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Deep	Learning	for	CG	&	Geometry	Processing

Timetable
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Niloy Federico Iasonas Emanuele

Introduction 9:00 X X X X

Machine	Learning	Basics ∼	9:05 X

Neural	Network		Basics ∼	9:35	 X

Alternatives	to	Direct	Supervision		(GANs) ~11:00 X

Image	Domain ~11:45 X

3D	Domains	(extrinsic) ~13:30 X

3D	Domains	(intrinsic) ∼	14:15 X

Physics	and	Animation ∼	16:00 X

Discussion ∼	16:45 X X X X
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Sessions:	A.	9:00-10:30	(coffee)	B.	11:00-12:30		[LUNCH]	C.	13:30-15:00	(coffee)	D.	15:30-17:00
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• Data,	data,	data
• Setup	evaluation,	benchmark,	loss	measures,	baselines

• Initialize	well,	visualize	intermediate	results

• Use	existing	networks	to	start,	if	possible
• Overfit,	‘reproducible’,	backprop	(check	if	possible)
• ADAM
• Change	one	block/concept	at	a	time

• Regularize	 
(e.g.,	latent	representation,	Spectral	basis,	image	formation	module)

• Hyperparameter	optimization

NN	Cheatsheet
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• Cloth		
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• Fluids	

Physics-Based	Animation
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• Traditional	approach:

Physics-Based	Animation
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Experiment Theory Computation

Skip Theory with Deep Learning?
[No! More on that later…]

Observations / data Model equations Discrete representation
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• Typical	problem	formulation:	unknown	function		

• PDE	of	the	general	form:	

• Solve	in	domain				,	with	boundary	conditions	on	boundary		

• Traditionally:	discretize	&	solve	numerically.	Here:	also	discretize,	but	solve	
with	DL…

Partial	Differential	Equations
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• Viewpoints:	holistic	or	partial	

[partial	also	meaning	“coarse	graining”	or	“sub-grid	/	up-res”]	

• Influences	complexity	and	non-linearity	of	solution	space	

• Trade	off	computation	vs	accuracy:	

• Target	most	costly	parts	of	solving	

• Often	at	the	expense	of	accuracy

Methodology	1
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Deep	Learning	for	CG	&	Geometry	Processing

• Consider	dimensionality	&	structure	of	discretization

• Small	&	unstructured		

• Fully	connected	NNs	only	choice	

• Only	if	necessary…

• Large	&	structured	

• Employ	convolutional	NNs	

• Usually	well	suited

Methodology	2

�9



Deep	Learning	for	CG	&	Geometry	ProcessingSIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

• Practical	example:	airfoil	flow	

• Given	boundary	conditions	solve	stationary	flow	problem	on	grid	

• Fully	replace	traditional	solver	

• 2D	data,	no	time	dimension	

• I.e.,	holistic	approach	with	structured	data

Solving	PDEs	with	DL
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• Data	generation	
• Large	number	of	pairs:	input	(BCs)	-	targets	(solutions)

Solving	PDEs	with	DL
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• Data	generation	
• Large	number	of	pairs:	input	(BCs)	-	targets	(solutions)

Solving	PDEs	with	DL

�11

Airfoil profile Generated mesh
Full simulation domain

Inference region

Different free stream 
Velocities
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• U-net	NN	architecture
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Deep	Learning	for	CG	&	Geometry	Processing

• Unet	structure	highly	suitable	for	PDE	solving
• Makes	boundary	condition	information	available	throughout

• Crucial	for	inference	of	solution

Solving	PDEs	with	DL
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Deep	Learning	for	CG	&	Geometry	Processing

• Training:	80.000	iterations	with	ADAM	optimizer	

• Convolutions	with	enough	data	-	no	dropout	necessary	

• Learning	rate	decay	stabilizes	models

Solving	PDEs	with	DL

�15
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• Validation	and	test	accuracy	for	different	model	sizes

Solving	PDEs	with	DL
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Saturated, little gain from 
weights and data
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Deep	Learning	for	CG	&	Geometry	Processing

• Elasticity:	material	models

• Fluids:	up-res	algorithm	&	dimensionality	reduction

• By	no	means	exhaustive…

Additional	Examples
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Deep	Learning	for	CG	&	Geometry	Processing

• Learn	correction	of	regular	FEM	simulation	for	complex	materials	

• “Partial”	approach	

• Numerical	simulation	with	flexible	NN	for	material	behavior	

Neural	Material	-	Elasticity
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[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Design	Options

�27

1. sketching 2. sewing patterns 3. draped garment

= interaction(sewing pattern, material, body shape)

[Wang,	Ceylan,	Popovic,	Mitra,	Siggraph	Asia,	2018]
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realistic simulations but NOT interactive
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✓ Model?	(Typically	given)

✓ Data?	Can	enough	training	data	be	generated?

