
Unsupervised Learning
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• There	is	no	direct	ground	truth	for	the	quantity	of	interest	

• Autoencoders	
• Variational	Autoencoders	(VAEs)	
• Generative	Adversarial	Networks	(GANs)	



Autoencoders
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Encoder

Input	data

Goal:	Meaningful	features	that	capture	the	main	
factors	of	variation	in	the	dataset	
• These	are	good	for	classification,	clustering,	

exploration,	generation,	…	
• We	have	no	ground	truth	for	them	

Features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders
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Encoder

Input	data

Features	
(Latent	variables)

Decoder

Goal:	Meaningful	features	that	capture	the	main	
factors	of	variation	
Features	that	can	be	used	to	reconstruct	the	image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

L2	Loss	function:	



Autoencoders
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Autoencoder

Original

PCA

Linear	Transformation	for	Encoder	and	Decoder	
give	result	close	to	PCA	

Deeper	networks	give	better	reconstructions, 
since	basis	can	be	non-linear

Image Credit: Reducing the Dimensionality of Data with Neural Networks, . Hinton and Salakhutdinov



Example: Document Word Prob. → 2D Code

 5

PCA-based Autoencoder

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov



• Many images, but few ground truth labels

Example: Semi-Supervised Classification
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Encoder

Input	data

Features	
(Latent	Variables)

Decoder
L2	Loss	function:	

start	unsupervised	
train	autoencoder	on	many	images

supervised	fine-tuning	
train	classification	network	on	labeled	images

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Features

Classifier

Predicted	Label

Loss	function	
(Softmax,	etc)

GT	Label



Autoencoder
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geometry.cs.ucl.ac.uk/creativeai



• Assumption: the dataset are samples from an unknown distribution 
• Goal: create a new sample from                  that is not in the dataset

Generative Models
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… ?
Dataset Generated

Image	credit:	Progressive	Growing	of	GANs	for	Improved	Quality,	Stability,	and	Variation,	Karras	et	al.



• Assumption: the dataset are samples from an unknown distribution 
• Goal: create a new sample from                  that is not in the dataset

Generative Models
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…

Dataset Generated

Image	credit:	Progressive	Growing	of	GANs	for	Improved	Quality,	Stability,	and	Variation,	Karras	et	al.



Generative Models
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Generator	with	
parameters

known	and	
easy	to	sample	from



Generative Models
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Generator	with	
parameters

known	and	
easy	to	sample	from

1)	Likelihood	of	data	in	

2)	Adversarial	game:	
Discriminator	distinguishes	
														and

Generator	makes	it	
hard	to	distinguish

vs

How	to	measure	similarity	of															and																					?

Generative	Adversarial	Networks	(GANs)

Variational	Autoencoders	(VAEs)



• A trained decoder transforms some features    to approximate 
samples from 

• What happens if we pick a random   ? 
• We do not know the distribution          of features that decode to 

likely samples

Autoencoders as Generative Models?
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Decoder	=	Generator?

Image Credit: Reducing the Dimensionality of Data with Neural 
Networks, Hinton and Salakhutdinov

ra
nd

om

Feature	space	/	latent	space



• Pick a parametric distribution           for features 
• The generator maps           to an image distribution             (where    

are parameters) 

• Train the generator to maximize the likelihood of the data 
in            :

Variational Autoencoders (VAEs)
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Generator	with	
parameters

sa
m
pl
e



Outputting a Distribution
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Generator	with	
parameters

sa
m
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Generator	with	
parameters

sa
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Normal	distribution Bernoulli	distribution



• Pick a parametric distribution           for features 
• The generator maps           to an image distribution             (where    

are parameters) 

• Train the generator to maximize the likelihood of the data 
in            :

Variational Autoencoders (VAEs)
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Generator	with	
parameters
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m
pl
e



• Approximate Integral with Monte-Carlo in each iteration 
• SGD approximates the sum over data

Variational Autoencoders (VAEs):  
Naïve Sampling (Monte-Carlo)
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Maximum	likelihood	of	data	in	generated	distribution:



