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Common Architecture Elements
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ImageNet classification performance  
(for up-to-date top-performers see leaderboards of datasets like ImageNet or COCO)

Classification, Segmentation, Detection
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Images	from:	Canziani	et	al.,	An	Analysis	of	Deep	Neural	Network	Models	for	Practical	Applications,	arXiv	2017	
Blog:	https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
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Some notable architecture elements shared by many successful 
architectures:

Architecture Elements
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Grouped	
Convolutions

Dilated  
Convolutions

Residual	Blocks  
and	Dense	Blocks

Skip	Connections	
(UNet)

Attention  
(Spatial	and	over	Channels)



Problem: increasing the receptive field costs a lots of parameters. 
Idea: spread out the samples used in each convolution.

Dilated (Atrous) Convolutions
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Images	from:	Dumoulin	and	Visin,	A	guide	to	convolution	arithmetic	for	deep	learning,	arXiv	2016 
Yu	and	Koltun,	Multi-scale	Context	Aggregation	by	Dilated	Convolutions,	ICLR	2016

dilated	convolution
1st	layer:	not	dilated	
3x3	recep.	field

2nd	layer:	1-dilated	
7x7	recep.	field

3rd	layer:	2-dilated	
15x15	recep.	field



Problem: increasing the receptive field costs a lots of parameters. 
Idea: spread out the samples used for a convolution.

Dilated (Atrous) Convolutions

 5

Dumoulin	and	Visin,	A	guide	to	convolution	arithmetic	for	deep	learning,	arXiv	2016

dilated	convolution

1st	layer:	not	dilated	
3x3	recep.	field

2nd	layer:	1-dilated	
7x7	recep.	field

3rd	layer:	2-dilated	
15x15	recep.	field

Input	image

…



Problem: conv. parameters grow quadratically in the number of 
channels 
Idea: split channels into groups, remove connections between 
different groups

Grouped Convolutions (Inception Modules)
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n	channels

Image	from:	Xie	et	al.,	Aggregated	Residual	Transformations	for	Deep	Neural	Networks,	CVPR	2017

n/3	ch.

n/3	ch.

n/3	ch.

n/3	ch.

n/3	ch.

n/3	ch.

n/3	ch.

n/3	ch.

n/3	ch.

n	channels

group3group1 group2



Example: Sketch Simplification

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.
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• Loss for thin edges saturates easily 
• Authors take extra steps to align input and ground truth edges

Pencil:	input	
Red:	ground	truth

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

Example: Sketch Simplification
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• A selection of methods: 
• Direct	Instrinsics,	Narihira	et	al.,	2015	

• Learning	Data-driven	Reflectance	Priors	for	Intrinsic	Image	Decomposition,	Zhou	et	al.,	
2015	

• Decomposing	Single	Images	for	Layered	Photo	Retouching,	Innamorati	et	al.	2017

Image Decomposition
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Image Decomposition: Decomposing  
Single	Images	for	Layered	Photo	Retouching
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Example Application: Denoising
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Deep Features
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• Features learned by deep networks are useful for a large range of 
tasks. 

• An autoencoder is a simple way to obtain these features. 
• Does not require additional supervision.

Autoencoders
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Encoder

Input	data

Decoder

L2	Loss	function:	

Reconstruction

useful	features	(latent	vectors)

Manash	Kumar	Mandal,	Implementing	PCA,	Feedforward	and	Convolutional	Autoencoders	and	using	it	for	Image	Reconstruction,	Retrieval	&	Compression,	https://
blog.manash.me/



Shared Feature Space: Interactive Garments
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useful	features	(latent	vectors)

Wang	et	al.,	Learning	a	Shared	Shape	Space	for	Multimodal	Garment	Design,	Siggraph	Asia	2018

representation	1 representation	2

representation	3



Features extracted by well-trained CNNs often generalize beyond the 
task they were trained on

Transfer Learning
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original	task	
(normals)

3D	edges

encoder decoderinput	image

new	task	
(edges)

Images	from:	Zamir	et	al.,	Taskonomy:	Disentangling	Task	Transfer	Learning,	CVPR	2018

useful	features 
(latent	vectors)



