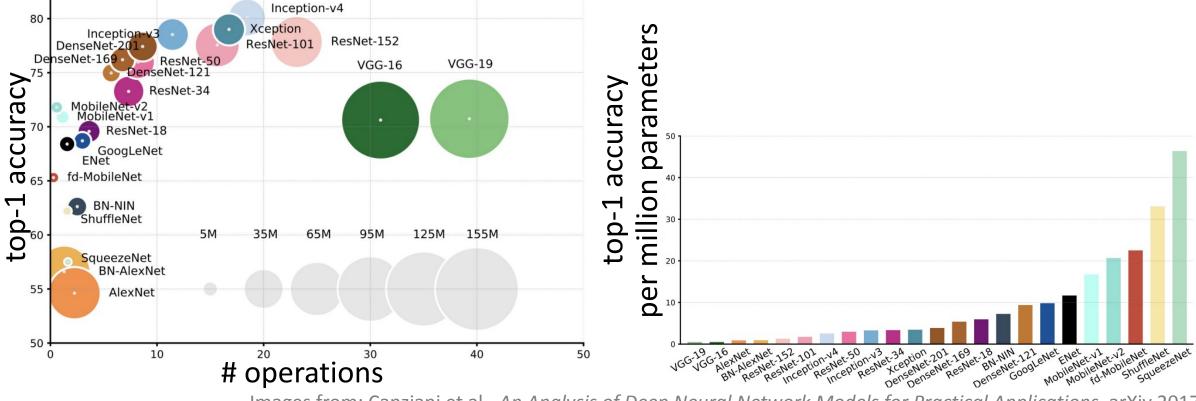
Common Architecture Elements

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

Classification, Segmentation, Detection

ImageNet classification performance

(for up-to-date top-performers see leaderboards of datasets like ImageNet or COCO)



Images from: Canziani et al., An Analysis of Deep Neural Network Models for Practical Applications, arXiv 2017 Blog: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

Architecture Elements

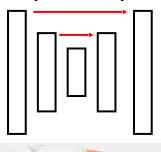
Some notable architecture elements shared by many successful architectures: Dilated Dilated Attention

and Dense Blocks

64-d 3x3, 64 3x3, 64 3x3, 64

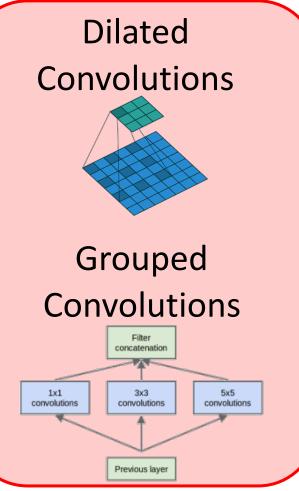
Skip Connections

(UNet)



May 6-10 Genova, Italy

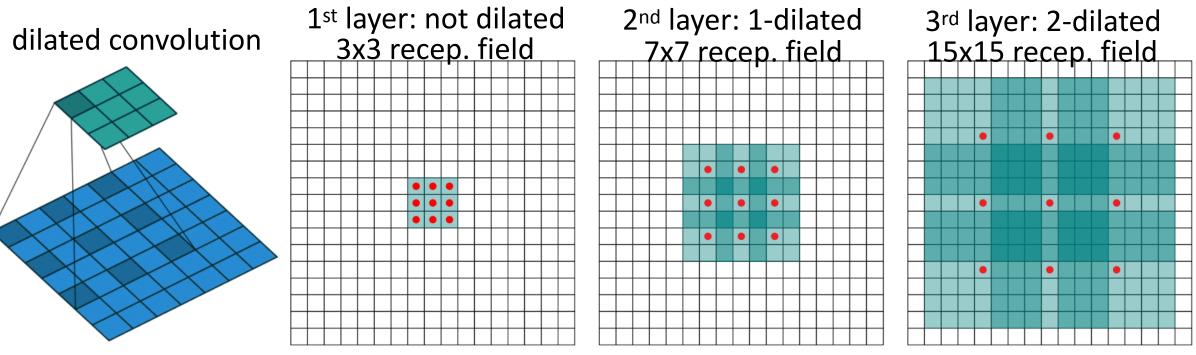
Eurographics2019



Attention (Spatial and over Channels)

Dilated (Atrous) Convolutions

Problem: increasing the receptive field costs a lots of parameters. Idea: spread out the samples used in each convolution.



Images from: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, arXiv 2016 Yu and Koltun, Multi-scale Context Aggregation by Dilated Convolutions, ICLR 2016

Dilated (Atrous) Convolutions

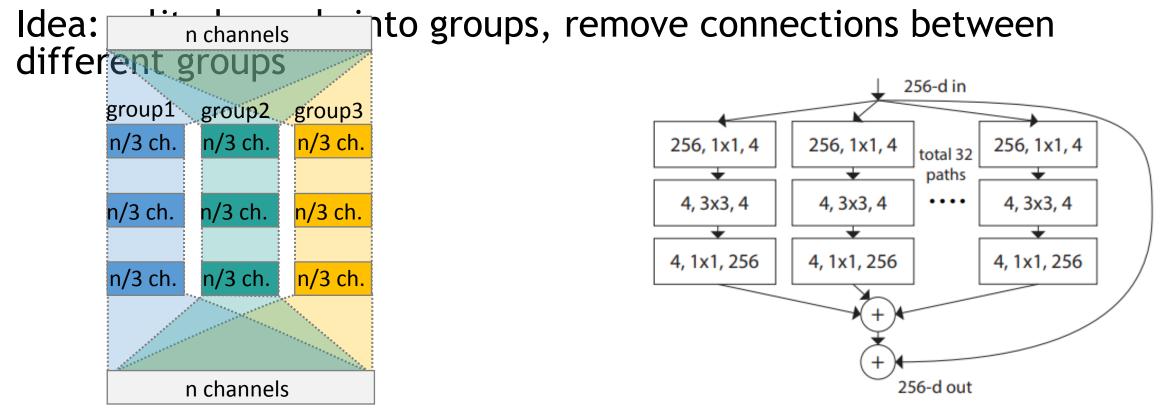
Problem: increasing the receptive field costs a lots of parameters. Idea: spread out the samples used for a convolution.

dilated convolution dilated c

Dumoulin and Visin, A guide to convolution arithmetic for deep learning, arXiv 2016

Grouped Convolutions (Inception Modules)

Problem: conv. parameters grow quadratically in the number of channels

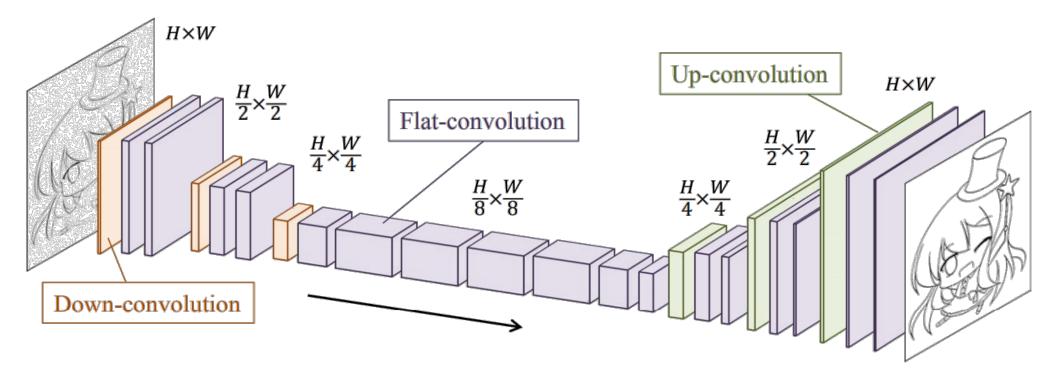


Eurographics2019

May 6-10 Genova, Italy

Image from: Xie et al., Aggregated Residual Transformations for Deep Neural Networks, CVPR 2017

