



# **3D Domains (intrinsic)**



http://geometry.cs.ucl.ac.uk/dl\_for\_CG/



# Timetable

|                  |                                           |         | Niloy | Federico | lasonas | Emanuele |
|------------------|-------------------------------------------|---------|-------|----------|---------|----------|
| Theory/Basics    | Introduction                              | 9:00    | х     | Х        | Х       | Х        |
|                  | Machine Learning Basics                   | ~ 9:05  | х     |          |         |          |
|                  | Neural Network Basics                     | ~ 9:35  |       | Х        |         |          |
|                  | Alternatives to Direct Supervision (GANs) | ~11:00  |       |          | Х       |          |
| State of the Art | Image Domain                              | ~11:45  |       |          | Х       |          |
|                  | 3D Domains (extrinsic)                    | ~13:30  | х     |          |         |          |
|                  | 3D Domains (intrinsic)                    | ~ 14:15 |       |          |         | Х        |
|                  | Physics and Animation                     | ~ 16:00 | х     |          |         |          |
|                  | Discussion                                | ~ 16:45 | х     | Х        | Х       | х        |

Sessions: A. 9:00-10:30 (coffee) B. 11:00-12:30 [LUNCH] C. 13:30-15:00 (coffee) D. 15:30-17:00

#### Eurographics2019

Deep Learning for CG & Geometry Processing

# Deep Learning on Manifolds



# Shape representation



Eurographics2019

Deep Learning for CG & Geometry Processing

# Extrinsic vs Intrinsic CNNs

#### Intrinsic



# Different formulations of non-Euclidean CNNs



Spectral domain



Spatial domain





Parametric domain



- Manifold  $\mathcal{X} =$  topological space
- No global Euclidean structure
- Tangent plane  $T_x \mathcal{X} = \text{local}$ Euclidean representation of manifold  $\mathcal{X}$  around x



- Manifold  $\mathcal{X} =$  topological space
- No global Euclidean structure
- Tangent plane  $T_x \mathcal{X} = \text{local}$ Euclidean representation of manifold  $\mathcal{X}$  around x
- Riemannian metric

$$\langle \cdot, \cdot \rangle_{T_x \mathcal{X}} : T_x \mathcal{X} \times T_x \mathcal{X} \to \mathbb{R}$$

depending smoothly on  $\boldsymbol{x}$ 



- Manifold  $\mathcal{X} =$  topological space
- No global Euclidean structure
- Tangent plane  $T_x \mathcal{X} = \text{local}$ Euclidean representation of manifold  $\mathcal{X}$  around x
- Riemannian metric

 $\langle \cdot, \cdot \rangle_{T_x \mathcal{X}} : T_x \mathcal{X} \times T_x \mathcal{X} \to \mathbb{R}$ 

depending smoothly on xIsometry = metric-preserving shape deformation



- Manifold  $\mathcal{X} =$  topological space
- No global Euclidean structure
- Tangent plane  $T_x \mathcal{X} = \text{local}$ Euclidean representation of manifold  $\mathcal{X}$  around x
- Riemannian metric

Eurographics2019

 $\langle \cdot, \cdot \rangle_{T_x \mathcal{X}} : T_x \mathcal{X} \times T_x \mathcal{X} \to \mathbb{R}$ 

depending smoothly on  $\boldsymbol{x}$ 

lsometry = metric-preserving shape
deformation

Intrinsic = expressed solely in terms of the Riemannian metric



- Manifold  $\mathcal{X} = \text{topological space}$
- No global Euclidean structure
- Tangent plane  $T_x \mathcal{X} = \text{local}$ Euclidean representation of manifold  $\mathcal{X}$  around x
- Riemannian metric

Eurographics2019

 $\langle \cdot, \cdot \rangle_{T_x \mathcal{X}} : T_x \mathcal{X} \times T_x \mathcal{X} \to \mathbb{R}$ 

depending smoothly on  $\boldsymbol{x}$ 

lsometry = metric-preserving shape
deformation

 $\label{eq:intrinsic} \begin{array}{l} \mbox{Intrinsic} = \mbox{expressed solely in} \\ \mbox{terms of the Riemannian metric} \end{array}$ 

• Geodesic = shortest path on  $\mathcal{X}$  between x and x'



• Scalar field  $f: \mathcal{X} \to \mathbb{R}$ 





Deep Learning for CG & Geometry Processing

- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$





- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

• Laplacian operator  $\Delta f \,{=}\, -{\rm div}(\nabla f)$ 

"difference between f(x) and average value of f around x"



- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

- Laplacian operator ∆f = −div(∇f)
   "difference between f(x) and average value of f around x"
  - Intrinsic (expressed solely in terms of the Riemannian metric)





- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

- Laplacian operator ∆f = −div(∇f)
   "difference between f(x) and average value of f around x"
  - Intrinsic (expressed solely in terms of the Riemannian metric)
  - Isometry-invariant





- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

- Laplacian operator ∆f = −div(∇f)
   "difference between f(x) and average value of f around x"
  - Intrinsic (expressed solely in terms of the Riemannian metric)
  - Isometry-invariant
  - Self-adjoint  $\langle \Delta f, g \rangle_{L^2(\mathcal{X})} = \langle f, \Delta g \rangle_{L^2(\mathcal{X})}$





- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

- Laplacian operator ∆f = −div(∇f)
   "difference between f(x) and average value of f around x"
  - Intrinsic (expressed solely in terms of the Riemannian metric)
  - Isometry-invariant
  - Self-adjoint  $\langle \Delta f, g \rangle_{L^2(\mathcal{X})} = \langle f, \Delta g \rangle_{L^2(\mathcal{X})} \Rightarrow$  orthogonal eigenfunctions





- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

- Laplacian operator ∆f = −div(∇f)
   "difference between f(x) and average value of f around x"
  - Intrinsic (expressed solely in terms of the Riemannian metric)
  - Isometry-invariant
  - Self-adjoint  $\langle \Delta f, g \rangle_{L^2(\mathcal{X})} = \langle f, \Delta g \rangle_{L^2(\mathcal{X})} \Rightarrow$  orthogonal eigenfunctions
  - Positive semidefinite



- Scalar field  $f: \mathcal{X} \to \mathbb{R}$
- Hilbert space  $L^2(\mathcal{X})$  with inner product

$$\langle f,g \rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

- Laplacian operator ∆f = −div(∇f)
   "difference between f(x) and average value of f around x"
  - Intrinsic (expressed solely in terms of the Riemannian metric)
  - Isometry-invariant
  - Self-adjoint  $\langle \Delta f, g \rangle_{L^2(\mathcal{X})} = \langle f, \Delta g \rangle_{L^2(\mathcal{X})} \Rightarrow$  orthogonal eigenfunctions
  - Positive semidefinite  $\Rightarrow$  non-negative eigenvalues



#### Eurographics2019

#### Discrete Laplacian



 $\begin{array}{l} \textbf{Undirected graph} \ (\mathcal{V}, \mathcal{E}) \\ (\Delta f)_i \approx \sum_{(i,j) \in \mathcal{E}} w_{ij} (f_i - f_j) \end{array} \end{array}$ 



Eurographics MacNeal 1949; Duffin 1959; Pinkall, Polthier 1993 Deep Learning for CG & Geometry Processing

#### Discrete Laplacian



Undirected graph  $(\mathcal{V},\mathcal{E})$ 

$$(\Delta f)_i \approx \sum_{(i,j)\in\mathcal{E}} w_{ij}(f_i - f_j)$$

Triangular mesh  $(\mathcal{V}, \mathcal{E}, \mathcal{F})$ 

$$\Delta f)_i \approx \frac{1}{a_i} \sum_{(i,j) \in \mathcal{E}} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{2} (f_i - f_j)$$

 $a_i = \text{local area element}$ 

In matrix-vector notation

$$\Delta f = A^{-1}(D - W)f$$

where  $\mathbf{f} = (f_1, \dots, f_n)^{\top}$ ,  $\mathbf{W}$  is the stiffness matrix,  $\mathbf{A} = \operatorname{diag}(a_1, \dots, a_n)$  is the mass matrix, and  $\mathbf{D} = \operatorname{diag}(\sum_{j \neq 1} w_{1j}, \dots, \sum_{j \neq n} w_{nj})$ 