Taxonomy of Tasks: Taskonomy
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Images	from:	Zamir	et	al.,	Taskonomy:	Disentangling	Task	Transfer	Learning,	CVPR	2018

http://taskonomy.stanford.edu/api/



Taxonomy of Tasks: Taskonomy
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Images	from:	Zamir	et	al.,	Taskonomy:	Disentangling	Task	Transfer	Learning,	CVPR	2018



• With a good feature space, tasks become easier 
• In classification, for example, nearest neighbors might already be 

good enough 
• Often trained with a Siamese network, to optimize the metric in 

feature space

Few-shot, One-shot Learning
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https://hackernoon.com/one-shot-learning-with-siamese-networks-in-pytorch-8ddaab10340e

Feature	training:	
lots	of	examples	from 

class	subset	A

One-shot:	
train	regressor	with  

one	example	of	each	class	
in	class	subset	B

regressor	(e.g.	NN)

feature	
computation



• Combine content from image A with style from image B

Style Transfer
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Images	from:	Gatys	et	al.,	Image	Style	Transfer	using	Convolutional	Neural	Networks,	CVPR	2016



What is Style and Content?
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Remember	that	features	in	a	CNN	often	generalize	well.	

Define	style	and	content	using	the	layers	of	a	CNN	(VGG19	for	example):

shallow	layers	
describe	style

deeper	layers	
describe	content



Optimize for Style A and Content B
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same	pre-trained	networks,	fix	weights

same	style	features

same	content	features

A B

optimize	to	have	same	style/content	features



Style Transfer: Follow-Ups
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more	control	over	the	result

Images	from:	Gatys,	et	al.,	Controlling	Perceptual	Factors	in	Neural	Style	Transfer,	CVPR	2017	
Johnson	et	al.,	Perceptual	Losses	for	Real-Time	Style	Transfer	and	Super-Resolution,	ECCV	2016

feed-forward	networks



Style Transfer for Videos
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Ruder	et	al.,	Artistic	Style	Transfer	for	Videos,	German	Conference	on	Pattern	Recognition	2016



Adversarial Image Generation
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Generative Adversarial Networks
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Player	1:	generator	
Scores	if	discriminator	
can’t	distinguish	output	
from	real	image

Player	2:	discriminator	
Scores	if	it	can	distinguish	
between	real	and	fake

real/fake

from	dataset



GANs to CGANs (Conditional GANs)
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GAN

increasingly	determined	by	the	condition

Karras	et	al.,	Progressive	Growing	of	GANs	for	Improved	Quality,	Stability,	and	Variation,	ICLR	2018 
Kelly	and	Guerrero	et	al.,	FrankenGAN:	Guided	Detail	Synthesis	for	Building	Mass	Models	using	Style-Synchonized	GANs,	Siggraph	Asia	2018	

Isola	et	al.,	Image-to-Image	Translation	with	Conditional	Adversarial	Nets,	CVPR	2017 
Image	Credit:	Zhu	et	al.	,	Unpaired	Image-to-Image	Translation	using	Cycle-Consistent	Adversarial	Networks	,	ICCV	2017

GAN CGAN



Image-to-image Translation
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• ≈	learn	a	mapping	between	images	from	example	pairs	
• Approximate	sampling	from	a	conditional	distribution																

Image Credit: Image-to-Image Translation with Conditional Adversarial Nets, Isola et al.



SIGGRAPH	Asia	Course	CreativeAI:	Deep	Learning	for	Graphics

Problem: A good loss function is often hard to find 
Idea: Train a network to discriminate between network output and 
ground truth

Adversarial Loss vs. Manual Loss
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?

Images	from:	Simo-Serra,	Iizuka	and	Ishikawa,	Mastering	Sketching,	Siggraph	2018



• Less supervision than CGANs: mapping between unpaired datasets 
• Two GANs + cycle consistency

CycleGANs

 29Image Credit: Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks, Zhu et al.



• Not conditional, so this alone does not constrain generator input and output to 
match

CycleGAN: Two GANs …
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										:generator1

	:discriminator1

										:generator2

	:discriminator2
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Image Credit: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Zhu et al.



CycleGAN: … and Cycle Consistency
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										:generator1

										:generator2 										:generator1

										:generator2

L1	Loss	function:	L1	Loss	function:	

Image Credit: Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks, Zhu et al.



