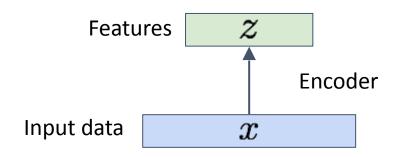
Unsupervised Learning

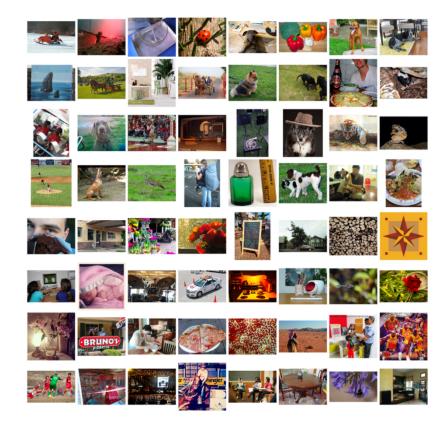
- There is no direct ground truth for the quantity of interest
- Autoencoders
- Variational Autoencoders (VAEs)
- Generative Adversarial Networks (GANs)

Autoencoders

Goal: Meaningful features that capture the main factors of variation in the dataset

- These are good for classification, clustering, exploration, generation, ...
- We have no ground truth for them

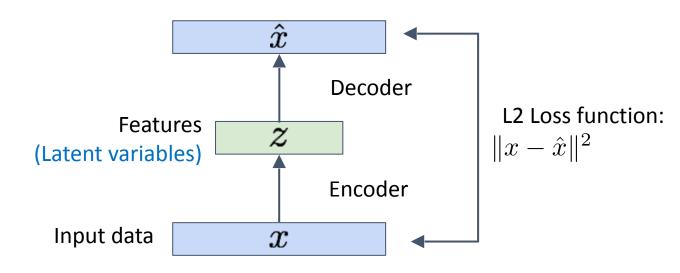


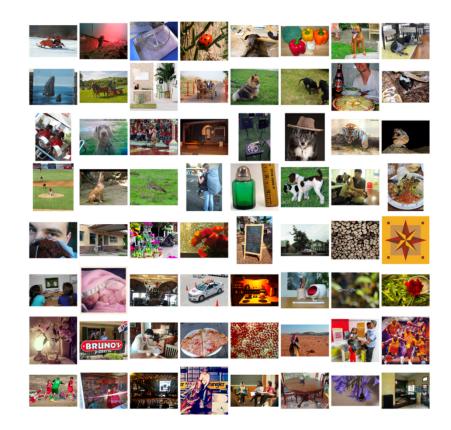


Autoencoders

Goal: Meaningful features that capture the main factors of variation

Features that can be used to reconstruct the image



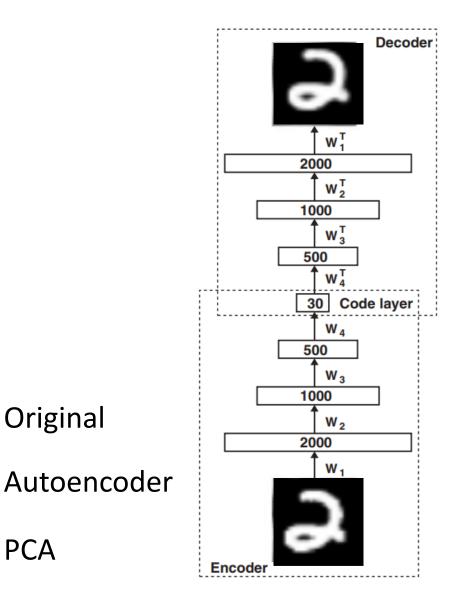


Autoencoders

Linear Transformation for Encoder and Decoder give result close to PCA

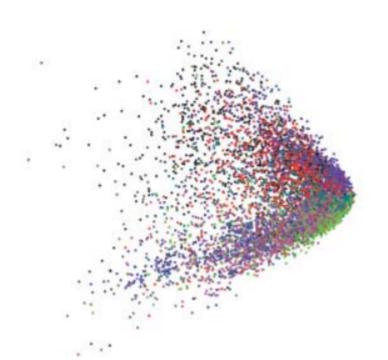
Deeper networks give better reconstructions, since basis can be non-linear

Original PCA



Example: Document Word Prob. \rightarrow 2D Code

PCA-based



Autoencoder

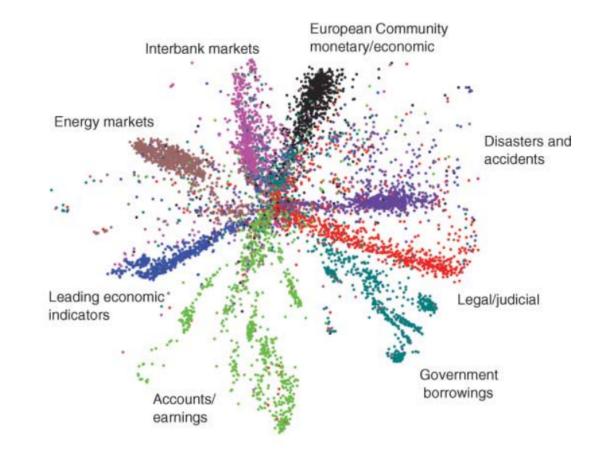
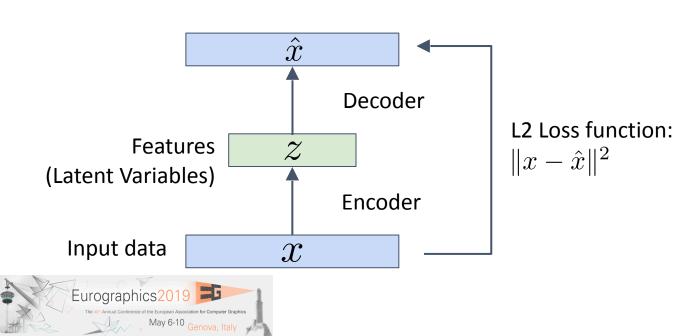


