM) networks
• In equation form:

Common Building Block: LSTM Units

 90[Sutskever et al., “Sequence to Sequence Learning with Neural Networks”, 2014]

• LSTM networks powerful tool for sequences over time
• Alternatives:

- Gated Recurrent Units (GRUs)
- Time convolutional networks (TCNs)
- …

Recurrent Neural Networks

 91

[Bai et al., "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling”, 2018]
[Chung et al., "Empirical evaluation of gated recurrent neural networks on sequence modeling”,2014]

Deep Learning Frameworks

 92

…

(Python)

(Python, C++, Java)

(C++, Python, Matlab)

(Python, backends support other languages)

Main frameworks

Currently less frequently used

(Python,
C++, C#)

(Python, C++,
and others)

(Matlab) (Python, Java,
Scala)

(Python) (Python, C++)(Python)

Popularity

Google Trends for search terms: “[name] tutorial”

Google Trends for search terms: “[name] github”

Typical Training Steps

for i = 1 .. max_iterations

 input, ground_truth = load_minibatch(data, i)

 output = network_evaluate(input, parameters)
 
 loss = compute_loss(output, ground_truth)

 # gradients of loss with respect to parameters
 gradients = network_backpropagate(loss, parameters)
 
 parameters = optimizer_step(parameters, gradients)

Tensors
• Frameworks typically represent data as tensors
• Examples:

feature channels
C

spatial width
W

spatial height H

batches B

4D convolution kernel: OC x IC x KH x KW4D input data: B x C x H x W

input channels IC

kernel height KH
kernel width KW

output channels
OC

What Does a Deep Learning Framework Do?
• Tensor math
• Common network operations/layers
• Gradients of common operations
• Backpropagation
• Optimizers
• GPU implementations of the above
• usually: data loading, network parameter saving/loading
• sometimes: distributed computing

Automatic Differentiation & the Computation Graph

parameters = (weight, bias)

output = σ(weight * input + bias)
 
loss = (output - ground_truth)^2

gradients of loss with respect to
parameters
gradients = backpropagate(loss,
parameters)

weight

input

bias +

*

ground_truth

-

^
2

loss

output
σ

𝑜1

𝑜2

𝑜3

+

*
𝜕 loss

𝜕 weight

-

^

loss

σ

𝜕 loss
𝜕 bias

𝜕 loss
𝜕 𝑜1

𝜕 loss
𝜕 𝑜2

𝜕 loss
𝜕 output

𝜕 loss
𝜕 𝑜3

forward pass backward pass

Since loss is a scalar, the gradients
are the same size as the parameters

Automatic Differentiation & the Computation Graph

𝑓
inputs

outputs

𝑓

outputs = forward(inputs,)

𝜕 loss
𝜕 parameters

𝜕 loss
𝜕 inputs

𝜕 loss
𝜕 outputs

parameters

 , = backward()

Static vs Dynamic Computation Graphs
• Static analysis allows optimizations and distributing workload
• Dynamic graphs make data-driven control flow easier

• In static graphs, the graph is usually defined in a separate ‘language’

• Static graphs have less support for debugging

Static Dynamic
define once,

evaluate during training
define implicitly by running operations,

a new graph is created in each evaluation

x = Variable()
loss = if_node(x < parameter[0],
 x + parameter[0],
 x - parameter[1])

for i = 1 .. max_iterations
x = data()
run(loss)
backpropagate(loss, parameters)

for i = 1 .. max_iterations
x = data()
if x < parameter[0]

loss = x + parameter[0]
else

loss = x – parameter[1]
backpropagate(loss, parameters)

Tensorflow
• Currently the largest community
• Static graphs (dynamic graphs are in development: Eager Execution)
• Good support for deployment
• Good support for distributed computing
• Typically slower than the other three main frameworks on a single