Eurographics20MacNeal 1949; Duffin 1959; Pinkall, Polthier 1993 Deep Learning for CG & Geometry Processing

$$\Delta \Phi = \Phi \Lambda$$

- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  diagonal matrix of non-negative eigenvalues
- $\mathbf{\Phi} = (\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_n)$  a matrix of eigenvectors

$$\mathbf{A}^{-1}(\mathbf{D} - \mathbf{W})\mathbf{\Phi} = \mathbf{\Phi}\mathbf{\Lambda}$$

- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  diagonal matrix of non-negative eigenvalues
- $\mathbf{\Phi} = (\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_n)$  a matrix of eigenvectors



$$(\mathbf{D} - \mathbf{W})\mathbf{\Phi} = \mathbf{A}\mathbf{\Phi}\mathbf{\Lambda}$$

- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  diagonal matrix of non-negative eigenvalues
- $\mathbf{\Phi} = (\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_n)$  an A-orthonormal matrix of eigenvectors  $(\mathbf{\Phi}^{ op} \mathbf{A} \mathbf{\Phi} = \mathbf{I})$

$$\mathbf{A}^{-1/2}(\mathbf{D}-\mathbf{W})\mathbf{A}^{-1/2}\mathbf{A}^{1/2}\mathbf{\Phi} = \mathbf{A}^{1/2}\mathbf{\Phi}\mathbf{\Lambda}$$

- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  diagonal matrix of non-negative eigenvalues
- $\mathbf{\Phi} = (\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_n)$  an A-orthonormal matrix of eigenvectors  $(\mathbf{\Phi}^{ op} \mathbf{A} \mathbf{\Phi} = \mathbf{I})$

$$\mathbf{A}^{-1/2}(\mathbf{D}-\mathbf{W})\mathbf{A}^{-1/2}\boldsymbol{\Psi}=\boldsymbol{\Psi}\boldsymbol{\Lambda}$$

•  $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  diagonal matrix of non-negative eigenvalues

•  $\Psi = (\psi_1, \dots, \psi_n)$  an orthonormal matrix of eigenvectors  $(\Psi^{ op} \Psi = \mathbf{I})$ 



$$\mathbf{A}^{-1/2}(\mathbf{D}-\mathbf{W})\mathbf{A}^{-1/2}\boldsymbol{\Psi} = \boldsymbol{\Psi}\boldsymbol{\Lambda}$$

•  $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  diagonal matrix of non-negative eigenvalues

•  $\Psi = (\psi_1, \dots, \psi_n)$  an orthonormal matrix of eigenvectors  $(\Psi^{ op} \Psi = \mathbf{I})$ 



First eigenfunctions of 1D Euclidean Laplacian = standard Fourier basis

### Eurographics2019

$$\mathbf{A}^{-1/2}(\mathbf{D}-\mathbf{W})\mathbf{A}^{-1/2}\boldsymbol{\Psi} = \boldsymbol{\Psi}\boldsymbol{\Lambda}$$

•  $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  diagonal matrix of non-negative eigenvalues

•  $\Psi = (\psi_1, \dots, \psi_n)$  an orthonormal matrix of eigenvectors  $(\Psi^{ op} \Psi = \mathbf{I})$ 



First eigenfunctions of a manifold Laplacian

Eurographics2019

Fourier analysis: Euclidean

A function  $f:[-\pi,\pi]\to\mathbb{R}$  can be written as Fourier series

$$f(x) = \sum_{k \ge 0} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x') e^{-ikx'} dx' e^{ikx}$$





Deep Learning for CG & Geometry Processing 11/88

Fourier analysis: Euclidean

A function  $f:[-\pi,\pi]\to\mathbb{R}$  can be written as Fourier series

$$f(x) = \sum_{k \ge 0} \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x') e^{-ikx'} dx'}_{\hat{f}_k = \langle f, e^{ikx} \rangle_{L^2([-\pi,\pi])}} e^{ikx}$$





Deep Learning for CG & Geometry Processing

Fourier analysis: Euclidean

A function  $f:[-\pi,\pi]\to\mathbb{R}$  can be written as Fourier series

$$f(x) = \sum_{k \ge 0} \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x') e^{-ikx'} dx'}_{\hat{f}_k = \langle f, e^{ikx} \rangle_{L^2([-\pi,\pi])}} e^{ikx}$$

$$= \hat{f}_0 \longrightarrow + \hat{f}_1 \longrightarrow + \hat{f}_2 \longrightarrow + \dots$$

Fourier basis = Laplacian eigenfunctions:  $-\frac{d^2}{dx^2}e^{ikx} = k^2e^{ikx}$ 

Eurographics2019

Deep Learning for CG & Geometry  $\mathsf{Processing}_{11/88}$ 

#### Fourier analysis: non-Euclidean

A function  $f:\mathcal{X}\to\mathbb{R}$  can be written as Fourier series

$$f(x) = \sum_{k \ge 1} \underbrace{\int_{\mathcal{X}} f(x')\phi_k(x')dx'}_{\hat{f}_k = \langle f, \phi_k \rangle_{L^2(\mathcal{X})}} \phi_k(x)$$



Fourier basis = Laplacian eigenfunctions:  $\Delta \phi_k(x) = \lambda_k \phi_k(x)$ 

Eurographics2019

### Convolution: Euclidean space

Given two functions  $f,g:[-\pi,\pi]\to\mathbb{R}$  their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$



### Convolution: Euclidean space

Given two functions  $f,g:[-\pi,\pi]\to\mathbb{R}$  their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

• Shift-invariance:  $f(x - x_0) \star g(x) = (f \star g)(x - x_0)$ 

### Convolution: Euclidean space

Given two functions  $f,g:[-\pi,\pi]\to\mathbb{R}$  their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

- Shift-invariance:  $f(x x_0) \star g(x) = (f \star g)(x x_0)$
- Convolution operator commutes with Laplacian:  $(\Delta f)\star g = \Delta(f\star g)$


### Convolution: Euclidean space

Given two functions  $f,g:[-\pi,\pi]\to\mathbb{R}$  their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

- Shift-invariance:  $f(x x_0) \star g(x) = (f \star g)(x x_0)$
- Convolution operator commutes with Laplacian:  $(\Delta f)\star g = \Delta(f\star g)$
- Convolution theorem: Fourier transform diagonalizes the convolution operator

### Convolution: Euclidean space

Given two functions  $f,g:[-\pi,\pi]\to\mathbb{R}$  their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

- Shift-invariance:  $f(x x_0) \star g(x) = (f \star g)(x x_0)$
- Convolution operator commutes with Laplacian:  $(\Delta f) \star g = \Delta(f \star g)$
- Convolution theorem: Fourier transform diagonalizes the convolution operator ⇒ convolution can be computed in the Fourier domain as

$$\widehat{(f\star g)}=\hat{f}\cdot\hat{g}$$



### Convolution: Euclidean space

Given two functions  $f,g:[-\pi,\pi]\to\mathbb{R}$  their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

- Shift-invariance:  $f(x x_0) \star g(x) = (f \star g)(x x_0)$
- Convolution operator commutes with Laplacian:  $(\Delta f) \star g = \Delta(f \star g)$
- Convolution theorem: Fourier transform diagonalizes the convolution operator ⇒ convolution can be computed in the Fourier domain as

$$\widehat{(f\star g)}=\hat{f}\cdot\hat{g}$$

• Efficient computation using FFT

Convolution of two vectors  $\mathbf{f} = (f_1, \dots, f_n)^\top$  and  $\mathbf{g} = (g_1, \dots, g_n)^\top$ 

$$\mathbf{f} \star \mathbf{g} = \begin{bmatrix} g_1 & g_2 & \dots & g_n \\ g_n & g_1 & g_2 & \dots & g_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ g_3 & g_4 & \dots & g_1 & g_2 \\ g_2 & g_3 & \dots & \dots & g_1 \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

Eurographics2019

Deep Learning for CG & Geometry Processing 4/8

Convolution of two vectors  $\mathbf{f} = (f_1, \dots, f_n)^\top$  and  $\mathbf{g} = (g_1, \dots, g_n)^\top$ 





