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Timetable

Niloy Federico lasonas Emanuele
ké Introduction  9:00 X X X X
é Machine Learning Basics ~ 9:05 X
g Neural Network Basics ~ 9:35 X
-,GE) Alternatives to Direct Supervision (GANs) ~11:00
o Image Domain ~11:45
<:§ 3D Domains (extrinsic) ~13:30 X
:_C"_ 3D Domains (intrinsic) ~ 14:15 X
§ Physics and Animation ~ 16:00 X
§ Discussion ~ 16:45 X X X X

Sessions: A. 9:00-10:30 (coffee) B. 11:00-12:30 [LUNCH] C. 13:30-15:00 (coffee) D. 15:30-17:00
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Code Examples

PCA/SVD basis
Linear Regression
Polynomial Regression

Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron

Edge Filter ‘Network’

Convolutional Network

FFilter Visualization

Weight Initialization Strategies

Colorization Network

Autoencoder

Variational Autoencoder

Generative Adversarial Network

[i] Scan me
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* Provide an overview of the popular used in CG
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Course Objectives

* Provide an overview of the popular used in CG

* Provide a quick overview of and
* Many extra slides in the course notes + example code
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Course Objectives

* Provide an overview of the popular used in CG

* Provide a quick overview of and
* Many extra slides in the course notes + example code

* Progress in the last 3-5 years has been dramatic
* We have organized them to help newcomers
* Discuss the main specific to CG
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Two-way Communication
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Two-way Communication

* Our aim is to convey what we found to be relevant so far

* You are invited/encouraged to give feedback
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Two-way Communication

* Our aim is to convey what we found to be relevant so far

* You are invited/encouraged to give feedback
* Speakup. Please send us your criticism/comments/suggestions
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Two-way Communication

* Our aim is to convey what we found to be relevant so far

* You are invited/encouraged to give feedback
* Speakup. Please send us your criticism/comments/suggestions
* Ask questions, please!

* Thanks to many people who helped so far with slides/comments

E] Scan me
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Representations in Computer Graphics
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Representations in Computer Graphics

* Images (e.g., pixel grid)

* Volume (e.g., voxel grid)

EL) [0Ograp NICS Deep Learning for CG & Geometry Processing




Representations in Computer Graphics

* Images (e.g., pixel grid)
* Volume (e.g., voxel grid)

* Meshes (e.g., vertices/edges/faces)
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* Images (e.g., pixel grid)
* Volume (e.g., voxel grid)
* Meshes (e.g., vertices/edges/faces)

e Pointclouds (e.g., point arrays)
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Representations in Computer Graphics

* Images (e.g., pixel grid)

* Volume (e.g., voxel grid)

* Meshes (e.g., vertices/edges/faces)
e Pointclouds (e.g., point arrays)

* Animation (e.g., skeletal positions over time; cloth dynamics over time)
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Representations in Computer Graphics

* Images (e.g., pixel grid)

* Volume (e.g., voxel grid)

* Meshes (e.g., vertices/edges/faces)

e Pointclouds (e.g., point arrays)

* Animation (e.g., skeletal positions over time; cloth dynamics over time)

* Physics simulations (e.g., fluid flow over space/time, object-body interaction)
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Problems in Computer Graphics

 Feature detection (image features, point features) TR 7t XM N7

* Denoising, Smoothing, etc. %me — %me

* Embedding, Distance computation %me,me — %d
* Rendering %me RN Qme
 Animation QSth N Q?)m

* Physical simulation ngXt N ng

* Generative models Qd _y [RM XM
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Problems in Computer Graphics

 Feature detection (image features, point features) TR 7t XM N7

* Denoising, Smoothing, etc. %me — %me

* Embedding, Distance computation %me,me — %d
* Rendering %me RN Qme
 Animation QSth N Q?’m

* Physical simulation Q3m><t N ng

* Generative models Qd _y [RM XM
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Goal: Learn a Parametric Function

f@ZXHY

f: function parameters, X : source domain Y : target domain
these are learned
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f@ZX%Y

f: function parameters, X : source domain Y : target domain
these are learned

Examples:

. o . . TwWwXhXc o
Image Classification: Jo - > 10,1,...,k— 1}
w X h X ¢ : image dimensions k: class count

EL) [0Ograp NICS Deep Learning for CG & Geometry Processing




Goal: Learn a Parametric Function

f@ZX%Y

f: function parameters, X : source domain Y : target domain
these are learned

Examples:

. o . . TwWwXhXc o
Image Classification: Jo - > 10,1,...,k— 1}
w X h X ¢ : image dimensions k: class count

QthXc

Image Synthesis: fo: R" —»

n : latent variable count w x h x c : image dimensions
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Semantic Segmentation

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturell.pdf
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The Legend of Tarzan




Pose Detection using CNNs
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Image Denoising
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I m age De n OiSi ng [Chaitanya et al. 2017, Siggraph]
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Pix2Pix (Image Translation) Isola et al. 2017, CVPR

Labels to Street Scene Labels to Facade BW to Color

out
Day to Night

output
Edges to Photo

output output iInput output
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Sketch to Face!

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling

XIAOGUANG HAN, CHANG GAO, and YIZHOU YU, The University of Hong Kong
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Sketch to Face!

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling

XIAOGUANG HAN, CHANG GAO, and YIZHOU YU, The University of Hong Kong
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[Wang et al. 2018, Siggraph Asia]

Real Images



[Wang et al. 2018, Siggraph Asia]

Real Images









Machine Learning 101: Classifier

g fo:R" — {0,1}
3 e
e O
S
Q ® o
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é‘é ° Each data point has a class label:

O
° i = 1 (o)
¢ 0 (o)
L | Feature coordinate Z1
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Machine Learning 101: Classifier

® f@ . R"™ 7 {O, 1}
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Machine Learning 101: Classifier

® f@ . R"™ 7 {O, 1}
) O ° £o(2) 1 fwx+b6b>0
T) —
: Y 9 0 ifwz+b<0
O O
S © o ¢ @ o
;j . ° ® 6 o {w7 b}
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O ¢ Each data point has a class label:
L

O
° i = 1 (o)
¢ 0 (o)
L | Feature coordinate Z1
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Data-driven Algorithms (Supervised)

Labelled data
(supervision data)
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Labelled data
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(supervision data)

. ML algorithm |
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ML algorithm |
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Test data
(run-time data)
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Data-driven Algorithms (Supervised)

Labelled data
(supervision data)

. ML algorithm |
ﬁ

Validation data
(supervision data)

Test data

. —_— Prediction
(run-time data)
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Labelled data
(supervision data)

Validation data
(supervision data)
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Data-driven Algorithms (Supervised)

Labelled data
(supervision data)

. ML algorithm |
31‘

Validation data
(supervision data)

Test data

. Prediction
(run-time data)

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

Eu 0OJId ph ICS 20 Deep Learning for CG & Geometry Processing



Training versus Validation Loss/Accuracy

underfitting overfitting

validation error

error

training error

model parameter
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Training versus Validation Loss/Accuracy

underfitting overfitting

validation error
/

error

training error

model parameter
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Data-driven Algorithms (Unsupervised)

. ML algorithm |
ai

Training data E—

Validation data

Test data

: . Prediction
(run-time data)

Implementation Practice: Training: 70%; Validation: 15%; Test 15%
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Various ML Approaches (Supervised approaches)

Input data

..‘;9 0‘ (o]
o © ..o. .éo. 3 ®
°9, 8L 3 o

‘...‘ ° o‘o..

°® 0

8% o

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier _comparison.html
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Various ML Approaches (Supervised approaches)

Input data Nearest Neighbors

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier _comparison.html
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Various ML Approaches (Supervised approaches)

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier _comparison.html

Eu 00 raph ICS 23 Deep Learning for CG & Geometry Processing



Various ML Approaches (Supervised approaches)

RBF SVM Gaussian Process

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier _comparison.html

Eu rograp hics/019 23 Deep Learning for CG & Geometry Processing



Various ML Approaches (Supervised approaches)

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier _comparison.html
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Rise of Learning

