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Dropout
ReLUs
Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks



Reminder: Overfitting, in images
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Classification

Regression

just right
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Each sample is processed by a ‘decimated’ neural net

Dropout
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Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers
But: they should all do the same job

Dropout
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Dropout Performance



Stochastic Gradient Descent, Momentum, “weight decay”

Dropout
ReLUs
Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks
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Sigmoidal (“logistic”) Rectified Linear Unit (RELU)

‘Neuron’: Cascade of Linear and Nonlinear Function 



 7

Outputs

Reminder: a network in backward mode 
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Gradient signal from above
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Outputs
Gradient signal from above scaling: <1  (actually <0.25)

Reminder: a network in backward mode 
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Gradient signal from above
scaling: <1  (actually <0.25)

Vanishing Gradients Problem
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Gradient signal from above
scaling: <1  (actually <0.25)

Do this 10 times: updates in the first layers get minimal

Top layer knows what to do, lower layers “don’t get it”

Sigmoidal Unit: Signal is not getting through! 

Vanishing Gradients Problem
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Scaling: {0,1}

Vanishing Gradients Problem: ReLU Solves It
Gradient signal from above



 10

Activation Functions: ReLU & Co

Great! But… no gradient for negative half-space
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Activation Functions: ReLU & Co

Great! But… no gradient for negative half-space

Lots of follow up work: LeakyReLU, eLU, etc.

Can improve results, but typically fine-tuning only



Stochastic Gradient Descent, Momentum, “weight decay”

Dropout
ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks
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10 am 2pm 7pm

External Covariate Shift: your input changes
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Photometric  transformation:   I → a I + b

“Whitening”: Set Mean = 0, Variance = 1



• Make each patch have zero mean:
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Photometric  transformation:   I → a I + b

“Whitening”: Set Mean = 0, Variance = 1
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Whiten-as-you-go: 

Batch Normalization
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Batch Normalization: Used in all current systems



Convolutional Neural Networks
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Example:  200x200 image 
                  40K hidden units 

         ~1.6B parameters!!!

- Spatial correlation is local 
- Waste of resources  
- We don’t have enough training samples anyway…

Fully-connected Layer 
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Example: 200x200 image 
                40K hidden units 
                Filter size: 10x10 

      4M parameters

Locally-connected Layer 

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).
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Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Example: 200x200 image 
                40K hidden units 
                Filter size: 10x10 

      4M parameters

Locally-connected Layer 



 20

Share the same parameters across different 
locations (assuming input is stationary): 
Convolutions with learned kernels

Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 



 33

Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Convolutional Layer 
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Fully-connected layer 

#of parameters: K2 
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#of parameters: size of window 

Convolutional layer 
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*        
-1  0  1 
-1  0  1 
-1  0  1

=        

Convolutional layer 



Learning an edge filter

 40
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Learn multiple filters.

E.g.: 200x200 image 
        100 Filters 
        Filter size: 10x10 

   10K parameters 

Convolutional layer 
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Conv. 
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

output 
feature map

input feature 
map

kernel

Convolutional layer with ReLU activation 
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Conv. 
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
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output 
feature map

input feature 
map

kernel

Convolutional layer with ReLU activation 

ReLU
Activation
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h1
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kernel

Convolutional layer with ReLU activation 
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h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
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output 
feature map

input feature 
map

kernel

Convolutional layer with ReLU activation 
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De-convolutional layer with ReLU activation 

De-conv. 
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

Still holds,
same structure
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De-convolutional layer with ReLU activation 

No real inverse - but convolutions can easily go the other way

De-conv. 
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

Still holds,
same structure
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De-convolutional layer with ReLU activation 

No real inverse - but convolutions can easily go the other way

De-conv. 
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

“De-convolution” or “Transposed convolution”

Still holds,
same structure
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De-convolutional layer with ReLU activation 

No real inverse - but convolutions can easily go the other way

De-conv. 
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

“De-convolution” or “Transposed convolution”

Also a convolution with transposed weight tensor

Still holds,
same structure
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Pooling layer 
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Pooling layer 
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Pooling layer: receptive field size 
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Pooling layer: receptive field size 