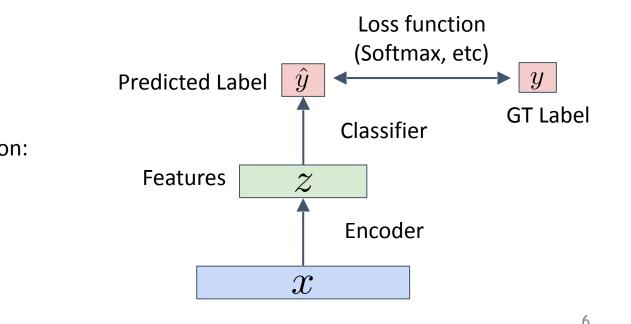
Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov

Example: Semi-Supervised Classification

• Many images, but few ground truth labels

start unsupervised train autoencoder on many images supervised fine-tuning train classification network on labeled images





Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Autoencoder

geometry.cs.ucl.ac.uk/creativeai

- Assumption: the dataset are samples from an unknown distribution
- Goal: create a new sample from

that is not in the dataset

 $p_{\text{data}}(x)$

Dataset

Generated

Image credit: Progressive Growing of GANs for Improved Quality, Stability, and Variation, Karras et al. 8

- Assumption: the dataset are samples from an unknown distribution
- Goal: create a new sample from

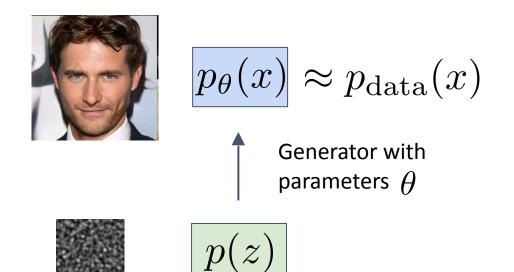
that is not in the dataset

 $p_{\text{data}}(x)$

Dataset

Generated

Image credit: Progressive Growing of GANs for Improved Quality, Stability, and Variation, Karras et al. 9



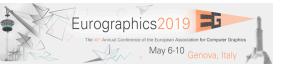
known and easy to sample from

$$p_{\theta}(x) \approx p_{\text{data}}(x)$$

Generator with parameters heta

p(z)

known and easy to sample from



How to measure similarity of $p_{ heta}(x)$ and $p_{ ext{data}}(x)$?

1) Likelihood of data in $p_{ heta}(x)$

Variational Autoencoders (VAEs)

2) Adversarial game: Discriminator distinguishes $p_{\theta}(x)$ and $p_{\text{data}}(x)$ vs

Generator makes it hard to distinguish

Generative Adversarial Networks (GANs)

Autoencoders as Generative Models?

- A trained decoder transforms some features to approximate same \hat{x}
- What happens if we pick a random ?
- We derive the distribution likely samples

Eurographics2019

May 6-10

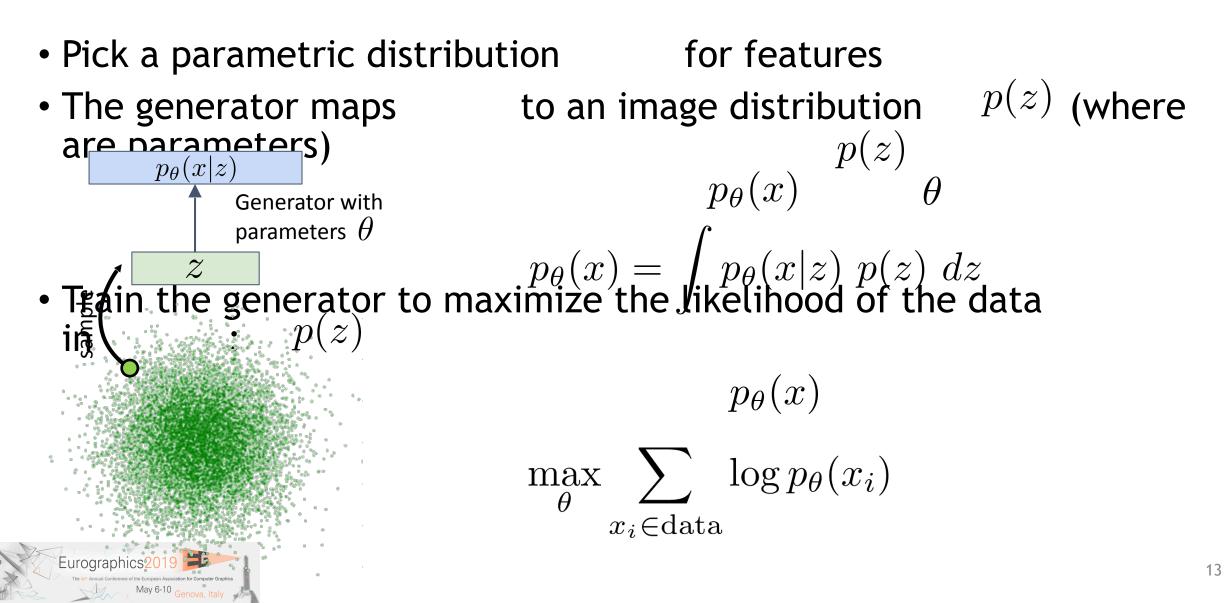
? $p_{\text{data}}(x)$ of features that decode to p(z)

Feature space / latent space

Image Credit: *Reducing the Dimensionality of Data with Neural Networks*, Hinton and Salakhutdinov

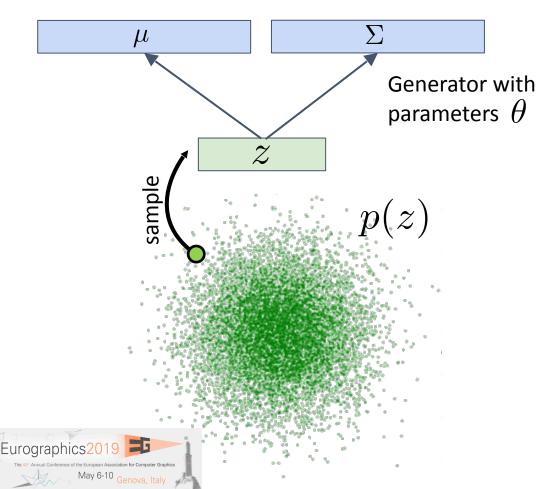
 \mathcal{Z}

Variational Autoencoders (VAEs)