The Conditional Distribution in CGANs

 32

Image	from:	Zhu	et	al.,	Toward	Multimodal	Image-to-Image	Translation,	NIPS	2017



The Conditional Distribution in CGANs
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Pi
x2
Pi
x

Zhu	et	al.,	Toward	Multimodal	Image-to-Image	Translation,	NIPS	2017



BicycleGAN
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generatorencoder

KL-divergence  
loss

L2	loss



BicycleGAN
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generatorencoder

KL-divergence  
loss

L2	loss discriminator

adversarial	loss

encoder

L2	loss

cycle	1

cycle	2



FrankenGAN
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2nd	step:	
texture

3rd	step:	
sem.	labels

input: 
façade	shape

1st	step:	
window/door 

layout

BicycleGAN BicycleGAN BicycleGAN
separate	

training	sets:



Progressive GAN
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• Resolution	is	increased	progressively	during	training	
• Also	other	tricks	like	using	minibatch	statistics	and	normalizing	feature	vectors

Karras	et	al.,	Progressive	Growing	of	GANs	for	Improved	Quality,	Stability,	and	Variation,	ICLR	2018



Condition does not have to be an image

StackGAN
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low-res	generator	 low-res	disc.

high-res	generator	 high-res	disc.

condition This	flower	has	white	petals 
with	a	yellow	tip	and	a	yellow	pistil	

A	large	bird	has	large	thighs	and	large	wings	that	
have	white	wingbars	

Zhang	et	al.,	StackGAN:	Text	to	Photo-realistic	Image	Synthesis	with	Stacked	Generative	Adversarial	Networks,	ICCV	2017



Disentanglement
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Entangled:	different	properties	may	be	mixed	up	over	all	dimensions
Disentangled:	different	properties	are	in	different	dimensions

specified	property:	number
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Mathieu	et	al.,	Disentangling	factors	of	variation	in	deep	representations	using	adversarial	training,	NIPS	2016



Attention and Gray Box Learning
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Attention in Deep Learning

 41

input

Why	is	this	hard	for	the	network?

1) Locality	of	convolutions	
2) Driven	only	by	data	from	shallower	layers	(no	semantics)

UNet output

target:	horizontal	mirroring



Attention in Deep Learning
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Problem:	architecture	constrains	information	flow.	For	example,	in	a	typical	
CNN,	at	a	given	image	location	(red),	information	about	other	image	locations	
(grey)	is	available	in	a	resolution	that	depends	on	the	spatial	distance.

receptive	field	
for	high-res  
information

receptive	field	for	low-res	information high	spatial  
resolution

low	spatial  
resolution

input 
image

layer	1 
features

layer	2 
features

layer	3 
features

input	image



Idea: use higher-level semantics to select relevant information

Attention Based on Semantics
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Spatial	Transformer	Networks

Jaderberg	et	al.,	Spatial	Transformer	Networks,	NIPS	2015

Residual	Attention	Network 
for	Image	Classification

Wang	et	al.,	Residual	Attention	Network	for	Image	Classification,	CVPR	2017



Attention to Distant Details
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Idea:	gather	information	from	distant	details	based	on	their	features

Non-local	Neural	Networks Attention	GAN

Wang	et	al.,	Non-local	Neural	Networks,	CVPR	2018 Zhang	et	al.,	Self-Attention	Generative	Adversarial	Networks,	CVPR	2018



Attention to Distant Details
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Idea:	gather	information	from	distant	details	based	on	their	features

Zhang	et	al.,	Self-Attention	Generative	Adversarial	Networks,	CVPR	2018



Idea: weigh (emphasize and suppress) channels based on global 
information

Squeeze and Excitation: Attention over Channels
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Hu	et	al.,	Squeeze-and-Excitation	Networks,	CVPR	2018



Problem: Most networks are black boxes. 
Idea: Regress parameters for a small set of well-known operations.

Gray Box Learning
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Hu	et	al.,	Exposure:	A	White-Box	Photo	Post-Processing	Framework,	Siggraph	2018



• Common Architecture Elements  
(Dilated Convolution, Grouped Convolutions) 

• Deep Features  
(Autoencoders, Transfer Learning, One-shot Learning, Style Transfer) 

• Adversarial Image Generation  
(GANs, CGANs) 

• Interesting Trends 
(Attention, “Gray Box” Learning)

Summary
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