Convolution of two vectors  $\mathbf{f} = (f_1, \dots, f_n)^\top$  and  $\mathbf{g} = (g_1, \dots, g_n)^\top$ 



diagonalized by Fourier basis



Convolution of two vectors  $\mathbf{f} = (f_1, \dots, f_n)^\top$  and  $\mathbf{g} = (g_1, \dots, g_n)^\top$ 

$$\mathbf{f} \star \mathbf{g} = \begin{bmatrix} g_1 & g_2 & \dots & g_n \\ g_n & g_1 & g_2 & \dots & g_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ g_3 & g_4 & \dots & g_1 & g_2 \\ g_2 & g_3 & \dots & \dots & g_1 \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$= \mathbf{\Phi} \left[ egin{array}{ccc} \hat{g}_1 & & \ & \ddots & \ & & \hat{g}_n \end{array} 
ight] \mathbf{\Phi}^ op \mathbf{f}$$

Convolution of two vectors  $\mathbf{f} = (f_1, \dots, f_n)^\top$  and  $\mathbf{g} = (g_1, \dots, g_n)^\top$ 

$$\mathbf{f} \star \mathbf{g} = \begin{bmatrix} g_1 & g_2 & \dots & g_n \\ g_n & g_1 & g_2 & \dots & g_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ g_3 & g_4 & \dots & g_1 & g_2 \\ g_2 & g_3 & \dots & \dots & g_1 \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$= \Phi \begin{bmatrix} \hat{g}_1 & & \\ & \ddots & \\ & & \hat{g}_n \end{bmatrix} \begin{bmatrix} \hat{f}_1 \\ \vdots \\ \hat{f}_n \end{bmatrix}$$

Convolution of two vectors  $\mathbf{f} = (f_1, \dots, f_n)^\top$  and  $\mathbf{g} = (g_1, \dots, g_n)^\top$ 

$$\mathbf{f} \star \mathbf{g} = \begin{bmatrix} g_1 & g_2 & \dots & g_n \\ g_n & g_1 & g_2 & \dots & g_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ g_3 & g_4 & \dots & g_1 & g_2 \\ g_2 & g_3 & \dots & \dots & g_1 \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$= \Phi \left[ egin{array}{c} \hat{f}_1 \cdot \hat{g}_1 \ dots \ \hat{f}_n \cdot \hat{g}_n \end{array} 
ight]$$

Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})} \phi_k$$



Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \sum_{k \ge 1} \underbrace{\langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})}}_{\text{product in the Fourier domain}} \phi_k$$

Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \underbrace{\sum_{k \ge 1} \underbrace{\langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})}}_{\text{product in the Fourier domain}} \phi_k}_{\text{inverse Fourier transform}}$$

Eurographics2019

Deep Learning for CG & Geometry Processing

Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})} \phi_k$$

In matrix-vector notation

$$\mathbf{f} \star \mathbf{g} = \mathbf{\Phi} \left( \mathbf{\Phi}^{\top} \mathbf{g} 
ight) \circ \left( \mathbf{\Phi}^{\top} \mathbf{f} 
ight)$$



Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})} \phi_k$$

In matrix-vector notation

$$\mathbf{f} \star \mathbf{g} = \mathbf{\Phi} \operatorname{diag}(\hat{g}_1, \dots, \hat{g}_n) \mathbf{\Phi}^\top \mathbf{f}$$



Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})} \phi_k$$

In matrix-vector notation

$$\mathbf{f} \star \mathbf{g} = \underbrace{\mathbf{\Phi} \operatorname{diag}(\hat{g}_1, \dots, \hat{g}_n) \mathbf{\Phi}^\top}_{\mathbf{G}} \mathbf{f}$$

Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})} \phi_k$$

In matrix-vector notation

$$\mathbf{f} \star \mathbf{g} = \underbrace{\mathbf{\Phi} \operatorname{diag}(\hat{g}_1, \dots, \hat{g}_n) \mathbf{\Phi}^\top}_{\mathbf{G}} \mathbf{f}$$

• Not shift-invariant! (G has no circulant structure)



Spectral convolution of  $f,g\in L^2(\mathcal{X})$  can be defined by analogy

$$f \star g = \sum_{k \ge 1} \langle f, \phi_k \rangle_{L^2(\mathcal{X})} \langle g, \phi_k \rangle_{L^2(\mathcal{X})} \phi_k$$

In matrix-vector notation

$$\mathbf{f} \star \mathbf{g} = \underbrace{\mathbf{\Phi} \operatorname{diag}(\hat{g}_1, \dots, \hat{g}_n) \mathbf{\Phi}^\top}_{\mathbf{G}} \mathbf{f}$$

- Not shift-invariant! (G has no circulant structure)
- Filter coefficients depend on basis  $\phi_1,\ldots,\phi_n$



Convolution expressed in the spectral domain

 $\mathbf{g} = \mathbf{\Phi} \mathbf{W} \mathbf{\Phi}^\top \mathbf{f}$ 

where  ${\bf W}$  is  $n \times n$  diagonal matrix of learnable spectral filter coefficients

Convolution expressed in the spectral domain

 $\mathbf{g} = \mathbf{\Phi} \mathbf{W} \mathbf{\Phi}^\top \mathbf{f}$ 

where  ${\bf W}$  is  $n \times n$  diagonal matrix of learnable spectral filter coefficients

 $\ensuremath{\textcircled{\sc basis}}$  Filters are basis-dependent  $\Rightarrow$  do not generalize across domains

Convolution expressed in the spectral domain

 $\mathbf{g} = \mathbf{\Phi} \mathbf{W} \mathbf{\Phi}^\top \mathbf{f}$ 

where  ${\bf W}$  is  $n \times n$  diagonal matrix of learnable spectral filter coefficients

☺ Filters are basis-dependent ⇒ do not generalize across domains
 ☺ O(n) parameters per layer

Bruna et al. 2014 (first applied to graphs) Eurographics2019

Convolution expressed in the spectral domain

 $\mathbf{g} = \mathbf{\Phi} \mathbf{W} \mathbf{\Phi}^\top \mathbf{f}$ 

where  ${\bf W}$  is  $n \times n$  diagonal matrix of learnable spectral filter coefficients

Bruna et al. 2014 (first applied to graphs) Eurographics2019

Convolution expressed in the spectral domain

 $\mathbf{g} = \mathbf{\Phi} \mathbf{W} \mathbf{\Phi}^\top \mathbf{f}$ 

where  ${\bf W}$  is  $n \times n$  diagonal matrix of learnable spectral filter coefficients

Bruna et al. 2014 (first applied to graphs) Eurographics2019



Function  $\mathbf{f}$ 



Deep Learning for CG & Geometry Processing



'Edge detecting' spectral filter  $\Phi \mathbf{W} \Phi^\top \mathbf{f}$ 



Deep Learning for CG & Geometry Processing

Eurocraphics 2019ilter, different basis  $\Psi W \Psi^{\top} f$  Deep Learning for CG & Geometry Processing 1/88



Deep Learning for CG & Geometry Processing 1/88

### Laplacian eigenbases on non-isometric domains



Eurographics2019

Deep Learning for CG & Geometry  $\mathsf{Processing}_8$ 



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013 EUROGRAPHICS2019. Beam Expressing for CG & Geometry Processing



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013 EUrographics2019. Geometry Processing



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013 EUROGRAPHICS2019. Beam Expressing for CG & Geometry Processing



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013 EUROGRAPHICS2019. Beam et al. 2012; Kovnatsky et al. 2013



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013 EUROGRAPHICS2019

## Basis synchronization with functional maps



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013. EUrographics2019.

## Basis synchronization with functional maps



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013. EUrographics2019.

### Basis synchronization with functional maps



Ovsjanikov et al. 2012; Eynard et al. 2012; Kovnatsky et al. 2013. EUrographics2019.

## Filtering in different bases



Apply spectral filter  $\tau(\lambda)$  in different bases  $\Phi$  and  $\Psi$  $\Rightarrow$  different results!

Eurographics2019

Deep Learning for CG & Geometry Processing
### Filtering in different bases



 $\Rightarrow$  different results!

Eurographics2019

### Filtering in synchronized bases

Eurographics20079



Apply spectral filter  $\tau(\lambda)$  in synchronized bases  $\Phi C_{\Phi}$  and  $\Psi C_{\Psi}$  $\Rightarrow$  similar results!