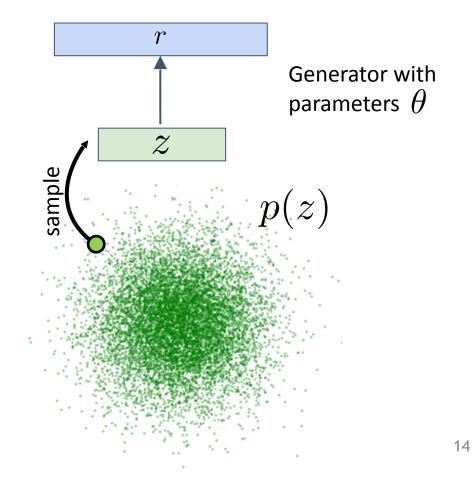
Outputting a Distribution

Normal distribution $p_{\theta}(x|z) = N(x; \mu(z), \Sigma(z))$

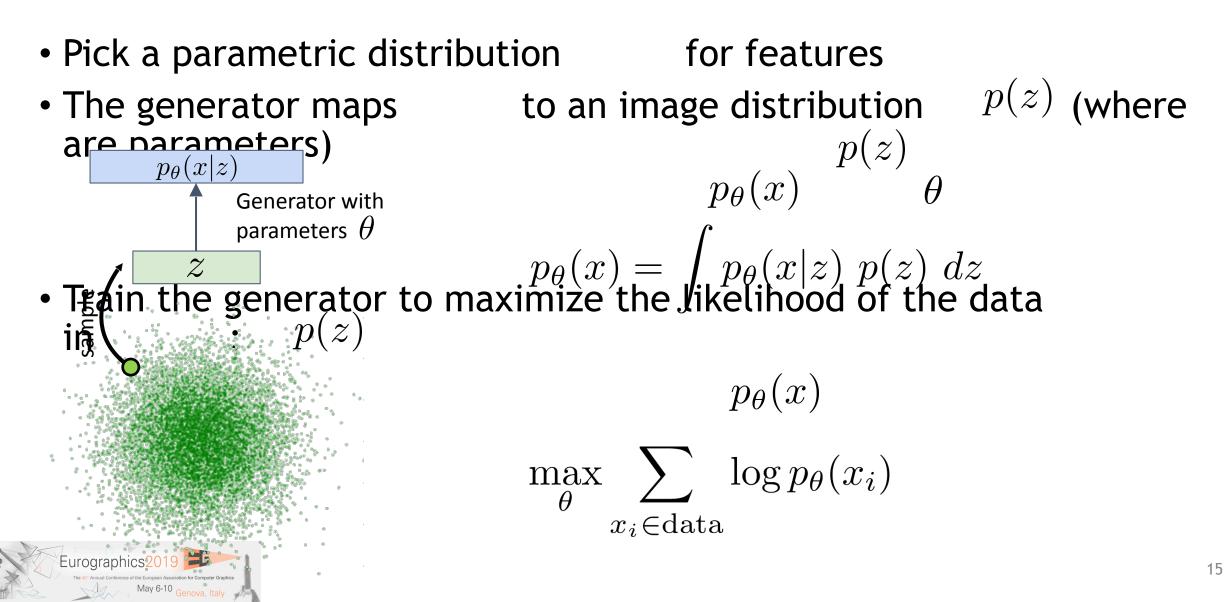


Bernoulli distribution

 $p_{\theta}(x|z) = Bern(x; r(z))$



Variational Autoencoders (VAEs)



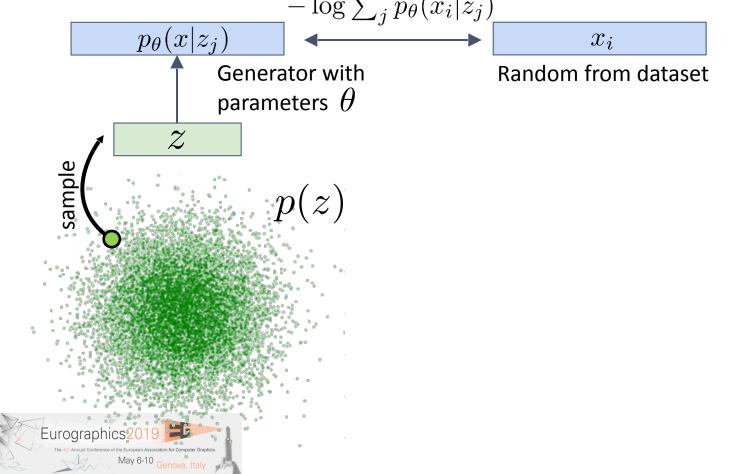
Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)

- Approximate Integral with Monte-Carlo in each iteration
- SGD approximation time time out of data rind geamerated distribution:

$$\theta^* = \arg \max_{\theta} \sum_{\substack{x_i \in \text{data}}} \log \int p_{\theta}(x_i|z) \ p(z) \ dz$$
$$\theta^* \approx \arg \max_{\theta} \mathbb{E}_{x_i \sim p_{\text{data}}(x)} \log \mathbb{E}_{z \sim p(z)} \ p_{\theta}(x_i|z)$$

Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)

- Approximate Integral with Monte-Carlo in each iteration
- SGD approximates the texpectancy over data $-\log \sum_{j} p_{\theta}(x_i|z_j)$



Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)

 \mathcal{Z}

sample

- Approximate Integral with Monte-Carlo in each iteration
- SGD approximates the texpectancy over data $O = p_{\theta}(x|z_i)$ $p_{\bullet}(z|z_i)$ $p_{\bullet}(z|z_i)$ $p_{\bullet}(z|z_i)$ $p_{\bullet}(z|z_i)$
- $p_{\theta}(x|z_i)$

with non-zero

 $p_{\theta}(x_i|z)$

• Very experies θ very inacconstruction (depending on sample count)