* 1958: Perceptron

*1974: Backpropagation

*1981: Hubel & Wiesel wins Nobel prize for ‘visual system’
*1990s: SVM era

*1998: CNN used for handwriting analysis

«2012: AlexNet wins ImageNet
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Rise of Machine Learning

- neural network
- artificial intelligence

machine learning

Note
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Rise of Machine Learning

- neural network
e e 1 . ML
- artificial intelligence
NN

machine learning

TR~
Note
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Rise of Machine Learning

- neural network Al
B tificial intelligence Mt
g

machine learning

TR~
Note
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Rise of Machine Learning (in Graphics)

- machine learning
- neural network

SIG+SA+EG+SGP+EGSR Eurographics
14% 14%
12% 12%
10% 10%
8% 8%
b% %
4% 4%
2% 2%
0% 0%
2013 2017 2013 2017
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What is Special about CG?
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1. (image translation tasks)
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What is Special about CG?

1. (image translation tasks)

2. Many sources of input data —
(e.g., images, scanners, motion capture)
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What is Special about CG?

1. (image translation tasks)

2. Many sources of input data —
(e.g., images, scanners, motion capture)

3. Many sources of — cah serve as supervision data
(e.g., rendering, animation)

4. Many problems in
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Main Challenges and Scope for Innovation
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Main Challenges and Scope for Innovation

1. How is the data organised and structured?
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2. s it synthetic or real, or mixed?
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Main Challenges and Scope for Innovation

1. How is the data organised and structured?
2. s it synthetic or real, or mixed?
3. End-to-end or in small steps?

EL) [0Ograp NICS Deep Learning for CG & Geometry Processing




Main Challenges and Scope for Innovation

1. How is the data organised and structured?
2. s it synthetic or real, or mixed?

3. End-to-end or in small steps?

4, Hand-crafted or learned from data?
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End-to-end: Learned Features
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End-to-end: Learned Features

e Old days

 Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
 Mostly with linear models (PCA, etc.)

ihput Image  edge image 21/2-D sketch 3-D model

=
>
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End-to-end: Learned Features

* Old days

 Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
* Mostly with linear models (PCA, etc.)

* Now
* End-to-end
* Move away from hand-crafted representations

input image  edge image 2112-0 sketch 3-D model

=
>
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End-to-end: Learned Loss
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End-to-end: Learned Loss

e Old days

e Evaluation came after

* |t was a bit optional
* You might still have a good algorithm without a good way of quantifying it
* Evaluation helped publishing
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End-to-end: Learned

e Old days

e Evaluation came after

* |t was a bit optional
* You might still have a good algorithm without a good way of quantifying it
* Evaluation helped publishing

e Now

* |t is essential and build-in
* |f the loss is not good, the result is not good
* (Extensive) Evaluation happens automatically
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End-to-end: Learned

e Old days

e Evaluation came after

* |t was a bit optional
* You might still have a good algorithm without a good way of quantifying it
* Evaluation helped publishing

e Now

* |t is essential and build-in
* |f the loss is not good, the result is not good
* (Extensive) Evaluation happens automatically

* While still much is left to do, this makes graphics much more reproducible
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End-to-end: Real/Generated Data
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End-to-end: Real/Generated Data

e Old days

* Test with some toy examples
* Deploy on real stuff
 Maybe collect some performance data later
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End-to-end: Real/Generated Data

e Old days

* Test with some toy examples
* Deploy on real stuff
 Maybe collect some performance data later

e Now

* Test and deploy need to be as identical
(in distribution)

e Need to collect data first
* No two steps
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Examples in Graphics

Geometry

Image
manipulation

Animation
Rendering
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Examples in Graphics

Geometry
Procedural Mesh segmentation Learning
Colorization modelling deformations
Sketch
simplification I m age
manipulation
Animation
BRDF estimation . Boxification
Fluid
Real-time rendering An|mat|0n
Rendering
Denoising Facial animation PCD processing
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Examples in Graphics

X 9
%8

Mesh segmentation

Deformed with F1-32 output

Procedural Learning
modelling deformations

Sketch
simplification

Animation

4 o
. "
-
< . Foemast st aetwerk Aobiesved Otk
‘M Fluic /
-

Real-time rendering

Denoising Facial animation PCD processing
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Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/dl for CG/
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