GPU

PyTorch
• Fast growing community
• Dynamic graphs
• Distributed computing is in development (some support is already

available)
• Intuitive code, easy to debug and good for experimenting with less

traditional architectures due to dynamic graphs
• Very Fast

Keras
• A high-level interface for various backends (Tensorflow, CNTK,

Theano)
• Intuitive high-level code
• Focus on optimizing time from idea to code
• Static graphs

Caffe
• Created earlier than Tensorflow, PyTorch or Keras
• Less flexible and less general than the other three frameworks
• Static graphs
• Legacy - to be replaced by Caffe2: focus is on performance and

deployment
• Facebook’s platform for Detectron (Mask-RCNN, DensePose, …)

Converting Between Frameworks
• Example: develop in one framework, deploy in another
• Currently: a large range of converters, but no clear standard
• Standardized model formats are in development

convertor tensorflow pytorch keras caffe caffe2 CNTK chainer mxnet

tensorflow - pytorch-tf/
MMdnn

model-converters/
nn_toolsconvert-to-
tensorflow/MMdnn

MMdnn/
nn_tools None crosstalk/MMdnn None MMdnn

pytorch pytorch2keras (over
Keras) - Pytorch2keras/

nn-transfer

Pytorch2caffe/
pytorch-caffe-

darknet-convert
onnx-caffe2 ONNX None None

keras

nn_tools /convert-to-
tensorflow/

keras_to_tensorflow/
keras_to_tensorflow/

MMdnn

MMdnn/
nn-transfer - MMdnnnn_tools None MMdnn None MMdnn

caffe MMdnn/nn_tools/
caffe-tensorflow

MMdnn/
pytorch-caffe-

darknet-
convert/

pytorch-resnet

caffe_weight_converter
/ caffe2keras/nn_tools/

kerascaffe2keras/
Deep_Learning_Model_

Converter/MMdnn

- CaffeToCaffe2 crosstalkcaffe/
CaffeConverterMMdnn None

mxnet/tools/
caffe_converter/

ResNet_caffe2mxnet/
MMdnn

caffe2 None ONNX None None - ONNX None None
CNTK MMdnn ONNX MMdnn MMdnn MMdnn ONNX - None MMdnn

chainer None chainer2pytorc
h None None None None - None

mxnet MMdnn MMdnn MMdnn MMdnn/MXNet2Caffe/
Mxnet2Caffe None MMdnn None -

from https://github.com/ysh329/deep-learning-model-convertor

https://github.com/leonidk/pytorch-tf
https://github.com/Microsoft/MMdnn
https://github.com/triagemd/model-converters
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalk
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/nerox8664/pytorch2keras
https://github.com/nerox8664/pytorch2keras
https://github.com/gzuidhof/nn-transfer
https://github.com/gzuidhof/nn-transfer
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/longcw/pytorch2caffe
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/onnx/onnx-caffe2
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/alanswx/keras_to_tensorflow
https://github.com/amir-abdi/keras_to_tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/gzuidhof/nn-transfer
https://github.com/gzuidhof/nn-transfer
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/ethereon/caffe-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/ruotianluo/pytorch-resnet
https://github.com/pierluigiferrari/caffe_weight_converter
https://github.com/qxcv/caffe2keras
https://github.com/hahnyuan/nn_tools
https://github.com/MarcBS/keras
https://github.com/OdinLin/caffe2keras
https://github.com/jamescfli/Deep_Learning_Model_Converter
https://github.com/Microsoft/MMdnn
https://caffe2.ai/docs/caffe-migration.html#caffe-to-caffe2
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/MMdnn
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/nicklhy/ResNet_caffe2mxnet
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/vzhong/chainer2pytorch
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/cypw/MXNet2Caffe
https://github.com/wranglerwong/Mxnet2Caffe
https://github.com/Microsoft/MMdnn

MMdnn

• Standard format for models
• Native support in

development for Pytorch,
Caffe2, Chainer, CNTK, and
MxNet

• Converter in development for
Tensorflow

• Converters  
available for  
several 
frameworks

• Common intermediate  
representation, but no clear standard

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

Thank you!

http://geometry.cs.ucl.ac.uk/creativeai/

 107