✓ Which	NN	Architecture?	

✓ Fine	tuning:	learning	rate,	number	of	layers	&	features?

✓ Hyper-parameters,	activation	functions	etc.?

Recap
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• Powerful	and	natural

Character	Animation
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[DeepLoco: Dynamic Locomotion Skills 
Using Hierarchical Deep Reinforcement 

Learning, SIGGRAPH 2017]
[DeepMimic: Example-Guided Deep 

Reinforcement Learning of Physics-Based 
Character Skills, SIGGRAPH 2018]

[Mode-Adaptive Neural Networks 
for Quadruped Motion Control, 

SIGGRAPH 2018]

[A Deep Learning Framework for 
Character Motion Synthesis and 

Editing, SIGGRAPH 2016]
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Phase-functioned	Neural	Network
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[Holden et al., Siggraph, 2017]
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Gating	+	Motion	Update	Network
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Some	character	animation	here

[Many of the following slides thanks to Michiel van de Panne]
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Some	character	animation	here

[Many of the following slides thanks to Michiel van de Panne]

https://www.cs.ubc.ca/~van/
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REINFORCEMENT LEARNING   
FOR LOCOMOTION CONTROL
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In	principle:	
• specify	rewards	
• “train”	using	RL	algorithm	

• use	the	solution

env	state
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REINFORCEMENT LEARNING
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πs
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Environment	
physics	simulation
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θ

network	structure

control	dt

simulation	dt

reward

structure,	
torque	limits,	
friction,	
…

state	
description

noise	amplitude	
batch	size	
step-size	control	
early	termination	
learning	iterations	
…
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• DeepLoco:					SIGGRAPH	2017	
• DeepMimic:				SIGGRAPH	2018

MOTION IMITATION

�45
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Deep	Learning	for	CG	&	Geometry	Processing

• Xue	Bin	Peng,	University	of	California,	Berkeley	Pieter	Abbeel,	University	of	California,	Berkeley	Sergey	Levine,	University	
of	California,	Berkeley	Michiel	van	de	Panne,	University	of	British	Columbia

DEEPMIMIC:  EXAMPLE-GUIDED DEEP REINFORCEMENT LEARNING 
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State:		

• link	positions	
• link	velocities	

• terrain	heights
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• PD	targets
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1000+	D

task	
reward

DEEPLOCO:     HIERARCHICAL RL

�59

[SIGGRAPH	2017]

imitation	
reward

φ



Deep	Learning	for	CG	&	Geometry	Processing

Skills	From	Video:		 
Reinforcement	learning	of	physical	skills	from	video
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[SIGGRAPH	ASIA	2018]
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DEEP-MIMIC FOR  
BIOMECHANICAL MODELS
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Simple	Example
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Crea_veAI:	Editable	3D	Content	Creapon

Average Robustness Estimates







Code Examples
PCA/SVD basis  
Linear Regression  
Polynomial Regression 
Stochastic Gradient Descent vs. Gradient Descent 
Multi-layer Perceptron  
Edge Filter ‘Network’  
Convolutional Network  
Filter Visualization  
Weight Initialization Strategies  
Colorization Network  
Autoencoder  
Variational Autoencoder  
Generative Adversarial Network

�74
http://geometry.cs.ucl.ac.uk/dl_for_CG/
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Timetable
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Niloy Federico Iasonas Emanuele

Introduction 9:00 X X X X

Machine	Learning	Basics ∼	9:05 X

Neural	Network		Basics ∼	9:35	 X

Alternatives	to	Direct	Supervision		(GANs) ~11:00 X

Image	Domain ~11:45 X

3D	Domains	(extrinsic) ~13:30 X

3D	Domains	(intrinsic) ∼	14:15 X

Physics	and	Animation ∼	16:00 X

Discussion ∼	16:45 X X X X
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Sessions:	A.	9:00-10:30	(coffee)	B.	11:00-12:30		[LUNCH]	C.	13:30-15:00	(coffee)	D.	15:30-17:00
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