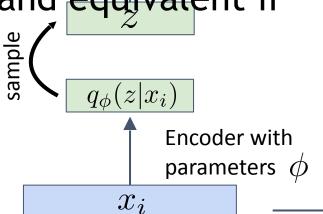
 \mathcal{X}_{i}

Variational Autoencoders (VAEs): The Encoder

• During training, another network can learn a distribution of good for a given should be much smaller than $p_{\theta}(x|z) = \int_{-\log p_{\theta}(x|z)} p_{\theta}(z) = \int_{-\log p_{\theta}(x|z)} p(z) dz$ Loss function: $p_{\theta}(x|z)$ • A single sample is igood enough parameters heta \boldsymbol{Z} \mathcal{X}_{i} \mathcal{Z} sample $q_{\phi}(z|x_i)$ p(z) $q_{\phi}(z|x_i)$ **Encoder with** parameters ϕ x_i

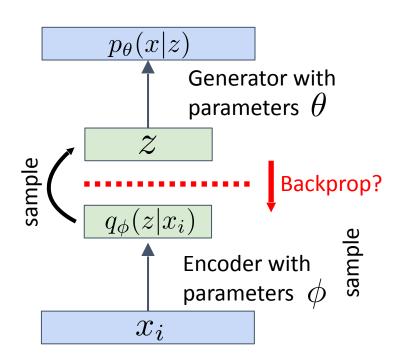
Variational Autoencoders (VAEs): The Encoder

- Can we still easily sample a new ?
- Need to make $\sup_{l \in g} p_{\theta}(x_i|z) + KL(q_{\phi}) = \sum_{i=1}^{Loss} p_{$
- Regularize with KL-divergence
- Negative losser tarmine shown to be a lower bound for the likelihood, and equivalent if θ shown to be a lower bound for the likelihood, $q_{\phi}(z|x_i) = p(z)$

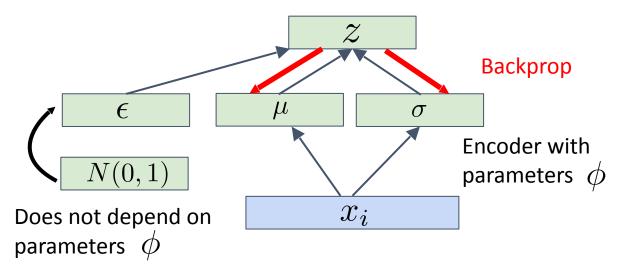


$$q_{\phi}(z|x) = p_{\theta}(z|x)$$

Reparameterization Trick



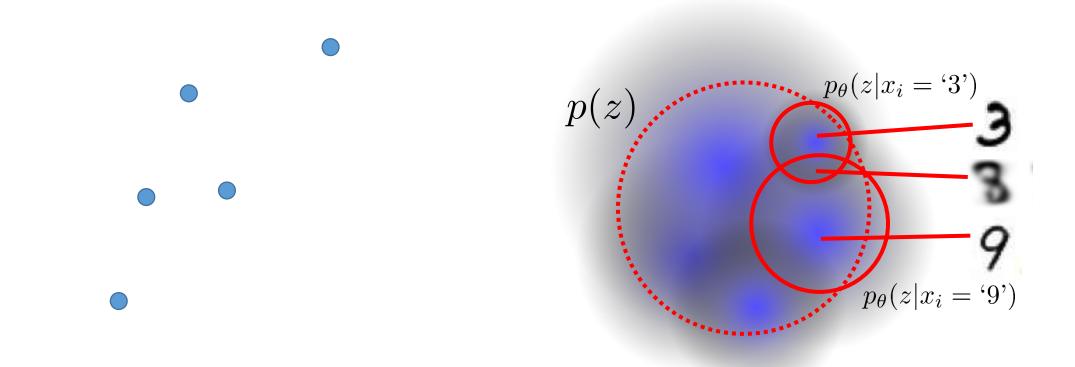
Example when $q_{\phi}(z|x_i) = N(z; \mu(x_i), \sigma(x_i))$ $z = \sigma + \mu \cdot \epsilon$, where $\epsilon \sim N(0, 1)$ $\frac{\partial z}{\partial \phi} = \frac{\partial \mu}{\partial \phi} + \frac{\partial \sigma}{\partial \phi} \cdot \epsilon$



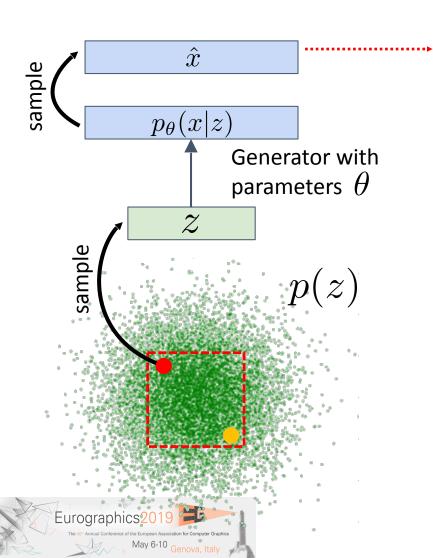
Feature Space of Autoencoders vs. VAEs

Autoencoder

VAE



Generating Data



MNIST

n

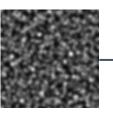
VAE on MNIST

https://www.siarez.com/projects/variational-autoencoder

Variational Autoencoder

geometry.cs.ucl.ac.uk/creativeai

Generative Adversarial Networks



Player 1: generator -

Scores if discriminator can't distinguish output from real image

from dataset

Player 2: discriminator —>real/fake

Scores if it can distinguish between real and fake

$$p_{\theta}(x) \approx p_{\text{data}}(x)$$

Generator with parameters θ

known and easy to sample from

How to measure similarity of $p_{ heta}(x)$ and $p_{ ext{data}}(x)$?