Receptive field
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Receptive field: layer 1
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Receptive field: layer 2
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Receptive field: layer 3
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Receptive field: layer 4
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Receptive field: layer 5
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Receptive field: layer 6
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Receptive field: layer 7
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Receptive field: layer 8
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Modern Architectures
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Gradient-based learning applied to document recognition, 
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

https://www.youtube.com/watch?v=FwFduRA_L6Q

CNNs, late 1980’s: LeNet 
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What happened in between?
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deep learning = neural networks (+ big data  + GPUs)

What happened in between?
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deep learning = neural networks (+ big data  + GPUs) + a few more recent tricks!

What happened in between?



AlexNet  
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: 
ImageNet classification with deep convolutional neural 
networks. Commun. ACM 60(6): 84-90 (2017)

CNNs, 2012
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VGG 
Karen Simonyan, Andrew Zisserman  (=Visual Geometry Group) 
Very Deep Convolutional Networks for Large-Scale Image Recognition, arxiv, 2014. 

CNNs, 2014: VGG
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ResNet 
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 
Deep Residual Learning for Image Recognition, CVPR 2016.  

CNNs, 2015: ResNet
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• Deeper networks can cover more complex problems 
• Increasingly large receptive field size & rich patterns 
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Going Deeper - The Deeper, the Better



• From 20 to 100/1000 
• Residual networks
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Going Deeper



Naïve solution 
• If extra layers are an identity mapping, then  training errors can not increase
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Residual Network



• Goal: estimate update between an original image and a changed image 
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Some 
Network

residual

Preserving base information

can treat 
perturbation 

Residual Modelling: Basic idea in image processing



• Plain block 
• Difficult to make identity mapping because of multiple non-linear layers
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Residual Network



• Residual block 
• If identity were optimal, easy to set weights as 0 
• If optimal mapping is closer to identity, easier to find small fluctuations 

Appropriate for treating perturbation as keeping a base information
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Residual Network



• Deeper ResNets have lower training error
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Residual Network: Deeper is better
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Residual Network: Deeper is better



CNNs, 2017: DenseNet
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Densely Connected Convolutional Networks, CVPR 2017 
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

Recently proposed, better performance/parameter ratio



Image-to-Image 
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Graphics: Multiresolution
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• So far we mapped an image image to a number or label 

• In graphics, output often is “richer”: 
• An image 
• A volume 
• A 3D mesh 
• … 

• Note: “image” just placeholder name here for any Eulerian data 
• Architectures 

• Fully convolutional  
• Encoder-Decoder  
• Skip connections

Image-to-image
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks

 81

Flexible - works with varying input sizes 
 



FCNN

Flexible - works with varying input sizes 
Typically reduces input by fixed factor

32-fold decimation 
224x224 to 7x7

Fully Convolutional Neural Networks in Practice
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Encoder-Decoder

 83

S
pa

ce
S

pace

Features



• Encoder: turns data set (e.g. image) into vector 

• This vector is a very compact and abstract “code” 

• Lives in the “latent space” of the neural network 

• Decoder: turns code back into image

Interpretation
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• 1st: Reduce resolutions as before 
• 2nd: Increase resolution 
• Transposed convolutions 
• Preserves information 
• But cannot be split into en- and decoder anymore

Encoder-decoder + Skip connections
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U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015



SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

http://geometry.cs.ucl.ac.uk/creativeai/

Thank you!
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Recurrent Neural Networks
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• Time dependent problems: repeated evaluations with internal “state”
• State xt at time t, depends on previous times
• Recurrent Neural Networks (RNNs)
• Specialized back-prop possible: Back-propagation through time (BPTT)
• Unrolled:

Recurrent Neural Networks
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• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units
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• Long short term memory (LSTM) networks
• Three internal states: input, output, forget

Common Building Block: LSTM Units

 89

standard standard

history, stored data

weight new vs. stored data

forget stored data

control amount of data output



• Long short term memory (LSTM) networks
• In equation form:

Common Building Block: LSTM Units

 90[Sutskever et al., “Sequence to Sequence Learning with Neural Networks”, 2014]



• LSTM networks powerful tool for sequences over time
• Alternatives: 

- Gated Recurrent Units (GRUs)
- Time convolutional networks (TCNs)
- …

Recurrent Neural Networks

 91

[Bai et al., "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling”, 2018]
[Chung et al., "Empirical evaluation of gated recurrent neural networks on sequence modeling”,2014]



Deep Learning Frameworks
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…

(Python)

(Python, C++, Java)

(C++, Python, Matlab)

(Python, backends support other languages)

Main frameworks

Currently less frequently used

(Python, 
C++, C#)

(Python, C++, 
and others)

(Matlab) (Python, Java, 
Scala)

(Python) (Python, C++)(Python)



Popularity

Google Trends for search terms: “[name] tutorial”

Google Trends for search terms: “[name] github”



Typical Training Steps

for i = 1 .. max_iterations

     input, ground_truth = load_minibatch(data, i)

     output = network_evaluate(input, parameters)
 
     loss = compute_loss(output, ground_truth)

     # gradients of loss with respect to parameters
     gradients = network_backpropagate(loss, parameters)
 
     parameters = optimizer_step(parameters, gradients)



Tensors
• Frameworks typically represent data as tensors 
• Examples:

feature channels 
C

spatial width 
W

spatial height H

batches B

4D convolution kernel: OC x IC x KH x KW4D input data: B x C x H x W

input channels IC

kernel height KH
kernel width KW

output channels 
OC



What Does a Deep Learning Framework Do?
• Tensor math 
• Common network operations/layers 
• Gradients of common operations 
• Backpropagation 
• Optimizers 
• GPU implementations of the above 
• usually: data loading, network parameter saving/loading 
• sometimes: distributed computing



Automatic Differentiation & the Computation Graph

parameters = (weight, bias)

output = σ(weight * input + bias) 
 
loss = (output - ground_truth)^2 

# gradients of loss with respect to 
parameters 
gradients = backpropagate(loss, 
parameters)

weight

input

bias +

*

ground_truth

-

^
2

loss

output
σ

𝑜1

𝑜2

𝑜3

+

*
𝜕 loss

𝜕 weight

-

^

loss

σ

𝜕 loss
𝜕 bias

𝜕 loss
𝜕 𝑜1

𝜕 loss
𝜕 𝑜2

𝜕 loss
𝜕 output 

𝜕 loss
𝜕 𝑜3

forward pass backward pass

Since loss is a scalar, the gradients 
are the same size as the parameters



Automatic Differentiation & the Computation Graph

𝑓
inputs

outputs

𝑓

outputs = forward(inputs, )

𝜕 loss
𝜕 parameters 

𝜕 loss
𝜕 inputs

 

𝜕 loss
𝜕 outputs

parameters

 ,   = backward()



Static vs Dynamic Computation Graphs
• Static analysis allows optimizations and distributing workload 
• Dynamic graphs make data-driven control flow easier 

• In static graphs, the graph is usually defined in a separate ‘language’ 

• Static graphs have less support for debugging

Static Dynamic
define once, 

evaluate during training
define implicitly by running operations, 

a new graph is created in each evaluation

x = Variable()
loss = if_node(x < parameter[0], 
    x + parameter[0], 
    x - parameter[1]) 

for i = 1 .. max_iterations
x = data() 
run(loss) 
backpropagate(loss, parameters)

for i = 1 .. max_iterations
x = data() 
if x < parameter[0] 

loss = x + parameter[0] 
else 

loss = x – parameter[1] 
backpropagate(loss, parameters)



Tensorflow
• Currently the largest community 
• Static graphs (dynamic graphs are in development: Eager Execution) 
• Good support for deployment 
• Good support for distributed computing 
• Typically slower than the other three main frameworks on a single 

GPU



PyTorch
• Fast growing community 
• Dynamic graphs 
• Distributed computing is in development (some support is already 

available) 
• Intuitive code, easy to debug and good for experimenting with less 

traditional architectures due to dynamic graphs 
• Very Fast



Keras
• A high-level interface for various backends (Tensorflow, CNTK, 

Theano) 
• Intuitive high-level code 
• Focus on optimizing time from idea to code 
• Static graphs