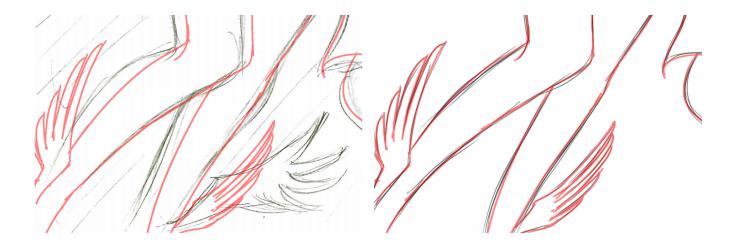
Example: Sketch Simplification



Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

Example: Sketch Simplification

- Loss for thin edges saturates easily
- Authors take extra steps to align input and ground truth edges



Pencil: input Red: ground truth

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

Image Decomposition

- A selection of methods:
- Direct Instrinsics, Narihira et al., 2015
- Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al., 2015
- Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017

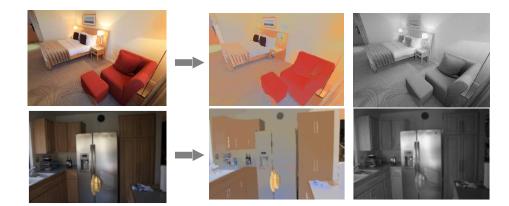
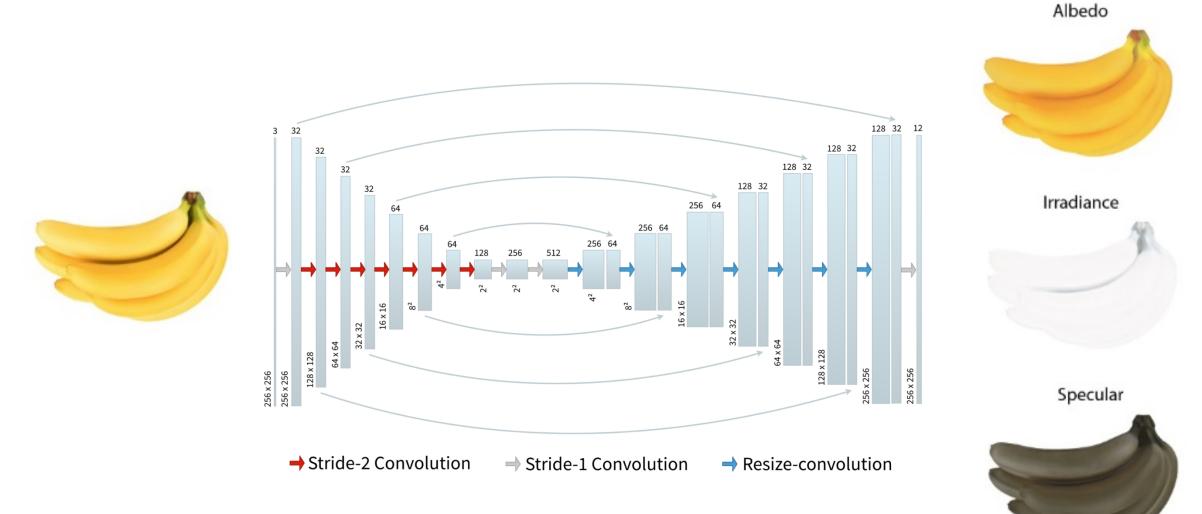
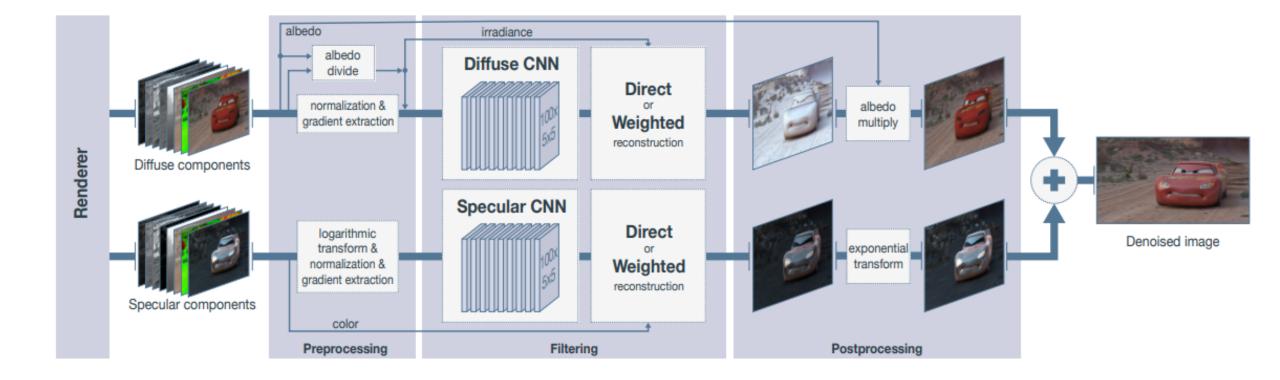