1) Likelihood of data in $p_{ heta}(x)$

Variational Autoencoders (VAEs)

2) Adversarial game: Discriminator distinguishes $p_{\theta}(x)$ and $p_{\text{data}}(x)$ vs

Generator makes it hard to distinguish

Generative Adversarial Networks (GANs)

- If discriminator approximates
- at maximum of has lowest loss $p_{\text{data}}(x)$ • Optime $p_{data}(\hat{x})$ has single mode at , small (variance D_{ψ} discriminator $p_{\theta}(x)$ with parameters ψ x^* \hat{x} $D_{\psi} \approx p_{\text{data}}(\hat{x})$ G_{θ} : generator with parameters θ x^* \mathcal{Z} $p_{\text{data}}(x)$ $p_{\theta}(x)$ sample p(z)

Image Credit: *How (not) to Train your Generative Model: Scheußled Sampling, Likelihood, Adversary?*, Ferenc Huszár

May 6-10 Genova, Italy

• For GANs, the discriminator instead approximates:

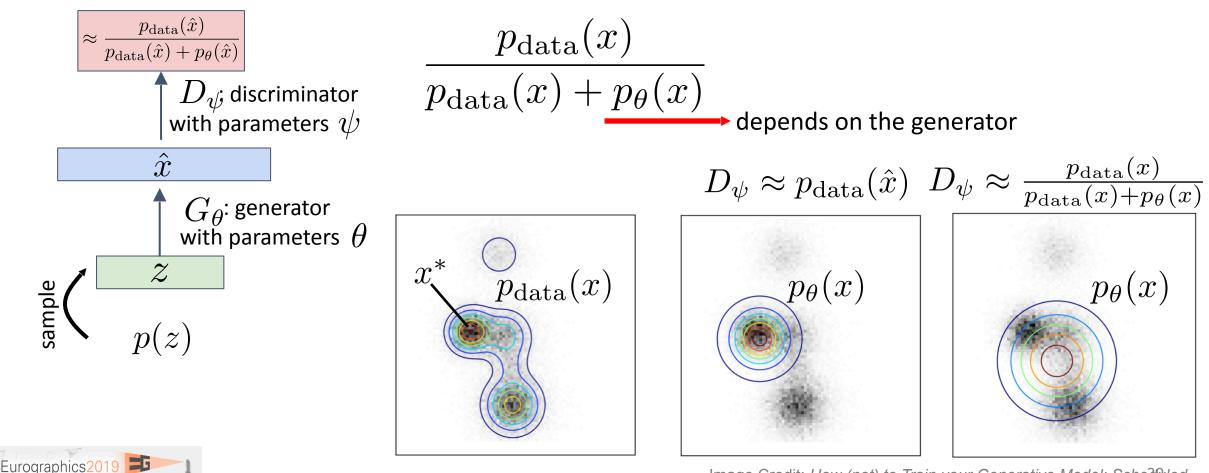


Image Credit: *How (not) to Train your Generative Model: Sche2*@led Sampling, Likelihood, Adversary?, Ferenc Huszár

Eurographics2019

May 6-10 Genova, Italy

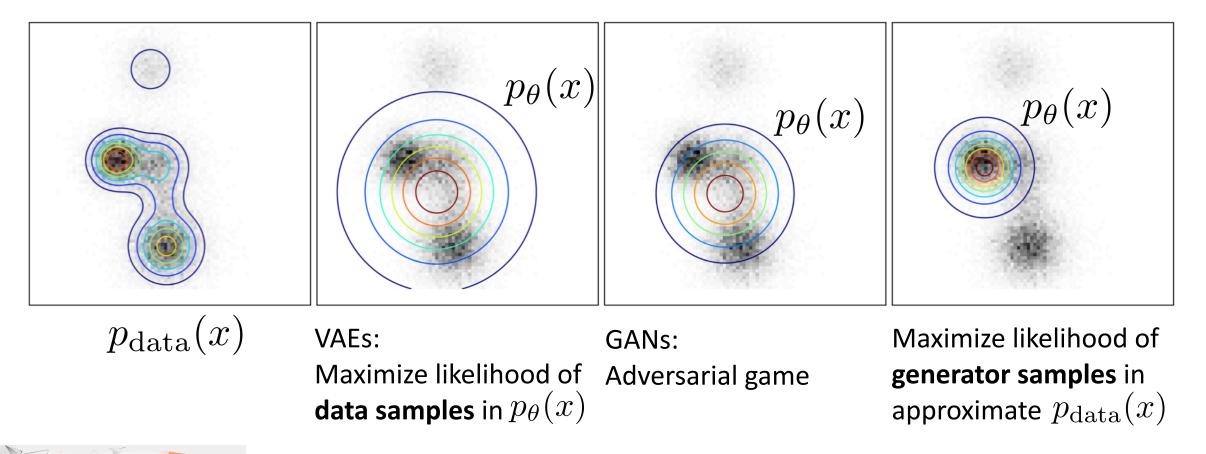


Image Credit: How (not) to Train your Generative Model: Sched@led Sampling, Likelihood, Adversary?, Ferenc Huszár