## Spectral CNN



Convolutional filter of a Spectral CNN





# Spectral Transformer Network



Convolutional filter of a Spectral Transformer Network

Basis synchronization allows generalization across domains
 Explicit FT and IFT

Eurographics2019 (Jaderberg et al. 2015); Yi et al. 2017

# Example: normal prediction with SpecTN





# Example: shape segmentation with SpecTN







**Vanishing moments:** In the Euclidean setting
$$\int_{-\infty}^{+\infty} |x|^{2k} |f(x)|^2 dx = \int_{-\infty}^{+\infty} \left| \frac{\partial^k \hat{f}(\omega)}{\partial \omega^k} \right|^2 d\omega$$

Localization in space = smoothness in frequency domain

**/anishing moments:** In the Euclidean setting
$$\int_{-\infty}^{+\infty} |x|^{2k} |f(x)|^2 dx = \int_{-\infty}^{+\infty} \left| \frac{\partial^k \hat{f}(\omega)}{\partial \omega^k} \right|^2 d\omega$$

#### Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function  $au(\lambda)$ 

Eurographics 2019 Henaff, Bruna, LeCun 2015

**/anishing moments:** In the Euclidean setting
$$\int_{-\infty}^{+\infty} |x|^{2k} |f(x)|^2 dx = \int_{-\infty}^{+\infty} \left| \frac{\partial^k \hat{f}(\omega)}{\partial \omega^k} \right|^2 d\omega$$

#### Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function  $au(\lambda)$ 

Application of the filter

$$\tau(\mathbf{\Delta})\mathbf{f} = \mathbf{\Phi}\tau(\mathbf{\Lambda})\mathbf{\Phi}^{\top}\mathbf{f}$$

**/anishing moments:** In the Euclidean setting
$$\int_{-\infty}^{+\infty} |x|^{2k} |f(x)|^2 dx = \int_{-\infty}^{+\infty} \left| \frac{\partial^k \hat{f}(\omega)}{\partial \omega^k} \right|^2 d\omega$$

#### Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function  $au(\lambda)$ 

Application of the filter

$$\tau(\boldsymbol{\Delta})\mathbf{f} = \boldsymbol{\Phi} \begin{pmatrix} \tau(\lambda_1) & & \\ & \ddots & \\ & & \tau(\lambda_n) \end{pmatrix} \boldsymbol{\Phi}^{\top}\mathbf{f}$$

Eurographics 2014; Henaff, Bruna, LeCun 2015

**/anishing moments:** In the Euclidean setting
$$\int_{-\infty}^{+\infty} |x|^{2k} |f(x)|^2 dx = \int_{-\infty}^{+\infty} \left| \frac{\partial^k \hat{f}(\omega)}{\partial \omega^k} \right|^2 d\omega$$

#### Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function  $au(\lambda)$ 

Application of the parametric filter with learnable parameters lpha

$$au_{oldsymbol{lpha}}(oldsymbol{\Delta})\mathbf{f} = oldsymbol{\Phi} \left( egin{array}{cc} au_{oldsymbol{lpha}}(\lambda_1) & & & \ & \ddots & & \ & & au_{oldsymbol{lpha}}(\lambda_n) \end{array} 
ight) oldsymbol{\Phi}^{ op} \mathbf{f}$$

Eurographics 202914; Henaff, Bruna, LeCun 2015



smooth spectral filter (delocalized in space)





nooth spectral filter (localized in space)

Eurographics2019

Represent spectral transfer function as a polynomial or order r

$$\tau_{\alpha}(\lambda) = \sum_{\ell=0}^{r} \alpha_{\ell} \lambda^{\ell}$$

where  $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_r)^{\top}$  is the vector of filter parameters

Represent spectral transfer function as a polynomial or order r

$$\tau_{\alpha}(\lambda) = \sum_{\ell=0}^{r} \alpha_{\ell} \lambda^{\ell}$$

where  $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_r)^\top$  is the vector of filter parameters

 $\ensuremath{\textcircled{}^\circ}\xspace \mathcal{O}(1)$  parameters per layer

Represent spectral transfer function as a polynomial or order r

$$\tau_{\alpha}(\lambda) = \sum_{\ell=0}^{r} \alpha_{\ell} \lambda^{\ell}$$

where  $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_r)^{\top}$  is the vector of filter parameters

☺ O(1) parameters per layer
 ☺ No explicit computation of Φ<sup>T</sup>, Φ ⇒ O(nr) complexity

Represent spectral transfer function as a polynomial or order r

$$\tau_{\alpha}(\mathbf{\Delta}) = \sum_{\ell=0}^{r} \alpha_{\ell} \mathbf{\Delta}^{\ell}$$

where  $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_r)^\top$  is the vector of filter parameters

☺ O(1) parameters per layer
☺ No explicit computation of Φ<sup>T</sup>, Φ ⇒ O(nr) complexity
☺ Filters have guaranteed r-ring support

Represent spectral transfer function as a polynomial or order r

$$\tau_{\alpha}(\mathbf{\Delta}) = \sum_{\ell=0}^{r} \alpha_{\ell} \mathbf{\Delta}^{\ell}$$

where  $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_r)^{\top}$  is the vector of filter parameters

☺ O(1) parameters per layer
☺ No explicit computation of Φ<sup>T</sup>, Φ ⇒ O(nr) complexity
☺ Filters have guaranteed r-ring support
☺ Mesh dependent !

Represent spectral transfer function as a polynomial or order r

$$\tau_{\boldsymbol{\alpha}}(\boldsymbol{\Delta}) = \sum_{\ell=0}^{r} \alpha_{\ell} \boldsymbol{\Delta}^{\ell}$$

where  $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_r)^{\top}$  is the vector of filter parameters



Eurographics2019

Represent spectral transfer function as a Cayley polynomial or order r

$$\tau_{\mathbf{c},h}(\lambda) = c_0 + 2\operatorname{Re}\left\{\sum_{\ell=1}^r c_\ell (h\lambda - i)^\ell (h\lambda + i)^{-\ell}\right\}$$

where the filter parameters are the vector of real/complex coefficients  $\mathbf{c}=(c_0,\ldots,c_r)^\top$  and the spectral zoom h



Represent spectral transfer function as a Cayley polynomial or order r

$$\tau_{\mathbf{c},h}(\lambda) = c_0 + 2\operatorname{Re}\left\{\sum_{\ell=1}^r c_\ell (h\lambda - i)^\ell (h\lambda + i)^{-\ell}\right\}$$

where the filter parameters are the vector of real/complex coefficients  $\mathbf{c}=(c_0,\ldots,c_r)^\top$  and the spectral zoom h

☺ O(1) parameters per layer
 ☺ Filters have guaranteed exponential spatial decay
 ☺ O(n<sup>3</sup>) computational complexity with direct matrix inversion

Represent spectral transfer function as a Cayley polynomial or order r

$$\tau_{\mathbf{c},h}(\lambda) = c_0 + 2\operatorname{Re}\left\{\sum_{\ell=1}^r c_\ell (h\lambda - i)^\ell (h\lambda + i)^{-\ell}\right\}$$

where the filter parameters are the vector of real/complex coefficients  $\mathbf{c} = (c_0, \ldots, c_r)^\top$  and the spectral zoom h

#### $\ensuremath{\textcircled{}^\circ}\xspace \mathcal{O}(1)$ parameters per layer

 $\ensuremath{\textcircled{\sc op}}$  Filters have guaranteed exponential spatial decay

O(n) computational complexity with Jacobi approximate matrix inversion

Represent spectral transfer function as a Cayley polynomial or order r

$$\tau_{\mathbf{c},h}(\lambda) = c_0 + 2\operatorname{Re}\left\{\sum_{\ell=1}^r c_\ell (h\lambda - i)^\ell (h\lambda + i)^{-\ell}\right\}$$

where the filter parameters are the vector of real/complex coefficients  $\mathbf{c} = (c_0, \ldots, c_r)^\top$  and the spectral zoom h

- $\ensuremath{\mathfrak{O}}(1)$  parameters per layer
- © Filters have guaranteed exponential spatial decay
- O(n) computational complexity with Jacobi approximate matrix inversion
- $\ensuremath{\textcircled{}^\circ}$  Spectral zoom property allowing to better localize in frequency



Represent spectral transfer function as a Cayley polynomial or order r

$$\tau_{\mathbf{c},h}(\lambda) = c_0 + 2\operatorname{Re}\left\{\sum_{\ell=1}^r c_\ell (h\lambda - i)^\ell (h\lambda + i)^{-\ell}\right\}$$

where the filter parameters are the vector of real/complex coefficients  $\mathbf{c} = (c_0, \ldots, c_r)^\top$  and the spectral zoom h