• Approximate Integral with Monte-Carlo in each iteration 
• SGD approximates the expectancy over data

Variational Autoencoders (VAEs):  
Naïve Sampling (Monte-Carlo)
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Generator	with	
parameters

Loss	function:	

Random	from	dataset



• Approximate Integral with Monte-Carlo in each iteration 
• SGD approximates the expectancy over data 
• Only few    map close to a given  
• Very expensive, or very inaccurate (depending on sample count)

Variational Autoencoders (VAEs):  
Naïve Sampling (Monte-Carlo)
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Generator	with	
parameters

Loss	function:	

Random	from	dataset

				with	non-zero



• During training, another network can learn a distribution of good    
for a given 

•                   should be much smaller than  
• A single sample is good enough

Variational Autoencoders (VAEs):  
The Encoder
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Generator	with	
parameters
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Encoder	with	
parameters	

Loss	function:	



• Can we still easily sample a new   ? 
• Need to make sure                  approximates 
• Regularize with KL-divergence 
• Negative loss can be shown to be a lower bound for the likelihood, 

and equivalent if 

Variational Autoencoders (VAEs):  
The Encoder
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Generator	with	
parameters
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Encoder	with	
parameters	

Loss	function:	



Example	when																																																														:

Reparameterization Trick
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Generator	with	
parameters
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Encoder	with	
parameters	

Backprop? Backprop
sa
m
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e

,	where

Encoder	with	
parameters	

Does	not	depend	on	
parameters



SIGGRAPH	Asia	Course	CreativeAI:	Deep	Learning	for	Graphics

Feature Space of Autoencoders vs. VAEs
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Autoencoder VAE



Generating Data
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Generator	with	
parameters
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MNIST Frey	Faces

Image Credit: Auto-Encoding Variational Bayes, Kingma and Welling



VAE on MNIST 
 
https://www.siarez.com/projects/variational-autoencoder
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https://www.siarez.com/projects/variational-autoencoder
https://www.siarez.com/projects/variational-autoencoder
https://www.siarez.com/projects/variational-autoencoder


Variational Autoencoder  
 
geometry.cs.ucl.ac.uk/creativeai  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Generative Adversarial Networks
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Player	2:	discriminator	
Scores	if	it	can	distinguish	
between	real	and	fake

real/fake

from	dataset

Player	1:	generator	
Scores	if	discriminator	
can’t	distinguish	output	
from	real	image



Generative Models

 27

Generator	with	
parameters

known	and	
easy	to	sample	from

1)	Likelihood	of	data	in	

2)	Adversarial	game:	
Discriminator	distinguishes	
														and

Generator	makes	it	
hard	to	distinguish

vs

How	to	measure	similarity	of															and																					?

Generative	Adversarial	Networks	(GANs)

Variational	Autoencoders	(VAEs)



• If discriminator approximates                  : 
•     at maximum of                   has lowest loss 
• Optimal             has single mode at     , small variance

Why Adversarial?
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Image Credit: How (not) to Train your Generative Model: Scheduled 
Sampling, Likelihood, Adversary?, Ferenc Huszár

								:	generator	
with	parameters

									:	discriminator	
with	parameters



• For GANs, the discriminator instead approximates:

Why Adversarial?

 29
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depends	on	the	generator

Image Credit: How (not) to Train your Generative Model: Scheduled 
Sampling, Likelihood, Adversary?, Ferenc Huszár

								:	generator	
with	parameters

									:	discriminator	
with	parameters



Why Adversarial?
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VAEs:	
Maximize	likelihood	of	
data	samples	in

Maximize	likelihood	of	
generator	samples	in	
approximate

GANs:	
Adversarial	game

Image Credit: How (not) to Train your Generative Model: Scheduled 
Sampling, Likelihood, Adversary?, Ferenc Huszár



Why Adversarial?
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VAEs:	
Maximize	likelihood	of	
data	samples	in

Maximize	likelihood	of	
generator	samples	in	
approximate

GANs:	
Adversarial	game

Image Credit: How (not) to Train your Generative Model: Scheduled 
Sampling, Likelihood, Adversary?, Ferenc Huszár