May 6-10 Genova, Italy

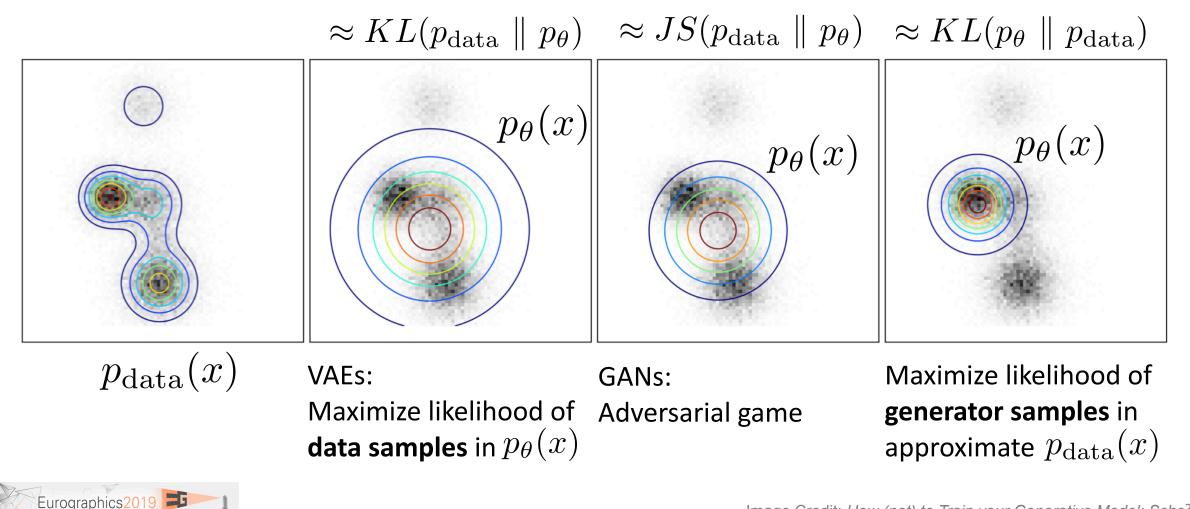
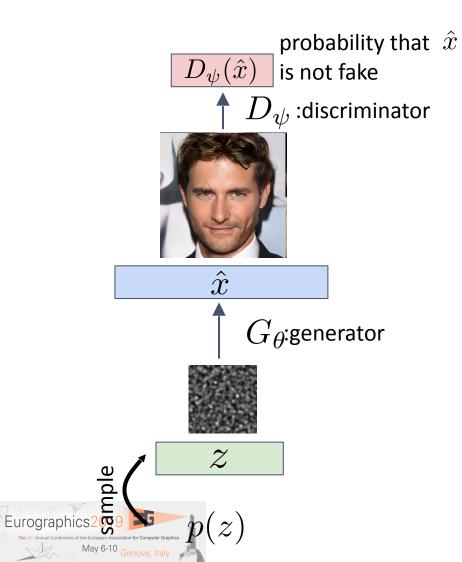


Image Credit: *How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?*, Ferenc Huszár

GAN Objective



fake/real classification loss (BCE): $L(\theta, \psi) = -0.5 \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\psi}(x)$ $-0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$

Discriminator objective: $\min_{\psi} L(\theta, \psi)$

Generator objective: $\max_{\theta} L(\theta, \psi)$

Non-saturating Heuristic

$$L(\theta, \psi) = -0.5 \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\psi}(x)$$
$$-0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$$

Generator loss is negative binary cross-entropy:

$$L_G(\theta, \psi) = 0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$$
 poor convergence

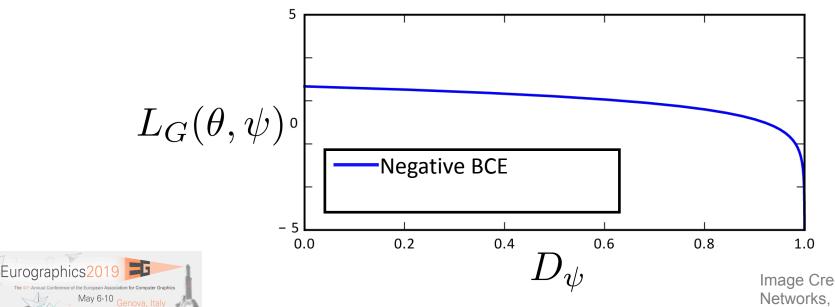


Image Credit: NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow

Non-saturating Heuristic

Generator loss is negative binary cross-entropy:

 $L_G(\theta, \psi) = 0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$ poor convergence

Flip target class instead of flipping the sign for generator loss: $L_G(\theta, \psi) = -0.5 \mathbb{E}_{x \sim p_{\theta}} \log D_{\psi}(x)$ good convergence – like BCE

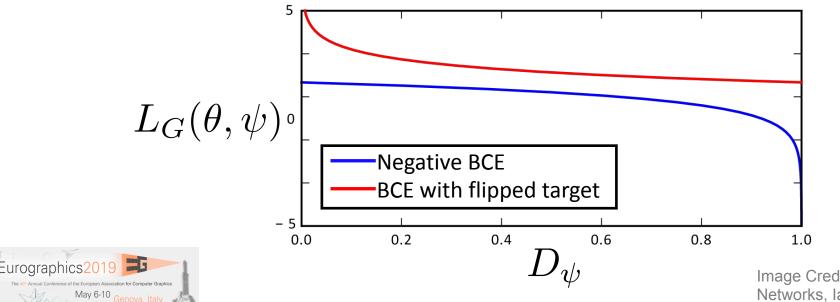
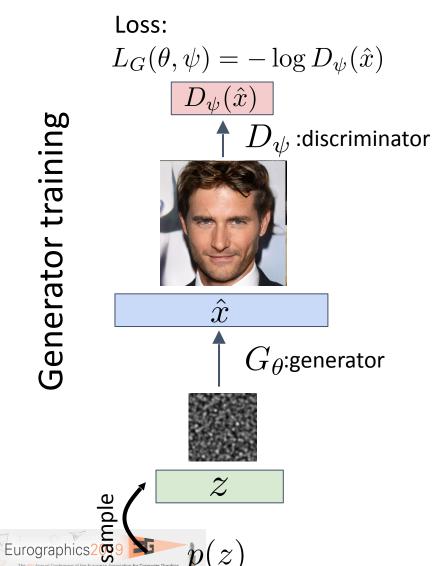


Image Credit: NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow

GAN Training

Generator training



(z)

May 6-10 Genova, Italy

Loss: $L_D(\theta, \psi) = -0.5 \log(1 - D_{\psi}(\hat{x})) - 0.5 \log D_{\psi}(x_i)$ $D_{\psi}(\hat{x})$ $D_{\psi}(x_i)$ **Discriminator training** D_ψ :discriminator \hat{x} x_i from dataset

Interleave in each training step

DCGAN

May 6-10 Genova, Italy

- First paper to successfully use CNNs with GANs
- Due to using novel components (at that time) like batch norm., ReLUs, etc.

