

Deep Learning for Computer Graphics and Geometry Processing

Michael Bronstein Niloy Mitra Iasonas Kokkinos Emanuele Rodolà Or Litany **Leonidas Guibas Federico Monti Stanford University** Imperial College UCL UCL **Stanford University USI Lugano** La Sapienza Facebook **USI Lugano**

http://geometry.cs.ucl.ac.uk/dl_for_CG/

Niloy Mitra

lasonas Kokkinos

Niloy Mitra

Iasonas Kokkinos

Federico Monti

Niloy Mitra

Iasonas Kokkinos

Federico Monti

Emanuele Rodolà

Niloy Mitra

lasonas Kokkinos

Federico Monti

Emanuele Rodolà

Michael Bronstein

Niloy Mitra

Iasonas Kokkinos

Federico Monti

Emanuele Rodolà

Michael Bronstein

Or Litany

Niloy Mitra

lasonas Kokkinos

Federico Monti

Emanuele Rodolà

Michael Bronstein

Or Litany

Leonidas Guibas

Niloy Mitra

lasonas Kokkinos

Federico Monti

Emanuele Rodolà

Michael Bronstein

Or Litany

Leonidas Guibas

Timetable

			Niloy	Federico	lasonas	Emanuele
Theory/Basics	Introduction	9:00	X	X	X	X
	Machine Learning Basics	~ 9:05	X			
	Neural Network Basics	~ 9:35		X		
	Alternatives to Direct Supervision (GANs)	~11:00			X	
State of the Art	Image Domain	~11:45			X	
	3D Domains (extrinsic)	~13:30	X			
	3D Domains (intrinsic)	~ 14:15				X
	Physics and Animation	~ 16:00	X			
	Discussion	~ 16:45	X	X	X	X

Sessions: A. 9:00-10:30 (coffee) B. 11:00-12:30 [LUNCH] C. 13:30-15:00 (coffee) D. 15:30-17:00

Code Examples

```
PCA/SVD basis
Linear Regression
Polynomial Regression
Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron
Edge Filter 'Network'
Convolutional Network
Filter Visualization
Weight Initialization Strategies
Colorization Network
Autoencoder
Variational Autoencoder
Generative Adversarial Network
            http://geometry.cs.ucl.ac.uk/dl_for_CG/
```


Provide an overview of the popular ML algorithms used in CG

- Provide an overview of the popular ML algorithms used in CG
- Provide a quick overview of theory and CG applications
 - Many extra slides in the course notes + example code

- Provide an overview of the popular ML algorithms used in CG
- Provide a quick overview of theory and CG applications
 - Many extra slides in the course notes + example code
- Progress in the last 3-5 years has been dramatic
 - We have organized them to help newcomers
 - Discuss the main challenges and opportunities specific to CG

- Our aim is to convey what we found to be relevant so far
- You are invited/encouraged to give feedback

- Our aim is to convey what we found to be relevant so far
- You are invited/encouraged to give feedback
 - Speakup. Please send us your criticism/comments/suggestions

- Our aim is to convey what we found to be relevant so far
- You are invited/encouraged to give feedback
 - Speakup. Please send us your criticism/comments/suggestions
 - Ask questions, please!
- Thanks to many people who helped so far with slides/comments

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Pointclouds (e.g., point arrays)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Pointclouds (e.g., point arrays)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Pointclouds (e.g., point arrays)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)
- Physics simulations (e.g., fluid flow over space/time, object-body interaction)

Problems in Computer Graphics

- ullet Feature detection (image features, point features) $\mathbb{R}^{m imes m} o \mathbb{Z}$
- Denoising, Smoothing, etc.
- Embedding, Distance computation
- Rendering
- Animation
- Physical simulation
- Generative models

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

$$\mathbb{R}^{m \times m, m \times m} \to \mathbb{R}^d$$

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

$$\mathbb{R}^d \to \mathbb{R}^{m \times m}$$

Problems in Computer Graphics

- ullet Feature detection (image features, point features) $\mathbb{R}^{m imes m} o \mathbb{Z}$
- Denoising, Smoothing, etc.
- Embedding, Distance computation
- Rendering
- Animation
- Physical simulation
- Generative models

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

 $\mathbb{R}^{m \times m, m \times m} \longrightarrow \mathbb{R}^d$

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

$$\mathbb{R}^d \to \mathbb{R}^{m \times m}$$

analysis

Problems in Computer Graphics

- ullet Feature detection (image features, point features) $\mathbb{R}^{m imes m} o \mathbb{Z}$
- Denoising, Smoothing, etc.
- Embedding, Distance computation

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

 $\mathbb{R}^{m \times m, m \times m} \to \mathbb{R}^d$

- Rendering
- Animation
- Physical simulation
- Generative models

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

$$\mathbb{R}^d \to \mathbb{R}^{m \times m}$$

synthesis

analysis

$$f_{\theta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

$$f_{\theta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

Examples:

$$f_{\theta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

Examples:

Image Classification: $f_{\theta}: \mathbb{R}^{w \times h \times c} \longrightarrow \{0, 1, \dots, k-1\}$ $w \times h \times c : \text{image dimensions} \quad k: \text{class count}$

$$f_{\theta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

Examples:

Image Classification: f_{θ} :

 $f_{\theta}: \mathbb{R}^{w \times h \times c} \longrightarrow \{0, 1, \dots, k-1\}$

 $w \times h \times c$: image dimensions k: class count

Image Synthesis: $f_{\theta}: \mathbb{R}^n \longrightarrow \mathbb{R}^{w \times h \times c}$

n : latent variable count $w \times h \times c$: image dimensions

Semantic Segmentation

Semantic Segmentation

Classification + Localization

Object Detection

Instance Segmentation

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Pose Detection using CNNs

Image Denoising

Sketch to Face!

DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

XIAOGUANG HAN, CHANG GAO, and YIZHOU YU, The University of Hong Kong

Sketch to Face!

DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

XIAOGUANG HAN, CHANG GAO, and YIZHOU YU, The University of Hong Kong

[Wang et al. 2018, Siggraph Asia]

Real Images

[Wang et al. 2018, Siggraph Asia]

Real Images

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

Each data point has a class label:

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

Each data point has a class label:

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

Deep Learning for CG & Geometry Processing

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

$$f_{\theta}(x) = \begin{cases} 1 & \text{if } wx + b \ge 0 \\ 0 & \text{if } wx + b < 0 \end{cases}$$

Each data point has a class label:

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

$$f_{\theta}(x) = \begin{cases} 1 & \text{if } wx + b \ge 0 \\ 0 & \text{if } wx + b < 0 \end{cases}$$

$$\theta = \{w, b\}$$

Each data point has a class label:

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

Deep Learning for CG & Geometry Processing

Labelled data (supervision data)

Labelled data (supervision data)

ML algorithm

Trained model

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

Training versus Validation Loss/Accuracy

Training versus Validation Loss/Accuracy

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Rise of Learning

- 1958: Perceptron
- 1974: Backpropagation
- 1981: Hubel & Wiesel wins Nobel prize for 'visual system'
- 1990s: SVM era
- 1998: CNN used for handwriting analysis
- 2012: AlexNet wins ImageNet

Rise of Machine Learning (in Graphics)

machine learning

neural network

What is Special about CG?

What is Special about CG?

1. Image Processing (image translation tasks)

What is Special about CG?

- 1. Image Processing (image translation tasks)
- 2. Many sources of input data model building (e.g., images, scanners, motion capture)

What is Special about CG?

- 1. Image Processing (image translation tasks)
- 2. Many sources of input data model building (e.g., images, scanners, motion capture)
- 3. Many sources of synthetic data can serve as supervision data (e.g., rendering, animation)

What is Special about CG?

- 1. Image Processing (image translation tasks)
- 2. Many sources of input data model building (e.g., images, scanners, motion capture)
- 3. Many sources of synthetic data can serve as supervision data (e.g., rendering, animation)
- 4. Many problems in generative models

1. Representation: How is the data organised and structured?

- 1. Representation: How is the data organised and structured?
- 2. Training data: Is it synthetic or real, or mixed?

- 1. Representation: How is the data organised and structured?
- 2. Training data: Is it synthetic or real, or mixed?
- 3. User control: End-to-end or in small steps?

- 1. Representation: How is the data organised and structured?
- 2. Training data: Is it synthetic or real, or mixed?
- 3. User control: End-to-end or in small steps?
- 4. Loss functions: Hand-crafted or learned from data?

End-to-end: Learned Features

End-to-end: Learned Features

- Old days
 - Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
 - Mostly with linear models (PCA, etc.)

End-to-end: Learned Features

- Old days
 - Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
 - Mostly with linear models (PCA, etc.)
- Now
 - End-to-end
 - Move away from hand-crafted representations

- Old days
 - Evaluation came after
 - It was a bit optional
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing

- Old days
 - Evaluation came after
 - It was a bit optional
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing
- Now
 - It is essential and build-in
 - If the loss is not good, the result is not good
 - (Extensive) Evaluation happens automatically

- Old days
 - Evaluation came after
 - It was a bit optional
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing
- Now
 - It is essential and build-in
 - If the loss is not good, the result is not good
 - (Extensive) Evaluation happens automatically
- While still much is left to do, this makes graphics much more reproducible

End-to-end: Real/Generated Data

Deep Learning for CG & Geometry Processing

End-to-end: Real/Generated Data

- Old days
 - Test with some toy examples
 - Deploy on real stuff
 - Maybe collect some performance data later

Deep Learning for CG & Geometry Processing

End-to-end: Real/Generated Data

Old days

- Test with some toy examples
- Deploy on real stuff
- Maybe collect some performance data later

Now

- Test and deploy need to be as identical (in distribution)
- Need to collect data first
- No two steps

Deep Learning for CG & Geometry Processing

Examples in Graphics

Geometry

Image manipulation

Animation

Rendering

Examples in Graphics

Geometry

Colorization

Sketch simplification

Image

manipulation

BRDF estimation

Real-time rendering

Rendering

Procedural modelling

Mesh segmentation

Learning deformations

Animation

Boxification Fluid

Animation

Denoising

Facial animation

PCD processing

Eurographics2019

Beep Learning for CG & Geometry Processing

Examples in Graphics

Sketch simplification

Real-time rendering

Colorization

BRDF estimation

Denoising

Procedural modelling

Learning deformations

Fluid

Animation

Boxification

Facial animation

PCD processing

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/dl_for_CG/