GAN Objective
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								:generator

									:discriminator

									probability	that					
									is	not	fake

fake/real	classification	loss	(BCE):

Discriminator	objective:

Generator	objective:



Non-saturating Heuristic
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Generator	loss	is	negative	binary	cross-entropy:
poor	convergence

Negative	BCE

Image Credit: NIPS 2016 Tutorial: Generative Adversarial 
Networks, Ian Goodfellow



Non-saturating Heuristic
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Negative	BCE
BCE	with	flipped	target

Flip	target	class	instead	of	flipping	the	sign	for	generator	loss:
good	convergence	–	like	BCE

Generator	loss	is	negative	binary	cross-entropy:
poor	convergence

Image Credit: NIPS 2016 Tutorial: Generative Adversarial 
Networks, Ian Goodfellow



GAN Training
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from	dataset

Loss:
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								:generator

									:discriminator

Loss:
G
en
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ng 									:discriminator

Interleave	in	each	training	step



• First paper to successfully use CNNs with GANs 
• Due to using novel components (at that time) like batch norm., 

ReLUs, etc.

DCGAN

 36Image Credit: Unsupervised Representation Learning with Deep 
Convolutional Generative Adversarial Networks, Radford et al.



Generative Adversarial Network  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geometry.cs.ucl.ac.uk/creativeai



• ≈ learn a mapping between images from example pairs 
• Approximate sampling from a conditional distribution                

Conditional GANs (CGANs)

 38Image Credit: Image-to-Image Translation with Conditional 
Adversarial Nets, Isola et al.



Conditional GANs
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from	dataset

Loss:
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								:generator

Loss:

:discriminator
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Image Credit: Image-to-Image Translation with Conditional 
Adversarial Nets, Isola et al.



			is	often	omitted	
in	favor	of	dropout	
in	the	generator

Conditional GANs: Low Variation per Condition
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from	dataset

Loss:
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								:generator

Loss:
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Image Credit: Image-to-Image Translation with Conditional 
Adversarial Nets, Isola et al.



CGAN 
 
https://affinelayer.com/pixsrv/index.html
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https://affinelayer.com/pixsrv/index.html


GAN training can be unstable 
Three current research problems (may be related): 
• Reaching a Nash equilibrium (the gradient for both        and         is 

0) 
•       and            initially don’t overlap 
• Mode Collapse

Unstable Training

 42



Generator and Data Distribution Don’t Overlap

 43Image Credit: Amortised MAP Inference for Image Super-
resolution, Sønderby et al.

Roth	et	al.	suggest	an	analytic	convolution	with	a	gaussian:
Stabilizing	Training	of	Generative	Adversarial	Networks	
through	Regularization,	Roth	et	al.	2017

Instance	noise:	adding	noise	to	generated	and	real	images Wasserstein	GANs:	EMD	as	distance	between						and	

Standard



Mode Collapse
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after	n	training	steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

only	covers	one	or	a	few	modes	of	

Optimal																	:

Image Credit: Wasserstein GAN, Arjovsky et al. 
Unrolled Generative Adversarial Networks, Metz et al.



Solution attempts: 
• Minibatch comparisons:  Discriminator can compare instances in a 

minibatch (Improved	Techniques	for	Training	GANs, Salimans et al.) 

• Unrolled GANs: Take k steps with the discriminator in each iteration, 
and backpropagate through all of them to update the generator

Mode Collapse
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after	n	training	steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Standard	GAN

Unrolled	GAN	with	k=5

after	n	training	steps

Image Credit: Wasserstein GAN, Arjovsky et al. 
Unrolled Generative Adversarial Networks, Metz et al.



• Autoencoders 
• Can infer useful latent representation for a dataset 
• Bad generators 

• VAEs 
• Can infer a useful latent representation for a dataset 
• Better generators due to latent space regularization 
• Lower quality reconstructions and generated samples (usually blurry) 

• GANs 
• Can not find a latent representation for a given sample (no encoder) 
• Usually better generators than VAEs 
• Currently unstable training (active research)

Summary
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