- $\ensuremath{\mathfrak{O}}(1)$  parameters per layer
- $\ensuremath{\textcircled{\ensuremath{\square}}}$  Filters have guaranteed exponential spatial decay
- O(n) computational complexity with Jacobi approximate matrix inversion
- $\ensuremath{\textcircled{}^{\odot}}$  Spectral zoom property allowing to better localize in frequency
- $\ensuremath{\textcircled{\ensuremath{\square}}}$  Richer class of filters than polynomials for the same order



Represent spectral transfer function as a Cayley polynomial or order r

$$\tau_{\mathbf{c},h}(\lambda) = c_0 + 2\operatorname{Re}\left\{\sum_{\ell=1}^r c_\ell (h\lambda - i)^\ell (h\lambda + i)^{-\ell}\right\}$$

where the filter parameters are the vector of real/complex coefficients  $\mathbf{c}=(c_0,\ldots,c_r)^\top$  and the spectral zoom h

- $\ensuremath{\mathfrak{O}}(1)$  parameters per layer
- $\ensuremath{\textcircled{\ensuremath{\square}}}$  Filters have guaranteed exponential spatial decay
- O(n) computational complexity with Jacobi approximate matrix inversion
- $\ensuremath{\textcircled{}^{\odot}}$  Spectral zoom property allowing to better localize in frequency
- $\ensuremath{\textcircled{\ensuremath{\square}}}$  Richer class of filters than polynomials for the same order
- © Scale invariance

# Different formulations of non-Euclidean CNNs



Spectral domain

#### Spatial domain





Parametric domain



## Convolution

#### Euclidean

Spatial domain

$$(f{\star}g)(x)=\int_{-\pi}^{\pi}f(x')g(x{-}x')dx'$$

Spectral domain

Eurographics2019

$$\widehat{(f\star g)}(\omega)=\widehat{f}(\omega)\cdot\widehat{g}(\omega)$$

'Convolution Theorem'

Non-Euclidean ?  
$$\widehat{(f\star g)}_k = \langle f,\phi_k\rangle_{L^2(\mathcal{X})} \langle g,\phi_k\rangle_{L^2(\mathcal{X})}$$

Deep

## Spatial convolution



Euclidean



Non-Euclidean



## Spatial convolution



Euclidean



Non-Euclidean



• Local system of coordinates  $\mathbf{u}_{ij}$  around *i* (e.g. geodesic polar)



Eurographics 2015; Boscaini et al. 2016; Monti et al. 2017 Deep Learning for CG & Geometry Processing

- Local system of coordinates  $\mathbf{u}_{ij}$  around *i* (e.g. geodesic polar)
- Local weights w<sub>1</sub>(**u**),...,w<sub>L</sub>(**u**)
   w.r.t. **u**



Eurographics2015; Boscaini et al. 2016; Monti et al. 2017 Deep Learning for CG & Geometry Processing

- Local system of coordinates  $\mathbf{u}_{ij}$  around *i* (e.g. geodesic polar)
- Local weights  $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t.  $\mathbf{u}$ , e.g. Gaussians

$$w_{\ell} = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_{\ell})^{\top} \boldsymbol{\Sigma}_{\ell}^{-1} (\mathbf{u} - \boldsymbol{\mu}_{\ell})\right)$$



Eurographics 2015; Boscaini et al. 2016; Monti et al. 2017 Deep Learning for CG & Geometry Processing

- Local system of coordinates  $\mathbf{u}_{ij}$  around *i* (e.g. geodesic polar)
- Local weights  $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t.  $\mathbf{u}$ , e.g. Gaussians  $w_\ell = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_\ell)^\top \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{u} - \boldsymbol{\mu}_\ell)\right)$
- Spatial convolution with filter g

$$\mathbf{x}_i' \propto \sum_{\ell=1}^L g_\ell \sum_{j=1}^n w_\ell(\mathbf{u}_{ij}) \mathbf{x}_j$$

where  $\mathbf{x}_i \in \mathbb{R}^d$  is feature at vertex i





- Local system of coordinates  $\mathbf{u}_{ij}$  around *i* (e.g. geodesic polar)
- Local weights  $w_1(\mathbf{u}), \dots, w_L(\mathbf{u})$ w.r.t.  $\mathbf{u}$ , e.g. Gaussians  $w_\ell = \exp\left(-(\mathbf{u} - \boldsymbol{\mu}_\ell)^\top \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{u} - \boldsymbol{\mu}_\ell)\right)$
- Spatial convolution with filter g



where  $\mathbf{x}_i \in \mathbb{R}^d$  is feature at vertex i



Hasci et al. 2015; Boscaini et al. 2016; Monti et al. 2017 Deep Learning for CG & Geometry Processing

# Geodesic polar coordinates

• Geodesic polar coordinates

 $\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$ 

 $\rho_{ij} = \text{geodesic distance from } i \text{ to } j$   $\theta_{ij} = \text{direction of geodesic from } i \text{ to } j$ 



Eurographics 2015; Monti et al. 2017
• Geodesic polar coordinates

 $\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$ 

 $\rho_{ij} = \text{geodesic distance from } i \text{ to } j$   $\theta_{ij} = \text{direction of geodesic from } i \text{ to } j$ 

• Orientation ambiguity!



• Geodesic polar coordinates

 $\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$ 

 $\rho_{ij} = \text{geodesic distance from } i \text{ to } j$   $\theta_{ij} = \text{direction of geodesic from } i \text{ to } j$ 

- Orientation ambiguity!
  - Canionical direction (e.g. intrinsic vector field, max curvature direction)



• Geodesic polar coordinates

 $\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$ 

 $\rho_{ij} = \text{geodesic distance from } i \text{ to } j$ 

 $\theta_{ij} =$ direction of geodesic from i to j

- Orientation ambiguity!
  - Canionical direction (e.g. intrinsic vector field, max curvature direction)
  - Angular max pooling: apply a rotating filter

$$\mathbf{x}'_i \propto \max_{\Delta \theta \in [0, 2\pi)} \sum_{\ell=1}^L g_\ell \sum_{j=1}^n w_\ell(\rho_{ij}, \theta_{ij} + \Delta \theta) \mathbf{x}_j$$

Eurographics 2015; Monti et al. 2017



• Geodesic polar coordinates

 $\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$ 

 $\rho_{ij} = \text{geodesic distance from } i \text{ to } j$ 

 $\theta_{ij} =$ direction of geodesic from i to j

- Orientation ambiguity!
  - Canionical direction (e.g. intrinsic vector field, max curvature direction)
  - Angular max pooling: apply a rotating filter

$$\mathbf{x}_i' \propto \max_{\Delta \theta \in [0, 2\pi)} \sum_{\ell=1}^L g_\ell \sum_{j=1}^n w_\ell(\rho_{ij}, \theta_{ij} + \Delta \theta) \mathbf{x}_j$$

• Fourier transform magnitute w.r.t.  $\theta$ 

Eurographics 2015; Monti et al. 2017



#### Patch operator weight functions



Masci et al. 2015 (GCNN); Boscaini et al. 2016 (ACNN); Monti et al. 2017 (MoNet) Eurographics 2019

# Geodesic convolution layer



Conv. with filter rotated by  $\Delta \theta$ 

#### Geodesic convolution layer



Deep Learning for CG & Geometry Processing

### Learning local descriptors with GCNN



Training set

Siamese net

two net instances with shared parameters  $\Theta$  $\ell_{\mathrm{S}}(\Theta) = \gamma \sum_{i,i^{+}} \|\mathbf{f}_{\Theta}(\mathbf{x}_{i}) - \mathbf{f}_{\Theta}(\mathbf{x}_{i^{+}})\|_{2}^{2}$  $+ (1 - \gamma) \sum_{i,i^{-}} [\mu - \|\mathbf{f}_{\Theta}(\mathbf{x}_{i}) - \mathbf{f}_{\Theta}(\mathbf{x}_{i^{-}})\|_{2}^{2}]_{+}$ 

positive  $(i, i^+)$  and negative  $(i, i^-)$  pairs of points



EurogMaschiets202015

Deep Learning for CG & Geometry Processing

# HKS descriptor



Distance in the space of local Heat Kernel Signature (HKS) features (shown is distance from a point on the shoulder marked in white)