Image Decomposition: Decomposing Single Images for Layered Photo Retouching



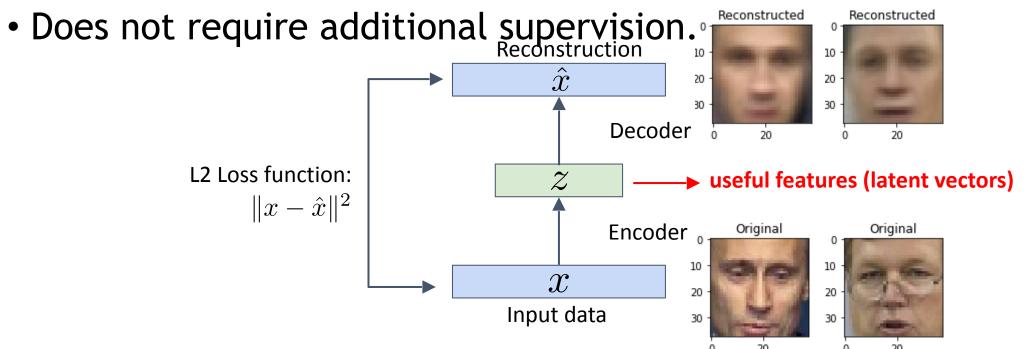
Example Application: Denoising



Deep Features

Autoencoders

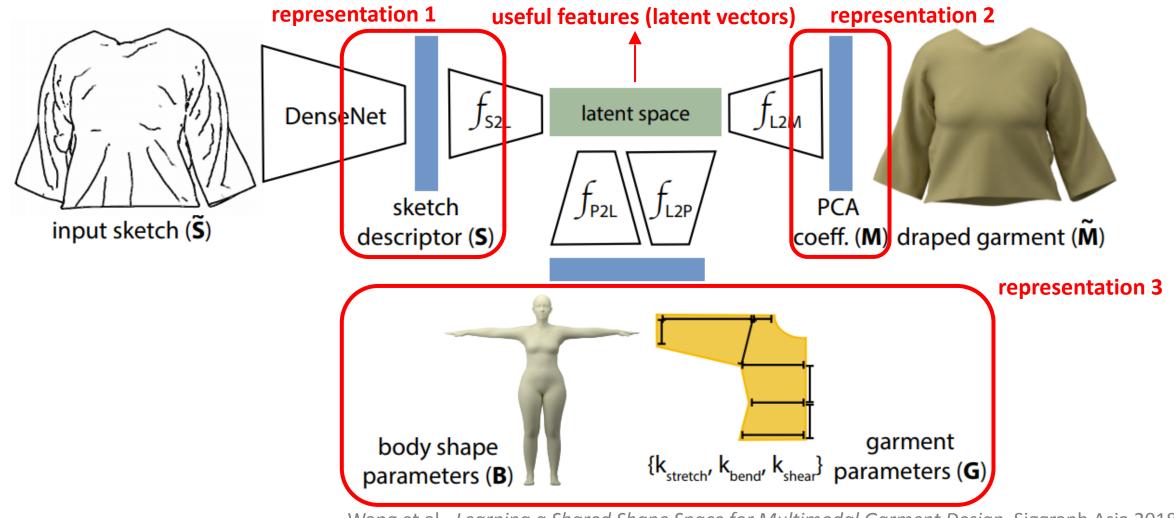
- Features learned by deep networks are useful for a large range of tasks.
- An autoencoder is a simple way to obtain these features.



Manash Kumar Mandal, Implementing PCA, Feedforward and Convolutional Autoencoders and using it for Image Reconstruction, Retrieval & Compression, https://

blog.manash.me/

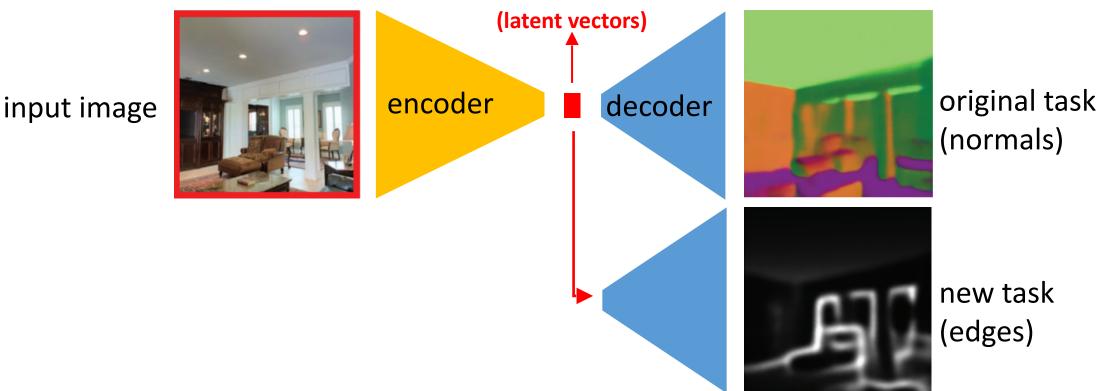
Shared Feature Space: Interactive Garments



Wang et al., Learning a Shared Shape Space for Multimodal Garment Design, Siggraph Asia 2018

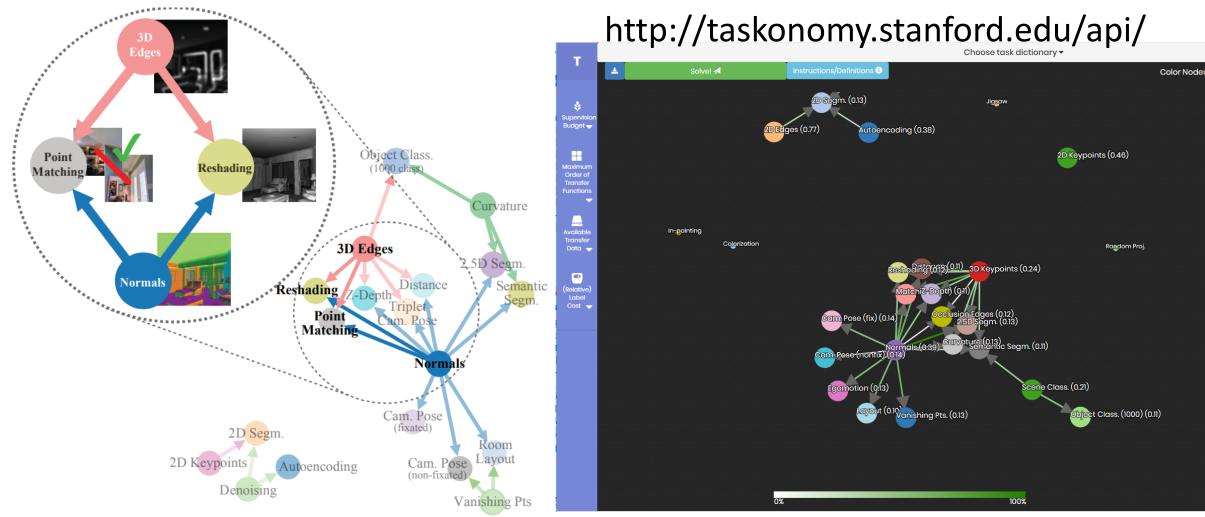
Transfer Learning

Features extracted by well-trained CNNs often generalize beyond the task they were trained on useful features