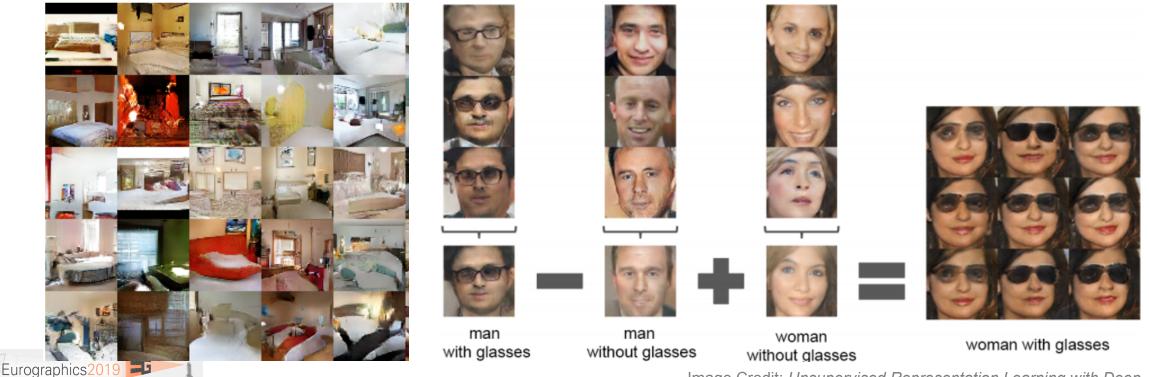


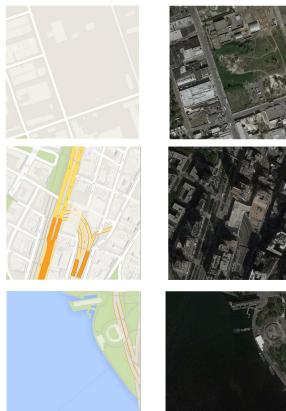
Image Credit: Unsupervised Representation Learning with Deep 36 Convolutional Generative Adversarial Networks, Radford et al.

Generative Adversarial Network

geometry.cs.ucl.ac.uk/creativeai

Conditional GANs (CGANs)

- \approx learn a mapping between images from example pairs
- Approximate sampling from a conditional distribution $\frac{p_{\text{data}}(x \mid c)}{c}$



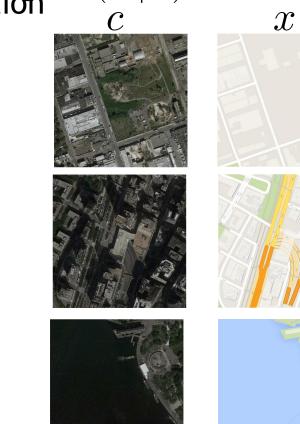


Image Credit: *Image-to-Image Translation with Conditional* 38 *Adversarial Nets*, Isola et al.

Conditional GANs

May 6-10 Genova, Italy

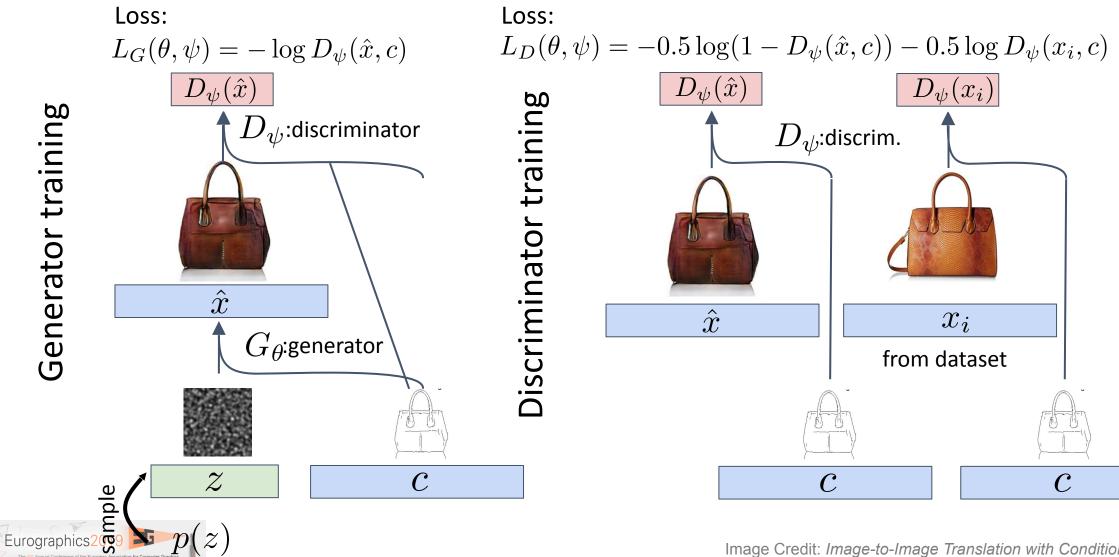
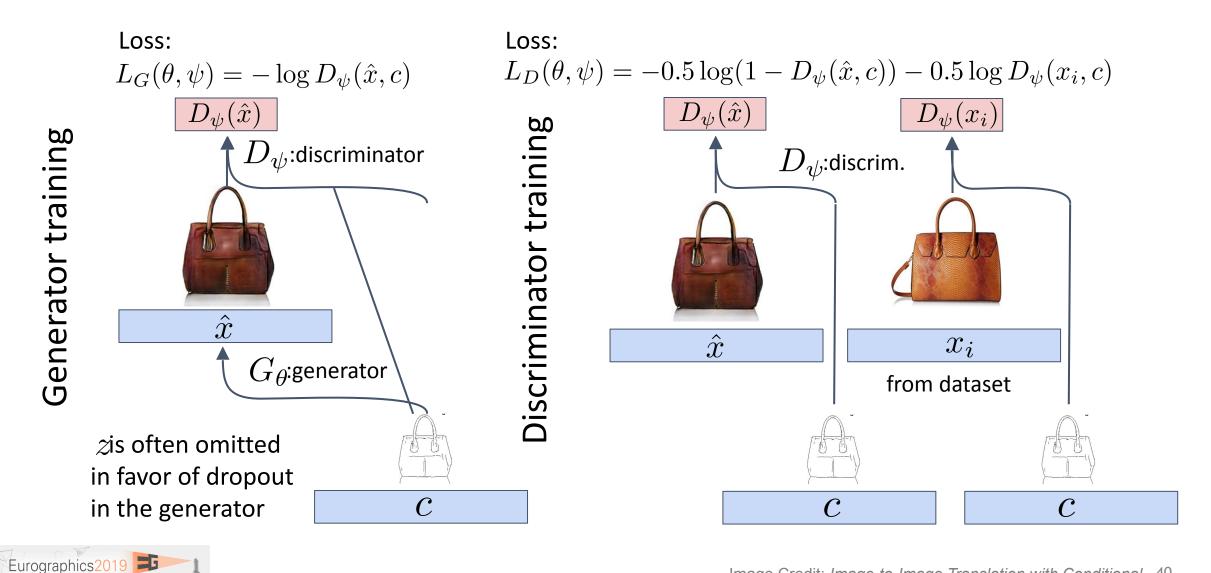


Image Credit: *Image-to-Image Translation with Conditional* 39 *Adversarial Nets*, Isola et al.