Descriptor: Sun, Ovsjanikov, Guibas 2009 (HKS); data: B et al. 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST) Deep Learning for CG & Geometry Processing

# WKS descriptor



Distance in the space of local Wave Kernel Signature (WKS) features (shown is distance from a point on the shoulder marked in white)

Descriptor: Aubry, Schlickewei, Cremers 2011 (WKS); data: B et al. 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST) Deep Learning for CG & Geometry Processing

# Descriptor learned with GCNN



Distance in the space of local GCNN features (shown is distance from a point on the shoulder marked in white)

Descriptor: Masci et al. 2015 (GCNN); data: B et al. 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST) EUROGRAPHICS 2019 Deep Learning for CG & Geometry Processing

#### Descriptor quality comparison



Descriptor performance using symmetric Princeton benchmark (training and testing: disjoint subsets of FAUST)

Methods: Sun et al. 2009 (HKS); Aubry et al. 2011 (WKS); Litman, B 2014 (OSD); Masci et al. 2015 (GCNN); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. Eurographics2019 Deep Learning for CG & Geometry Processing

#### Homogeneous diffusion

$$f_t(x) = -\operatorname{div}(c\nabla f(x))$$

c = thermal diffusivity constant describing heat conduction properties of the material (diffusion speed is equal everywhere)



#### Anisotropic diffusion

# $f_t(x) = -\operatorname{div}(\mathbf{A}(x)\nabla f(x))$

 $\mathbf{A}(x) = \text{heat conductivity tensor describing heat conduction properties of the material (diffusion speed is position + direction dependent)$ 



# Anisotropic diffusion



Anisotropic

Deep Learning for CG & Geometry  $\mathsf{Processing}_{1/88}$ 

# Anisotropic diffusion on manifolds



Eurographics 2014; Boscaini et al. 2016

Deep Learning for CG & Geometry Processing

# Anisotropic diffusion on manifolds



- Anisotropic Laplacian  $\Delta_{\alpha\theta} f(x) = \operatorname{div} \left( D_{\alpha\theta}(x) \nabla f(x) \right)$
- $\theta$  = orientation w.r.t. max curvature direction
- α = 'elongation'

```
Eurographics 2014; Boscaini et al. 2016
```

Anisotropic heat kernels

$$h_{\alpha\theta t}(x,x') = \sum_{k\geq 0} e^{-t\lambda_{\alpha\theta k}} \phi_{\alpha\theta k}(x)\phi_{\alpha\theta k}(x')$$



Elongation  $\alpha$ 

Deep Learning for CG & Geometry Processing,

#### Patch operator weight functions



Masci et al. 2015 (GCNN); Boscaini et al. 2016 (ACNN); Monti et al. 2016 (MoNet) Eurographics 2019

• Geodesic polar coordinates

$$\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$$





Deep Learning for CG & Geometry  $Processing_{5/88}$ 

• Geodesic polar coordinates

$$\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$$

• Gaussian weighting functions  $w_{\mu,\Sigma}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u}-\mu)^{\top}\Sigma^{-1}(\mathbf{u}-\mu)\right)$ with learnable covariance  $\Sigma$  and mean  $\mu$ 



• Geodesic polar coordinates

$$\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$$

• Gaussian weighting functions  $w_{\mu,\Sigma}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u}-\mu)^{\top}\Sigma^{-1}(\mathbf{u}-\mu)\right)$ with learnable covariance  $\Sigma$  and mean  $\mu$ 



Spatial convolution

$$\mathbf{x}'_i \propto \sum_{\ell=1}^L g_\ell \sum_{j=1}^n w_{\boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell}(\mathbf{u}_{ij}) \mathbf{x}_j$$



• Geodesic polar coordinates

$$\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$$

• Gaussian weighting functions  $w_{\mu,\Sigma}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u}-\mu)^{\top}\Sigma^{-1}(\mathbf{u}-\mu)\right)$ with learnable covariance  $\Sigma$  and mean  $\mu$ 



Spatial convolution

$$\mathbf{x}_i' \propto \sum_{j=1}^n \sum_{\ell=1}^L g_\ell w_{\boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell}(\mathbf{u}_{ij}) \, \mathbf{x}_j$$



# Learnable patches on manifolds (MoNet)

• Geodesic polar coordinates

$$\mathbf{u}_{ij} = (\rho_{ij}, \theta_{ij})$$

• Gaussian weighting functions  $w_{\mu,\Sigma}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u}-\mu)^{\top}\Sigma^{-1}(\mathbf{u}-\mu)\right)$ with learnable covariance  $\Sigma$  and mean  $\mu$ 



Spatial convolution





## MoNet as generalization of previous methods

| Method    | Coordinates $\mathbf{u}_{ij}$ | Weight function $w_{\Theta}(\mathbf{u})$                                                                                                                           |
|-----------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $CNN^1$   | $\mathbf{u}_j - \mathbf{u}_i$ | $\delta(\mathbf{u} - \mathbf{v})$                                                                                                                                  |
| $GCNN^2$  | $ ho_{ij}, 	heta_{ij}$        | $\exp\left(-\frac{1}{2}(\mathbf{u}-\mathbf{v})^{\top} \begin{pmatrix} \sigma_{\rho}^{2} \\ \sigma_{\theta}^{2} \end{pmatrix}^{-1} (\mathbf{u}-\mathbf{v}) \right)$ |
| $ACNN^3$  | $ ho_{ij}, 	heta_{ij}$        | $\exp\left(-t\mathbf{u}^{\top}\mathbf{R}_{\varphi}\left(\begin{smallmatrix}\alpha\\&1\end{smallmatrix}\right)\mathbf{R}_{\varphi}^{\top}\mathbf{u}\right)$         |
| $MoNet^4$ | $ ho_{ij}, 	heta_{ij}$        | $\exp\left(-\frac{1}{2}(\mathbf{u}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{u}-\boldsymbol{\mu}) ight)$                                            |
|           |                               | learnable parameters $oldsymbol{\Theta} = (oldsymbol{\mu}, oldsymbol{\Sigma})$                                                                                     |

Some CNN models can be considered as particular settings of MoNet with weighting functions of different form

Methods: <sup>1</sup>LeCun et al. 1998; <sup>2</sup>Masci et al. 2015; <sup>3</sup>Boscaini et al. 2016; <sup>4</sup>Monti et al. 2016; EUrographicet al. 2016 Deep Learning for CG & Geometry Processing

# Application of MoNet: Protein-Protein Interaction



#### Designing protein binder for the PD-L1 protein target

Collaboration with B. Correia and P. Gainza-Cirauqui (EPFL) EUrOGraphics 2019

# Application of MoNet: Protein-Protein Interaction



Experimentally confirmed computational design of PD-L1 binders

Collaboration with B. Correia and P. Gainza-Cirauqui (EPFL) EUROGRAPHICS2019

#### Learning deformation-invariant correspondence

- Groundtruth correspondence  $\pi^* : \mathcal{X} \to \mathcal{Y}$  from query shape  $\mathcal{X}$  to some reference shape  $\mathcal{Y}$
- Correspondence = label each query vertex  $i \in \{1, ..., n\}$  as reference vertex  $\pi_i \in \{1, ..., m\}$



Eurographics 2012914; Masci et al. 2015

Deep Learning for CG & Geometry Processing

#### Learning deformation-invariant correspondence

- Groundtruth correspondence  $\pi^* : \mathcal{X} \to \mathcal{Y}$  from query shape  $\mathcal{X}$ to some reference shape  $\mathcal{Y}$
- Correspondence = label each query vertex  $i \in \{1, ..., n\}$  as reference vertex  $\pi_i \in \{1, ..., m\}$
- Net output at i after softmax layer

$$\mathbf{f}_{\Theta}(\mathbf{x}_i) = (f_{i1}, \dots, f_{im})$$
  
= probability distribution on  $\mathcal Y$ 



Eurographics 2014; Masci et al. 2015

Deep Learning for CG & Geometry Processing

#### Learning deformation-invariant correspondence

- Groundtruth correspondence  $\pi^* : \mathcal{X} \to \mathcal{Y}$  from query shape  $\mathcal{X}$  to some reference shape  $\mathcal{Y}$
- Correspondence = label each query vertex  $i \in \{1, ..., n\}$  as reference vertex  $\pi_i \in \{1, ..., m\}$
- Net output at *i* after softmax layer

$$\mathbf{f}_{\mathbf{\Theta}}(\mathbf{x}_i) = (f_{i1}, \dots, f_{im})$$
  
= probability distribution on  $\mathcal Y$ 



Minimize on training set the cross entropy between groundtruth correspondence and output probability distribution w.r.t. net parameters  $\Theta$ 

$$\min_{\boldsymbol{\Theta}} \sum_{i=1}^{n} H(\boldsymbol{\delta}_{\pi_{i}^{*}}, \mathbf{f}_{\boldsymbol{\Theta}}(\mathbf{x}_{i}))$$