Images from: Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018

Taxonomy of Tasks: Taskonomy

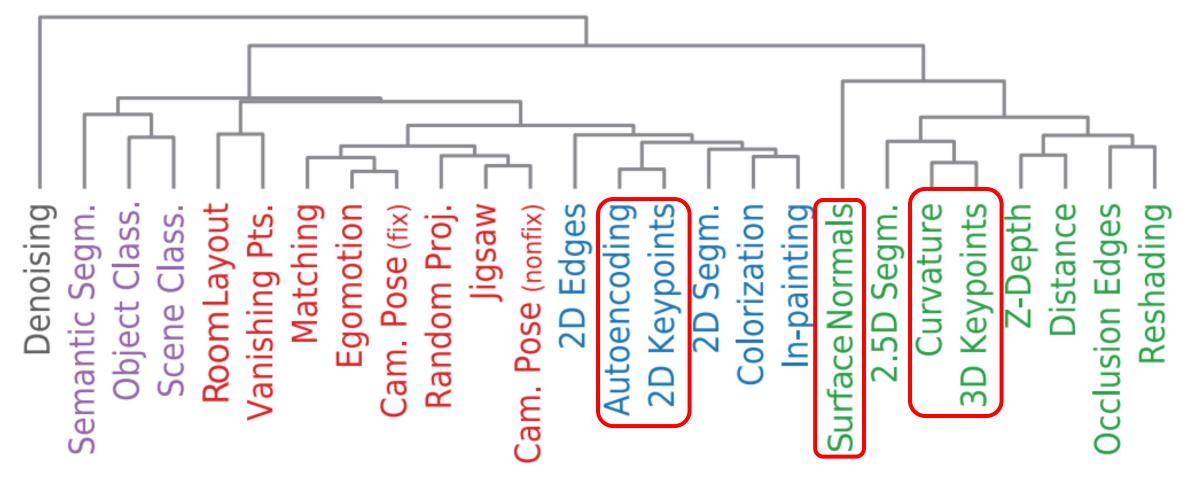


Images from: Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018

Taxonomy of Tasks: Taskonomy

Eurographics2019

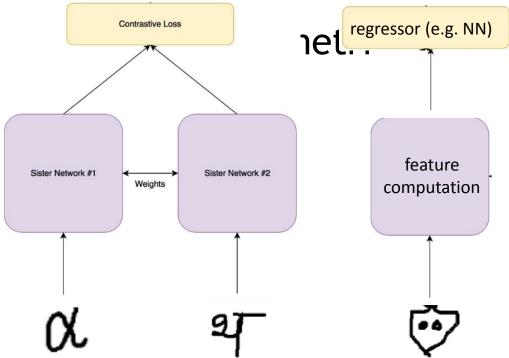
May 6-10 Genova, Italy



Images from: Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018

Few-shot, One-shot Learning

- With a good feature space, tasks become easier from
- In classification, for example, nearest neighbors might already beset B good enough
- Often trained with a Siamese network feature space



https://hackernoon.com/one-shot-learning-with-siamese-networks-in-pytorch-8ddaab10340e

One-shot:

train regressor with

Style Transfer

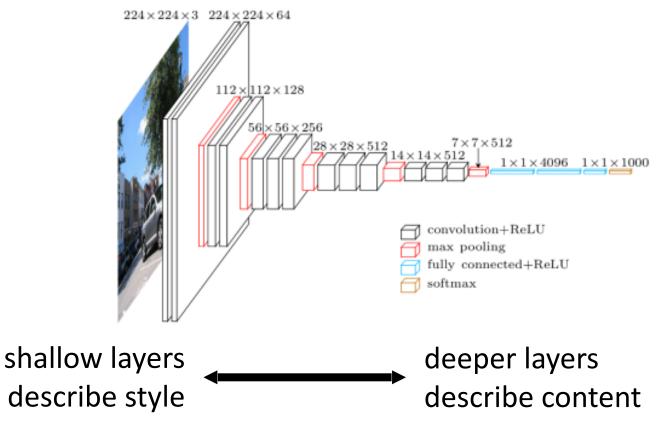
• Combine content from image A with style from image B

Images from: Gatys et al., Image Style Transfer using Convolutional Neural Networks, CVPR 2016

What is Style and Content?

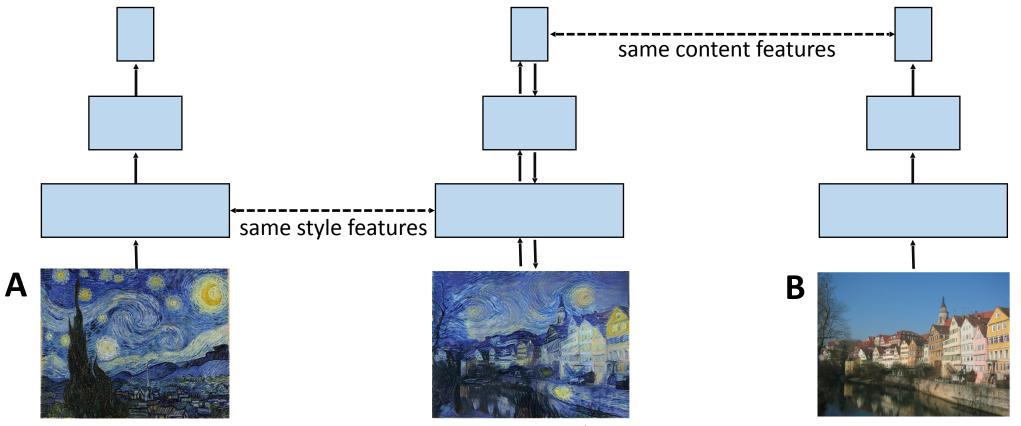
Remember that features in a CNN often generalize well.

Define style and content using the layers of a CNN (VGG19 for example):



Optimize for Style A and Content B

same pre-trained networks, fix weights



optimize to have same style/content features

Eurographics2019

May 6-10 Genova, Italy

Style Transfer: Follow-Ups

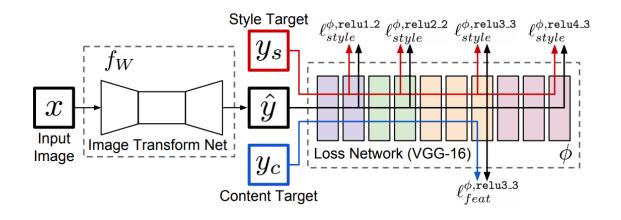
more control over the result

(c) Style II

(a) Content

(b) Style I

feed-forward networks



Images from: Gatys, et al., *Controlling Perceptual Factors in Neural Style Transfer*, CVPR 2017 Johnson et al., *Perceptual Losses for Real-Time Style Transfer and Super-Resolution*, ECCV 2016

Style Transfer for Videos

Artistic style transfer for videos

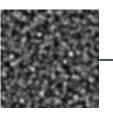
Manuel Ruder Alexey Dosovitskiy Thomas Brox

University of Freiburg Chair of Pattern Recognition and Image Processing

Ruder et al., Artistic Style Transfer for Videos, German Conference on Pattern Recognition 2016

Adversarial Image Generation

Generative Adversarial Networks



Player 1: generator -

Scores if discriminator can't distinguish output from real image

from dataset

Player 2: discriminator —>real/fake

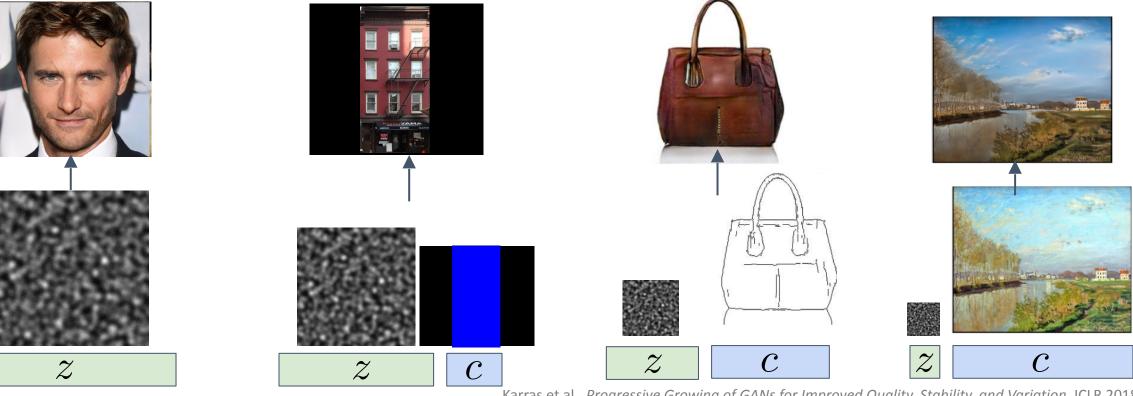
Scores if it can distinguish between real and fake