Caffe
• Created earlier than Tensorflow, PyTorch or Keras 
• Less flexible and less general than the other three frameworks 
• Static graphs 
• Legacy - to be replaced by Caffe2: focus is on performance and 

deployment 
• Facebook’s platform for Detectron (Mask-RCNN, DensePose, …)



Converting Between Frameworks
• Example: develop in one framework, deploy in another 
• Currently: a large range of converters, but no clear standard 
• Standardized model formats are in development

convertor tensorflow pytorch keras  caffe caffe2 CNTK chainer mxnet

tensorflow  - pytorch-tf/ 
MMdnn

model-converters/ 
nn_toolsconvert-to-
tensorflow/MMdnn

MMdnn/ 
nn_tools None crosstalk/MMdnn None MMdnn

pytorch  pytorch2keras (over 
Keras) - Pytorch2keras/ 

nn-transfer

Pytorch2caffe/
pytorch-caffe-

darknet-convert
onnx-caffe2 ONNX None None

keras 

nn_tools /convert-to-
tensorflow/

keras_to_tensorflow/
keras_to_tensorflow/

MMdnn

MMdnn/ 
nn-transfer - MMdnnnn_tools None MMdnn None MMdnn

caffe  MMdnn/nn_tools/
caffe-tensorflow

MMdnn/ 
pytorch-caffe-

darknet-
convert/ 

pytorch-resnet

caffe_weight_converter
/ caffe2keras/nn_tools/ 

kerascaffe2keras/ 
Deep_Learning_Model_

Converter/MMdnn

- CaffeToCaffe2 crosstalkcaffe/
CaffeConverterMMdnn None

mxnet/tools/
caffe_converter/

ResNet_caffe2mxnet/
MMdnn

caffe2 None ONNX None None - ONNX None None
CNTK MMdnn ONNX MMdnn MMdnn MMdnn ONNX - None MMdnn

chainer None chainer2pytorc
h None None None None - None

mxnet MMdnn MMdnn MMdnn MMdnn/MXNet2Caffe/ 
Mxnet2Caffe None MMdnn None -

from https://github.com/ysh329/deep-learning-model-convertor

https://github.com/leonidk/pytorch-tf
https://github.com/Microsoft/MMdnn
https://github.com/triagemd/model-converters
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalk
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/nerox8664/pytorch2keras
https://github.com/nerox8664/pytorch2keras
https://github.com/gzuidhof/nn-transfer
https://github.com/gzuidhof/nn-transfer
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/longcw/pytorch2caffe
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/onnx/onnx-caffe2
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/alanswx/keras_to_tensorflow
https://github.com/amir-abdi/keras_to_tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/gzuidhof/nn-transfer
https://github.com/gzuidhof/nn-transfer
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/ethereon/caffe-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/ruotianluo/pytorch-resnet
https://github.com/pierluigiferrari/caffe_weight_converter
https://github.com/qxcv/caffe2keras
https://github.com/hahnyuan/nn_tools
https://github.com/MarcBS/keras
https://github.com/OdinLin/caffe2keras
https://github.com/jamescfli/Deep_Learning_Model_Converter
https://github.com/Microsoft/MMdnn
https://caffe2.ai/docs/caffe-migration.html#caffe-to-caffe2
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/MMdnn
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/nicklhy/ResNet_caffe2mxnet
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/vzhong/chainer2pytorch
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/cypw/MXNet2Caffe
https://github.com/wranglerwong/Mxnet2Caffe
https://github.com/Microsoft/MMdnn


MMdnn

• Standard format for models 
• Native support in 

development for Pytorch, 
Caffe2, Chainer, CNTK, and 
MxNet 

• Converter in development for 
Tensorflow

• Converters  
available for  
several 
frameworks 

• Common intermediate  
representation, but no clear standard



SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

Thank you!

http://geometry.cs.ucl.ac.uk/creativeai/
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