Eurographics 20 12914; Masci et al. 2015

# Correspondence evaluation: Princeton benchmark



Pointwise correspondence error = geodesic distance from the groundtruth

$$\epsilon_i = d_{\mathcal{Y}}(\pi_i^*, \pi_i)$$

# Eurographetes 2019

# Correspondence quality comparison



Correspondence evaluated using asymmetric Princeton benchmark (training and testing: disjoint subsets of FAUST)

Methods: Kim et al. 2011 (BIM); Rodolà et al. 2014 (RF); Boscaini et al. 2015 (ADD); Masci et al. 2015 (GCNN); Boscaini et al. 2016 (ACNN); Monti et al. 2016 (MoNet); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011 EUROGRAPHICS 2019

### Shape correspondence error: Blended Intrinsic Map



Pointwise correspondence error (geodesic distance from groundtruth)



Deep Learning for CG & Geometry Processing

#### Shape correspondence error: Geodesic CNN



Pointwise correspondence error (geodesic distance from groundtruth)



# Shape correspondence error: Anisotropic CNN



Pointwise correspondence error (geodesic distance from groundtruth)



#### Shape correspondence error: MoNet



Pointwise correspondence error (geodesic distance from groundtruth)


## Shape correspondence visualization: MoNet



Texture transferred from reference to query shapes



# Correspondence on range images: MoNet



Pointwise correspondence error (geodesic distance from groundtruth)



# Correspondence with MoNet: Range images



Correspondence visualization (similar colors encode corresponding points)



# Correspondence with MoNet: Range images



Correspondence visualization (similar colors encode corresponding points)



# Correspondence as classification problem, revisited



Classification cost considers equally correspondences that deviate from the groundtruth (no matter how far)



# Soft correspondence error



Soft correspondence error = probability-weighted geodesic distance from the groundtruth  $\bar{\epsilon}_{\cdot} = \sum_{i=1}^{m} n_{\cdot} d_{2i}(\pi_{\cdot}^{*}, i)$ 

$$\bar{\epsilon}_i = \sum_{j=1} p_{ij} d\mathcal{Y}(\pi_i^*, j)$$

Eurographics2019 2015; Litany et al. 2017

# Pointwise vs Structured learning



Nearby points i, i' on query shape are **not guaranteed** to map to nearby points j, j' on reference shape at **test time** 

Eurographics 2017



Functional correspondence  $T={\sf linear}\ {\sf map}\ {\bf C}$  between Fourier coefficients

$$\hat{\mathbf{g}}^{ op} = \hat{\mathbf{f}}^{ op} \mathbf{C}$$

Eurographics2019 2012



Recover correspondence from  $q \ge k$  dimensional pointwise features

$$\begin{pmatrix} \hat{g}_{11} & \hat{g}_{12} & \cdots & \hat{g}_{1K} \\ \vdots & \vdots & & \vdots \\ \hat{g}_{q1} & \hat{g}_{q2} & \cdots & \hat{g}_{qK} \end{pmatrix} = \begin{pmatrix} \hat{f}_{11} & \hat{f}_{12} & \cdots & \hat{f}_{1K} \\ \vdots & \vdots & & \vdots \\ \hat{f}_{q1} & \hat{f}_{q2} & \cdots & \hat{f}_{qK} \end{pmatrix} \mathbf{C}$$
Set al. 2012
Deep Learning for CG & Geometry Processing

59/88



Recover correspondence from  $q \ge k$  dimensional pointwise features

$$\hat{\mathbf{G}} = \hat{\mathbf{F}}\mathbf{C}$$

Eurographics2019 2012



Recover correspondence from  $q \geq k$  dimensional pointwise features

$$\mathbf{C}^* = \operatorname*{argmin}_{\mathbf{C}} \| \hat{\mathbf{F}} \mathbf{C} - \hat{\mathbf{G}} \|_{\mathrm{F}}^2$$





Rank-K approximation of spatial correspondence

 $\mathbf{T} \approx \mathbf{\Psi} \mathbf{C} \mathbf{\Phi}^\top$ 





Probability  $p_{ij}$  of point j mapping to i

$$\mathbf{P} pprox |\mathbf{\Psi} \mathbf{C} \mathbf{\Phi}^ op |_{\|\cdot\|}$$

# Eurographics2019 2012

## Siamese metric learning



Training set Siamese net

Siamese net two net instances with shar Poitwise feature cost  $\ell_{\rm S}(\Theta) = \gamma \sum_{i,i^+} \| {\bf f}_{\Theta}({\bf x}_i) - {\bf f}_{\Theta}({\bf x}_i) - {\bf f}_{\Theta}({\bf x}_i) \|$ 

To net instances with shared parameters 
$$\Theta$$
  
 $(\Theta) = \gamma \sum_{i,i^+} \|\mathbf{f}_{\Theta}(\mathbf{x}_i) - \mathbf{f}_{\Theta}(\mathbf{x}_{i^+})\|_2^2$   
 $+ (1 - \gamma) \sum_{i,i^-} [\mu - \|\mathbf{f}_{\Theta}(\mathbf{x}_i) - \mathbf{f}_{\Theta}(\mathbf{x}_{i^-})\|_2^2]_+$ 

positive  $(i, i^{+})$  and negative  $(i, i^{-})$  pairs of points

EurogMasticts202035

#### Structured correspondence with FMNet

Euro



 $i=1 \ i=1$ 

#### Structured correspondence with FMNet



Siamese net

Functional map layer

Soft correspondence layer  $\mathbf{P}_{\Theta} = |\Psi \mathbf{C}_{\Theta} \Phi^{\top}|_{\parallel \cdot \parallel}$ 

Soft error cost

Euro

two net instances with shared parameters  $\Theta$ 

$$\mathbf{C}_{\Theta}^{*}=\hat{\mathbf{F}}_{\Theta}^{\dagger}\hat{\mathbf{G}}_{\Theta}$$

$$\mathcal{P}_{\mathrm{F}}(\mathbf{\Theta}) = \|\mathbf{P}_{\mathbf{\Theta}} \circ \mathbf{D}_{\mathcal{Y}}\|$$

# Correspondence quality comparison



#### Correspondence evaluated using asymmetric Princeton benchmark (training and testing: disjoint subsets of FAUST)

Methods: Kim et al. 2011 (BIM); Rodolà et al. 2014 (RF); Boscaini et al. 2015 (ADD); Masci et al. 2015 (GCNN); Boscaini et al. 2016 (ACNN); Monti et al. 2016 (MoNet); Litany et al. 2017 (FMNet); data: Bogo et al. 2014 (FAUST); Eurochenstecking et al. 2011 Deep Learning for CG & Geometry Processing

# Shape representation









(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017 Eurographics2019

• Permutation-invariant function

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=f(\mathbf{x}_{\pi_1},\ldots,\mathbf{x}_{\pi_n})$$

where  $\mathbf{x}_i \in \mathbb{R}^d$  is feature at vertex i



(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017 Eurographics2019

• Permutation-invariant function

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=f(\mathbf{x}_{\pi_1},\ldots,\mathbf{x}_{\pi_n})$$

where  $\mathbf{x}_i \in \mathbb{R}^d$  is feature at vertex i



• Permutation-invariant function

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=f(\mathbf{x}_{\pi_1},\ldots,\mathbf{x}_{\pi_n})$$

where  $\mathbf{x}_i \in \mathbb{R}^d$  is feature at vertex i

 Shared function h<sub>Θ</sub>(·) applied to each point + permutationinvariant aggregation (max or ∑)