GANs to CGANs (Conditional GANs)

GAN

CGAN

increasingly determined by the condition



Karras et al., Progressive Growing of GANs for Improved Quality, Stability, and Variation, ICLR 2018 Kelly and Guerrero et al., FrankenGAN: Guided Detail Synthesis for Building Mass Models using Style-Synchonized GANs, Siggraph Asia 2018 Isola et al., Image-to-Image Translation with Conditional Adversarial Nets, CVPR 2017 Image Credit: Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017

Image-to-image Translation

May 6-10 Genova, Italy

- ≈ learn a mapping between images from example pairs
- Approximate sampling from a conditional distribution $p_{
 m data}(x \mid c)$

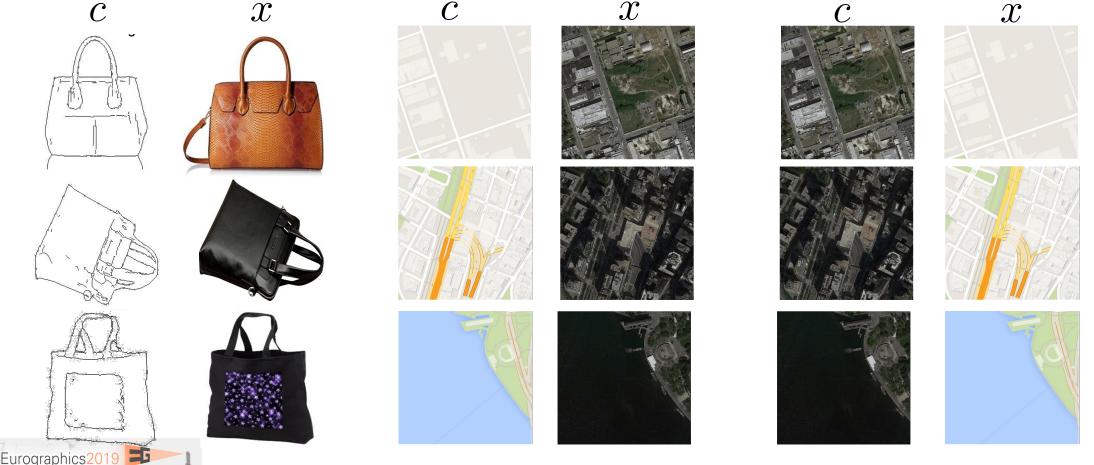


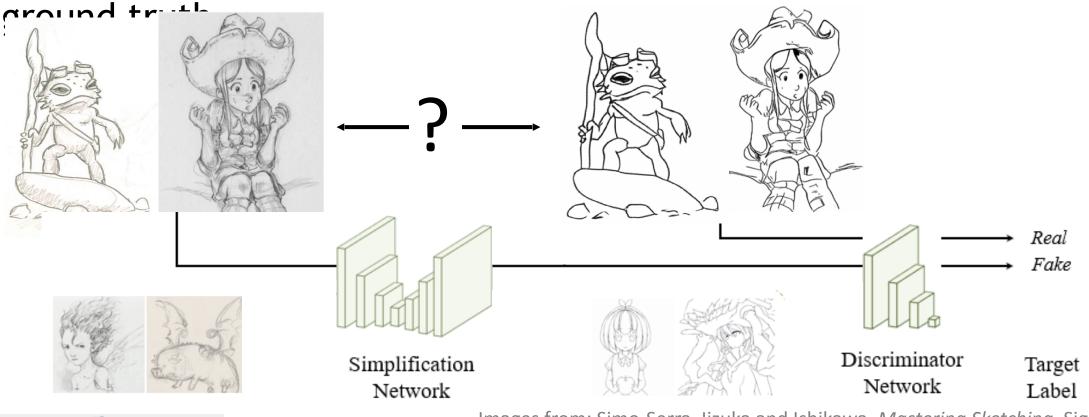
Image Credit: Image-to-Image Translation with Conditional Adversarial Nets, Isola et al.

Adversarial Loss vs. Manual Loss

Eurographics2019

May 6-10 Genova, Italy

Problem: A good loss function is often hard to find Idea: Train a network to discriminate between network output and



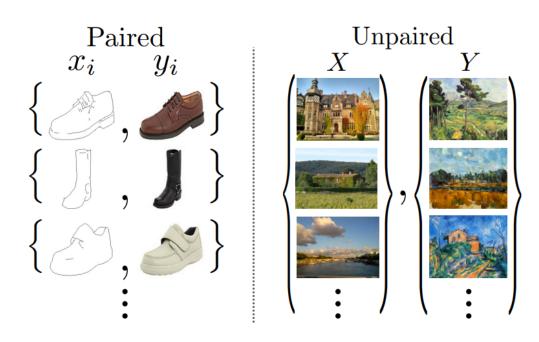
Images from: Simo-Serra, lizuka and Ishikawa, *Mastering Sketching*, Siggraph 2018 SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 28

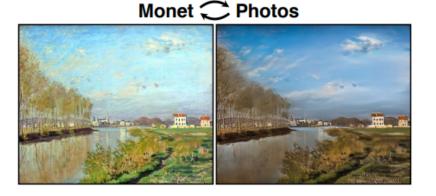
CycleGANs

Eurographics2019

May 6-10 Genova, Italy

- Less supervision than CGANs: mapping between unpaired datasets
- Two GANs + cycle consistency





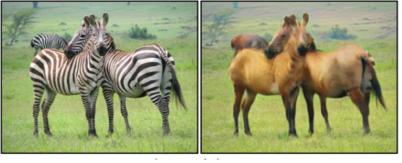
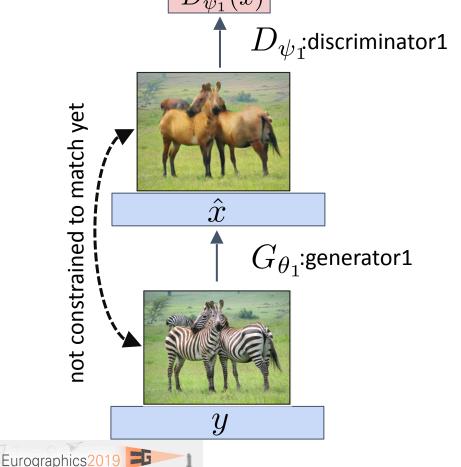


Image Credit: Unpaired Image-to-Image Translation using Cydle-Consistent Adversarial Networks, Zhu et al.

CycleGAN: Two GANs ...