Conditional GANs: Low Variation per Condition



May 6-10 Genova, Italy

Image Credit: *Image-to-Image Translation with Conditional* 40 *Adversarial Nets*, Isola et al.

CGAN

https://affinelayer.com/pixsrv/index.html

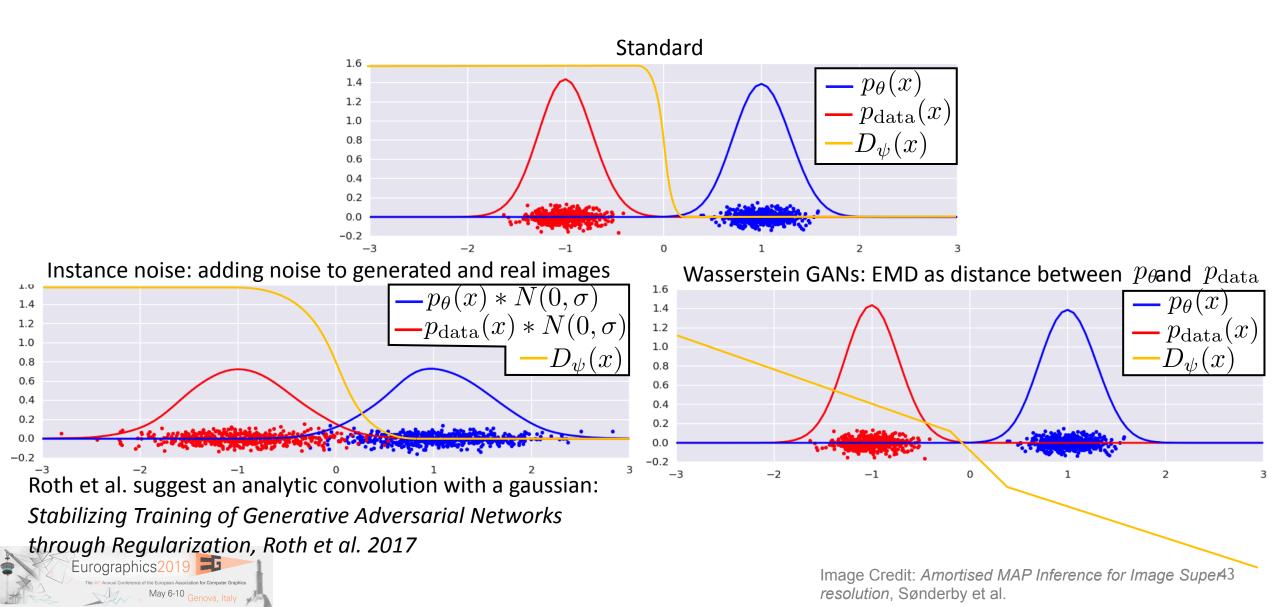
Unstable Training

GAN training can be unstable

Three current research problems (may be related):

- Reaching a Nash equilibrium (the gradient for both Land is p_{θ} p_{data}
- and initially don't overlap
- Mode Collapse

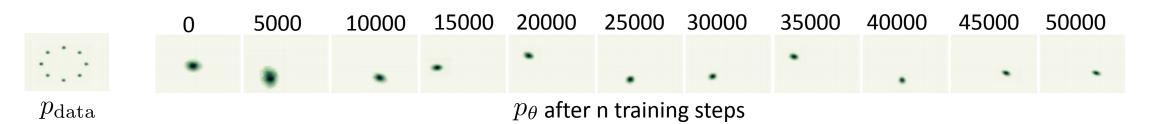
Generator and Data Distribution Don't Overlap



Mode Collapse

 $\frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\theta}(x)}$ Optimal $D_{\psi}(x)$:

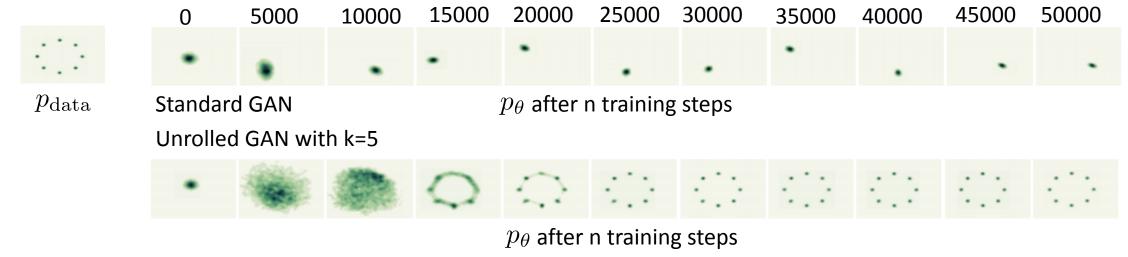
 $p_{ heta}$ only covers one or a few modes of $\,p_{
m data}$



Mode Collapse

Solution attempts:

- Minibatch comparisons: Discriminator can compare instances in a minibatch (*Improved Techniques for Training GANs*, Salimans et al.)
- Unrolled GANs: Take k steps with the discriminator in each iteration, and backpropagate through all of them to update the generator



Summary

- Autoencoders
 - Can infer useful latent representation for a dataset
 - Bad generators
- VAEs
 - Can infer a useful latent representation for a dataset
 - Better generators due to latent space regularization
 - Lower quality reconstructions and generated samples (usually blurry)
- GANs
 - Can not find a latent representation for a given sample (no encoder)
 - Usually better generators than VAEs
 - Currently unstable training (active research)