(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017 Eurographics 2019

• Permutation-invariant function

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=f(\mathbf{x}_{\pi_1},\ldots,\mathbf{x}_{\pi_n})$$

where  $\mathbf{x}_i \in \mathbb{R}^d$  is feature at vertex i

- Shared function h<sub>Θ</sub>(·) applied to each point + permutationinvariant aggregation (max or ∑)
- Spatial transformer units



(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017 Eurographics 2019





• Permutation-invariant function

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=f(\mathbf{x}_{\pi_1},\ldots,\mathbf{x}_{\pi_n})$$

where  $\mathbf{x}_i \in \mathbb{R}^d$  is feature at vertex i

- Shared function h<sub>Θ</sub>(·) applied to each point + permutationinvariant aggregation (max or ∑)
- Spatial transformer units
- Local grouping (PointNet++, PCPNet)



(Vinyals, Bengio, Kudlur 2015); Qi et al. 2017; Qi, Yi et al. 2017; Guerrero et al. 2018 Eurographics2019



# PointNet applications



Eurographics2019

• Local neighborhood structure modeled as a graph





- Local neighborhood structure modeled as a graph
- Edge feature function  $h_{\Theta}(\cdot, \cdot)$  parametrized by  $\Theta$





- Local neighborhood structure modeled as a graph
- Edge feature function  $h_{\Theta}(\cdot, \cdot)$  parametrized by  $\Theta$
- Permutation-invariant aggregation operator □ (e.g. ∑ or max) on the neighborhood of i





- Local neighborhood structure modeled as a graph
- Edge feature function  $h_{\Theta}(\cdot, \cdot)$  parametrized by  $\Theta$
- Permutation-invariant aggregation operator □ (e.g. ∑ or max) on the neighborhood of i
- Edge convolution (EdgeConv)  $\mathbf{x}'_i = \prod_j h_{\mathbf{\Theta}}(\mathbf{x}_i, \mathbf{x}_j)$

Eurograp



- Local neighborhood structure modeled as a graph
- Edge feature function  $h_{\Theta}(\cdot, \cdot)$  parametrized by  $\Theta$
- Permutation-invariant aggregation operator □ (e.g. ∑ or max) on the neighborhood of i
- Edge convolution (EdgeConv) $\mathbf{x}'_i \ = \bigsqcup_j h_{\mathbf{\Theta}}(\mathbf{x}_i, \mathbf{x}_j)$



#### Learnable local (nonlinear) operator

| Method            | Aggregation | Edge feature $h(\mathbf{x}_i, \mathbf{x}_j)$                                                                         |  |
|-------------------|-------------|----------------------------------------------------------------------------------------------------------------------|--|
| Laplacian         | $\sum$      | $w_{ij}(\mathbf{x}_j - \mathbf{x}_i)$                                                                                |  |
| $PointNet^1$      | -           | $h(\mathbf{x}_i)$                                                                                                    |  |
| $PointNet+^2$     | max         | $h(\mathbf{x}_i)$                                                                                                    |  |
| $MoNet^3$         | $\sum$      | $\sum_\ell g_\ell w_\ell(\mathbf{u}_{ij}) \mathbf{x}_j$                                                              |  |
| PCNN <sup>4</sup> | $\sum$      | $\sum_{\ell m} c(\mathbf{x}_i \cdot \mathbf{k}_{\ell m}) w_i q_{\mathbf{\Theta}_{\ell}}(\mathbf{x}_i, \mathbf{x}_j)$ |  |

Wang et al. 2018; <sup>1</sup>Qi et al. 2017; <sup>2</sup>Qi, Su et al. 2017; <sup>3</sup>Monti et al. 2017; <sup>4</sup>Atzmon Eurographics2019 Deep Learning for CG & Geometry Processings

# Dynamic Graph CNN (DynGCNN)

Eurographics 2018

Construct k-NN graph in feature space and update it after each layer



#### Learning semantic features



Left: Distance from red point in the feature space of different DynGCNN layers Right: semantic segmentation results



# Shape classification (ModelNet40)

|                                 | Mean           | Overall  |
|---------------------------------|----------------|----------|
| Method                          | class accuracy | accuracy |
| $3DShapeNet^1$                  | 77.3%          | 84.7%    |
| $VoxNet^2$                      | 83.0%          | 85.9%    |
| $Subvolume^3$                   | 86.0%          | 89.2%    |
| ECC <sup>4</sup>                | 83.2%          | 87.4%    |
| $PointNet^5$                    | 86.0%          | 89.2%    |
| $PointNet^{+6}$                 | _              | 90.7%    |
| $Kd-Net^7$                      | _              | 91.8%    |
| DynGCNN (baseline) <sup>8</sup> | 88.8%          | 91.2%    |
| DynGCNN <sup>8</sup>            | 90.2%          | 92.2%    |

#### Classification accuracy of different methods on ModelNet40

Methods: <sup>1</sup>Wu et al. 2015; <sup>2</sup>Maturana et al. 2015; Qi et al. 2016; <sup>4</sup>Simonovsky, Komodakis 2017; <sup>5</sup>Qi et al. 2017; <sup>6</sup>Qi, Su et al. 2017; <sup>7</sup>Klokov, Lempitsky 2017; <sup>8</sup>Wang et al. 2018; data: Wu et al. 2015 (ModelNet) EUrographics 2019 Deep Learning for CG & Geometry Processing

# Semantic segmentation: synthetic (ShapeNet)



Methods: Qi et al. 2017 (PointNet); Wang et al. 2018 (DynGCNN); data: Yi et al.


## Semantic segmentation: indoor scans (S3DIS)



# Results of semantic segmentation of point cloud+RGB data using different architectures

Methods: Qi et al. 2017 (PointNet); Wang et al. 2018 (DynGCNN); data: Armeni et al. 2016 (S3DIS) Deep Learning for CG & Geometry Processing

## Shape segmentation: indoor scans (S3DIS)

|                                  | Mean  | Overall  |
|----------------------------------|-------|----------|
| Method                           | loU   | accuracy |
| PointNet (Baseline) <sup>1</sup> | 20.1% | 53.2%    |
| $PointNet^1$                     | 47.6% | 78.5%    |
| $MS + CU(2)^2$                   | 47.8% | 79.2%    |
| $G + RCU^2$                      | 49.7% | 81.1%    |
| DynGCNN <sup>3</sup>             | 56.1% | 84.1%    |

S3DIS indoor scene semantic segmentation accuracy

Methods: <sup>1</sup>Qi et al. 2017; <sup>2</sup>Engelmann et al. 2017 <sup>3</sup>Wang et al. 2018; data: Armeni et al. 2016 (S3DIS) Deep Learning for CG & Geometry Processing

## Surface normal prediction



Surface normal predicted using DynGCNN (odd columns) and groundtruth (even columns). Normal direction is color-coded

Wang et al. 2018; data: Wu et al. 2015 (ModelNet)

## 3D shape analysis and synthesis



Eurographics2019

## Intrinsic Variational Autoencoder (VAE)



Litany. et al. 2017; training on Dynamic FAUST (Bogo et al. 2017) EUrOGTADHICS2019

## Shape completion

Eurographics 2017



#### Shape completion comparison



Methods: Litany et al. 2017; Dai et al. 2016 (3D-EPN); Kazhdan et al. 2013 Eurographics2019

#### Shape completion examples



Eurographics2017; data: Ofli et al. 2014 (MHAD)

## Shape completion examples



Litany et al. 2017; data: Bogo et al. 2014 (FAUST)

#### Generative models of faces



Eurographics2019

#### Generative models of faces



Bouritsas, Bokhnyak, Zafeiriou, B 2019 Eurographics 2019

#### Face from DNA



Eurogealahorgion with P. Claes (KU Leuven)

### Summary: intrinsic deep learning

- Intrinsic deep learning allows architectures that are deformation invariant by construction
- Vastly less parameters / training data
- Part of a bigger trend of Geometric deep learning on non-Euclidean domains such as graphs
- Several ways of defining intrinsic convolution each has its own advantages / disadvantages
- Intrinsic shape synthesis (especially with different topology) is a big open question - part of a broader problem of graph generating networks



## Summary: deep learning on 3D data



\*Rendering can be slow and memory-heavy. \*\*Can be remedied to some extend by hierarchical data structures. \*\*\*No invariance to deformations. Rigid transformations can be remedied to some extent by transformer units. EUrographics2019 to some extent by transformer units.

## **Course Information (slides/code/comments)**