• Not conditional, so this alone does not constrain generator input and output to match $D_{\psi_1}(\hat{x})$



May 6-10 Genova, Italy

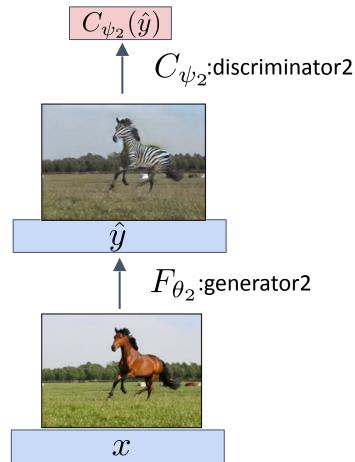
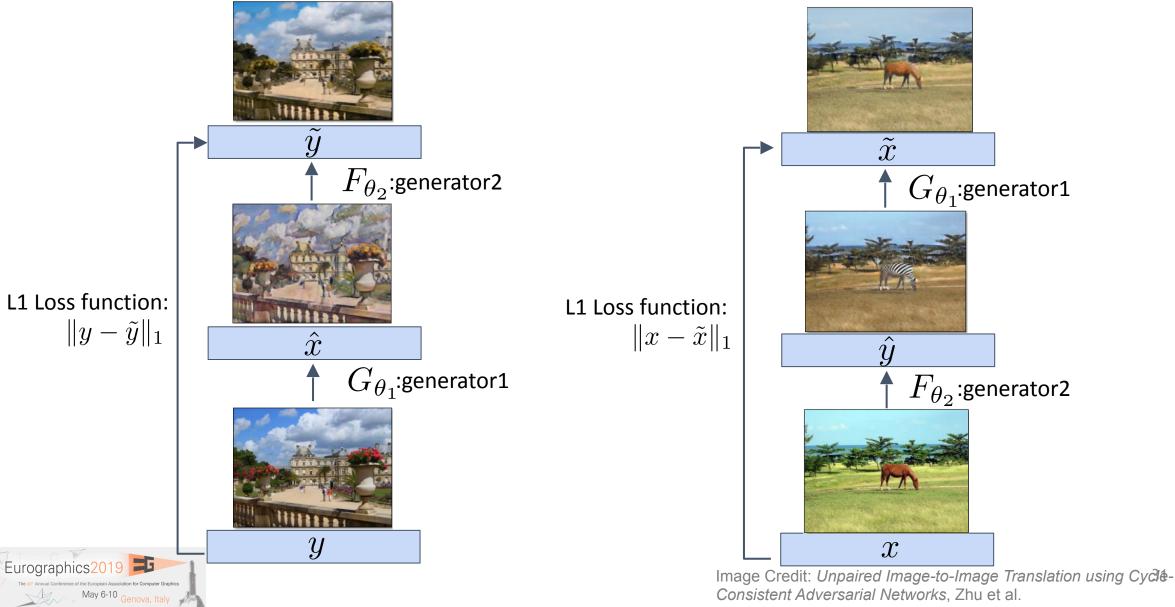


Image Credit: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Zhu et al.

CycleGAN: ... and Cycle Consistency



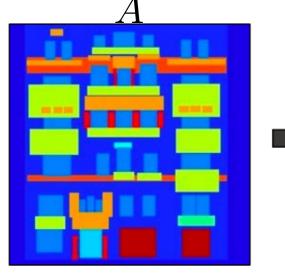
The Conditional Distribution in CGANs

p(B|A)

A

Image from: Zhu et al., Toward Multimodal Image-to-Image Translation, NIPS 2017

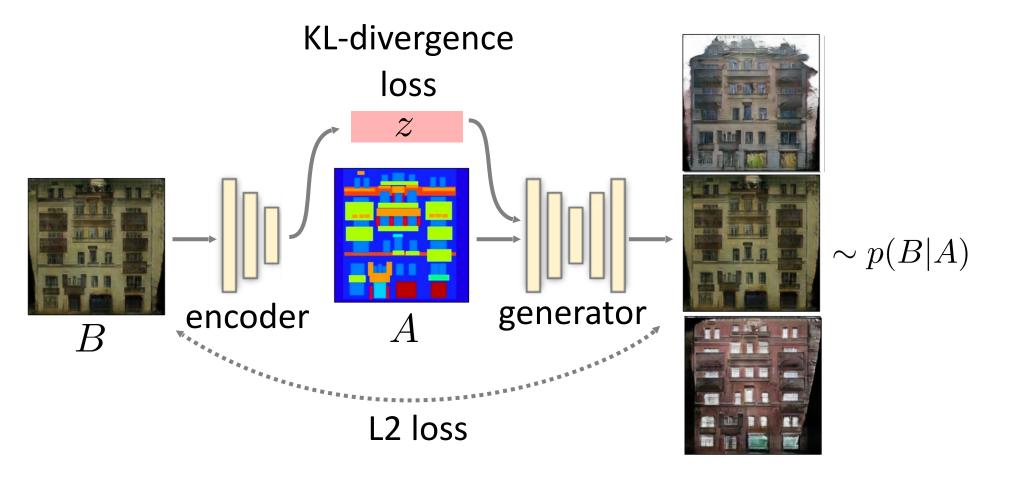
The Conditional Distribution in CGANs



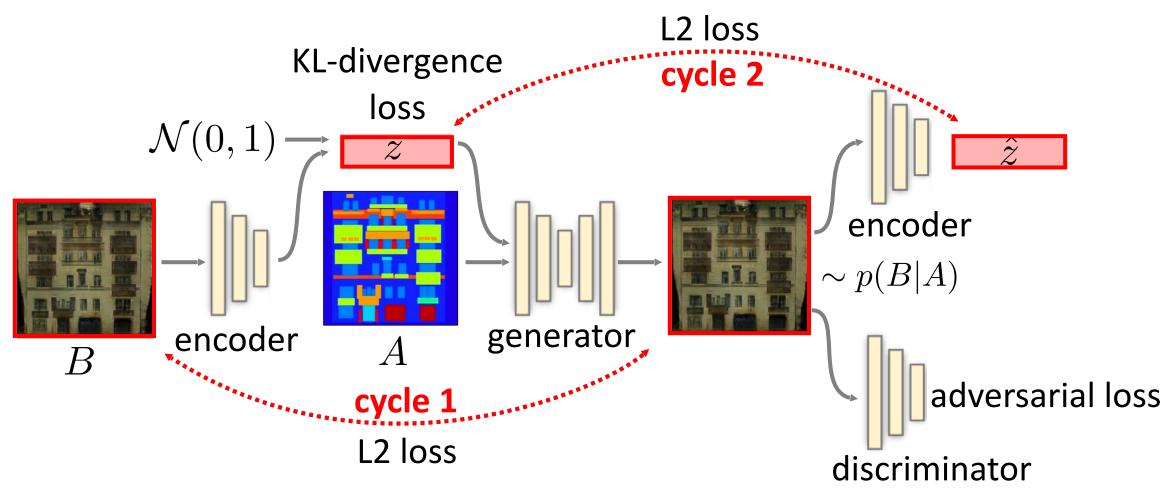
Pix2Pix

Zhu et al., Toward Multimodal Image-to-Image Translation, NIPS 2017

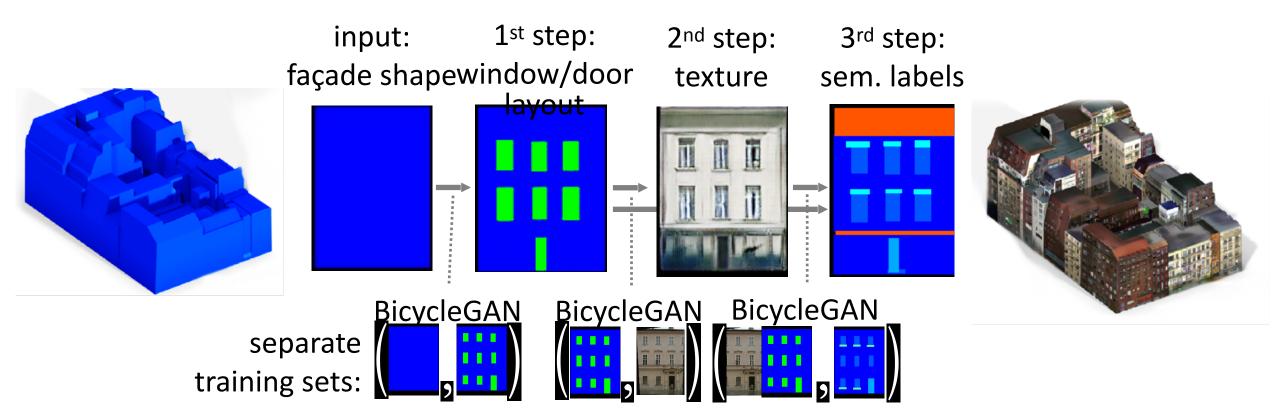
BicycleGAN



BicycleGAN

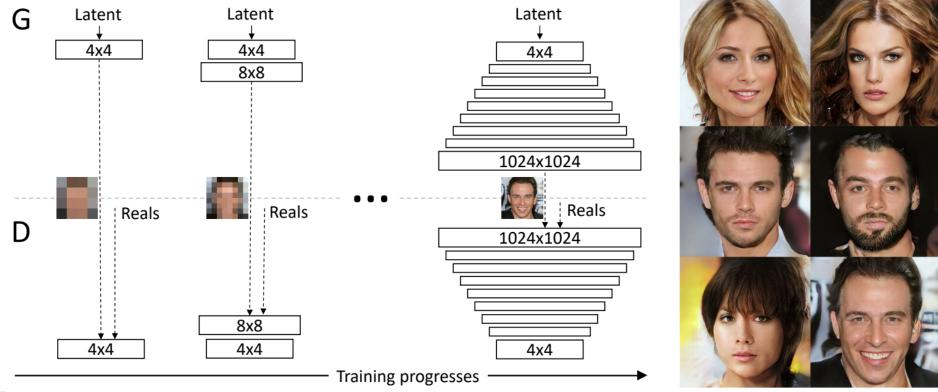


FrankenGAN



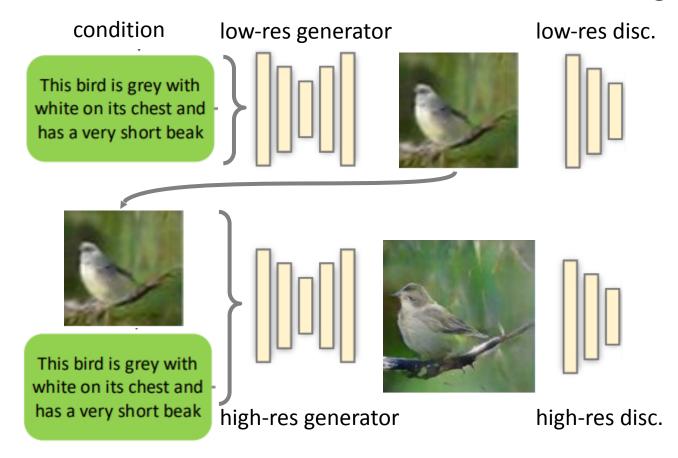
Progressive GAN

- Resolution is increased progressively during training
- Also other tricks like using minibatch statistics and normalizing feature vectors



StackGAN

Condition does not have to be an image

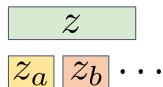


This flower has white petals with a yellow tip and a yellow pistil

A large bird has large thighs and large wings that have white wingbars

Zhang et al., StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, ICCV 2017

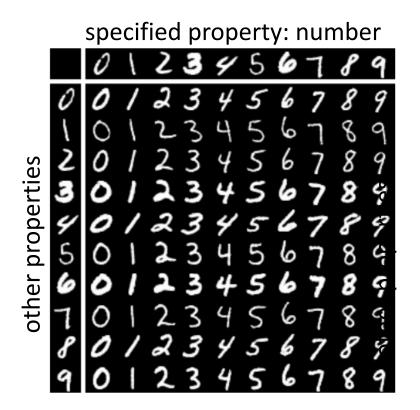
Disentanglement



Eurographics2019

May 6-10 Genova, Italy

- Entangled: different properties may be mixed up over all dimensions
- Disentangled: different properties are in different dimensions

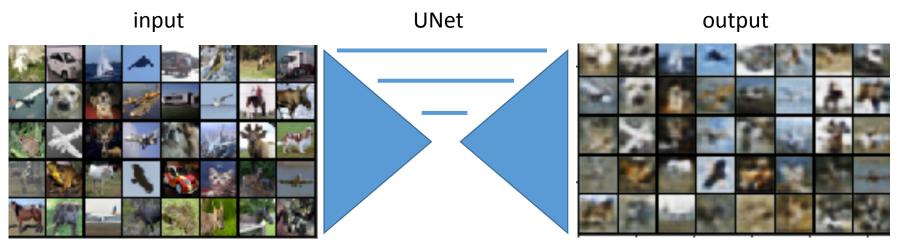


Mathieu et al., Disentangling factors of variation in deep representations using adversarial training, NIPS 2016

Attention and Gray Box Learning

Attention in Deep Learning

target: horizontal mirroring



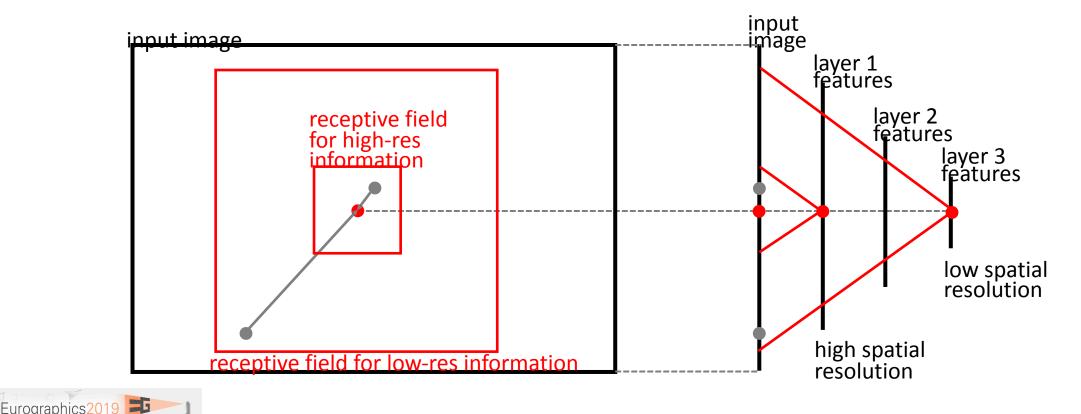
Why is this hard for the network?

- 1) Locality of convolutions
- 2) Driven only by data from shallower layers (no semantics)

Attention in Deep Learning

May 6-10 Genova, Italy

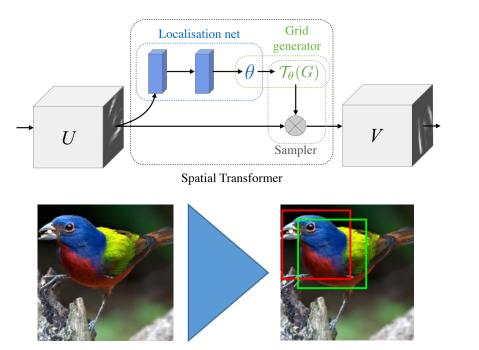
Problem: architecture constrains information flow. For example, in a typical CNN, at a given image location (red), information about other image locations (grey) is available in a resolution that depends on the spatial distance.



Attention Based on Semantics

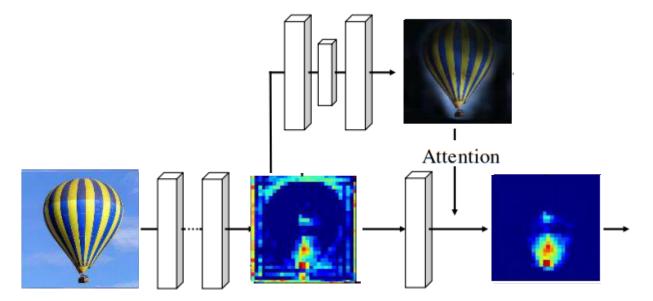
Idea: use higher-level semantics to select relevant information

Spatial Transformer Networks



Jaderberg et al., Spatial Transformer Networks, NIPS 2015

Residual Attention Network for Image Classification

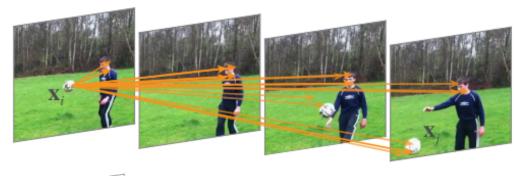


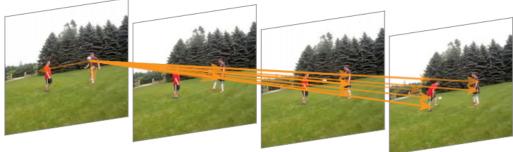
Wang et al., Residual Attention Network for Image Classification, CVPR 2017

Attention to Distant Details

Idea: gather information from distant details based on their features

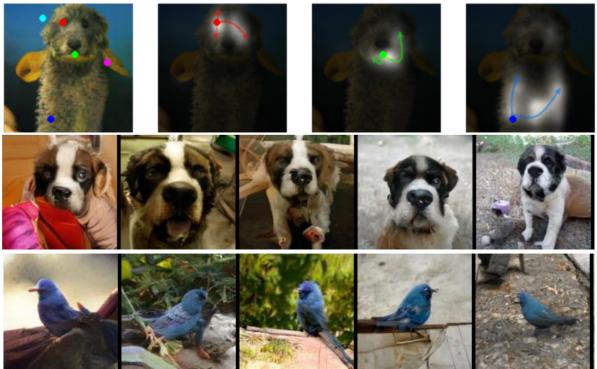
Non-local Neural Networks





Wang et al., Non-local Neural Networks, CVPR 2018

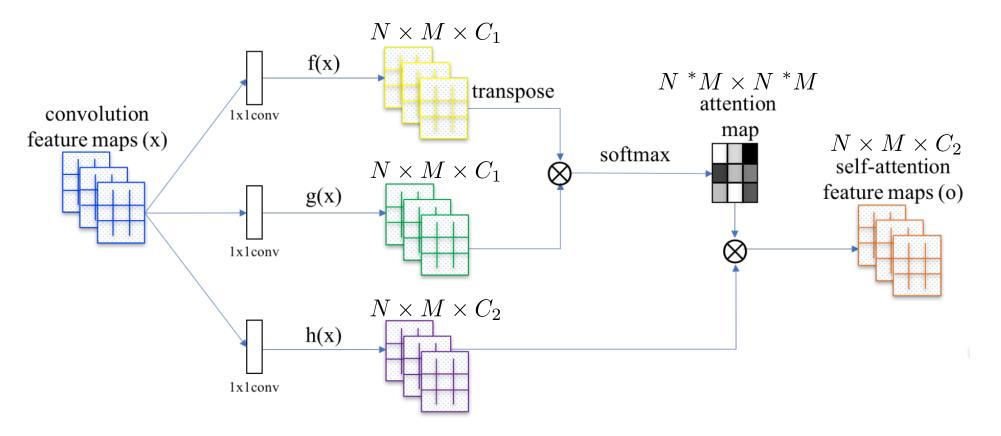
Attention GAN



Zhang et al., Self-Attention Generative Adversarial Networks, CVPR 2018

Attention to Distant Details

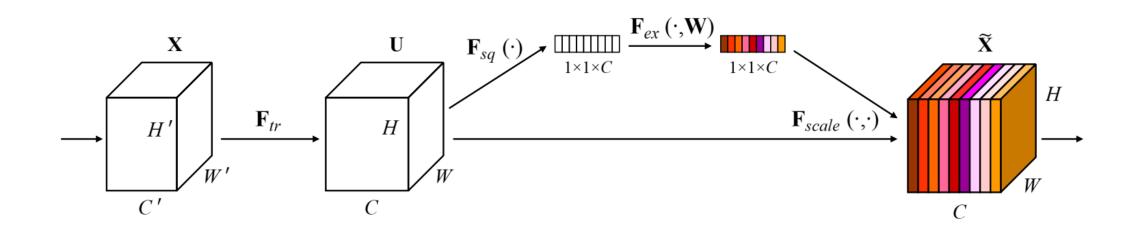
Idea: gather information from distant details based on their features



Zhang et al., Self-Attention Generative Adversarial Networks, CVPR 2018

Squeeze and Excitation: Attention over Channels

Idea: weigh (emphasize and suppress) channels based on global information

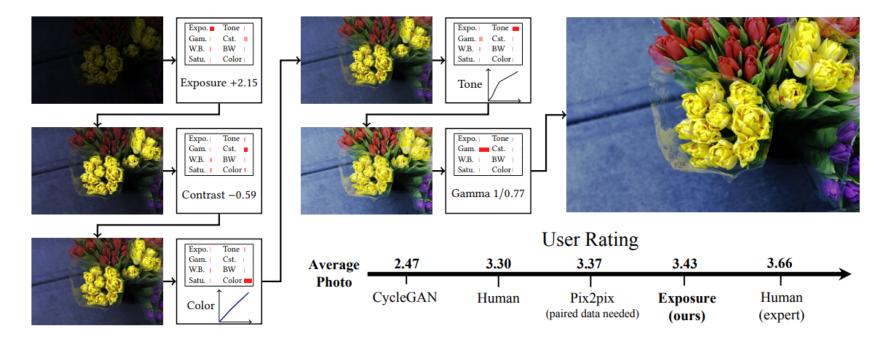


Hu et al., Squeeze-and-Excitation Networks, CVPR 2018

Gray Box Learning

Problem: Most networks are black boxes.

Idea: Regress parameters for a small set of well-known operations.



Hu et al., Exposure: A White-Box Photo Post-Processing Framework, Siggraph 2018

Summary

- Common Architecture Elements (Dilated Convolution, Grouped Convolutions)
- Deep Features (Autoencoders, Transfer Learning, One-shot Learning, Style Transfer)
- Adversarial Image Generation (GANs, CGANs)
- Interesting Trends (Attention, "Gray Box" Learning)

