

CreativeAI: Deep Learning for Graphics

# NN Tricks & Architectures

Niloy Mitra

UCL

lasonas Kokkinos

UCL/Facebook

Paul Guerrero

UCL

Nils Thuerey

TUM

**Tobias Ritschel** 

UCL



**facebook** Artificial Intelligence Research



# Neural Network Training: Old & New Tricks

```
Old: (80's)
Stochastic Gradient Descent, Momentum, "weight decay"

New: (last 5-6 years)

Dropout

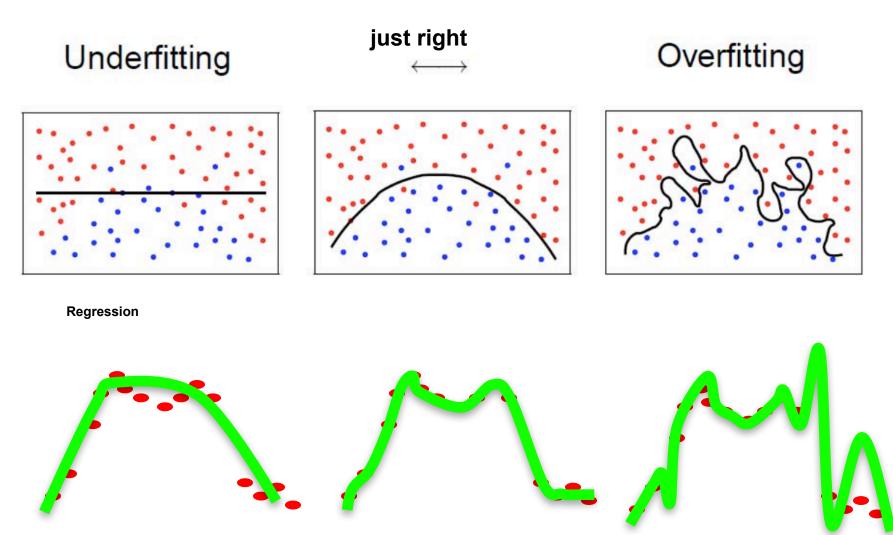
ReLUs

Batch Normalization
```



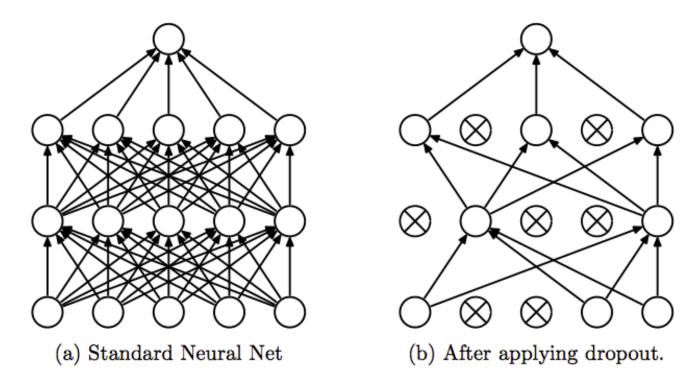
# Reminder: Overfitting, in images

Classification





# **Dropout**



Each sample is processed by a 'decimated' neural net

Decimated nets: distinct classifiers

But: they should all do the same job



# **Dropout Performance**

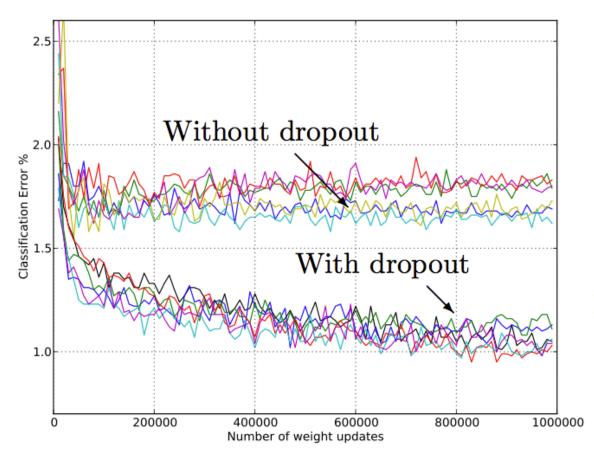


Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.



# Neural Network Training: Old & New Tricks

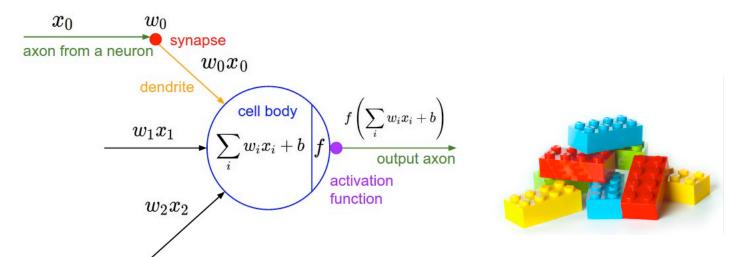
```
Old: (80's)
Stochastic Gradient Descent, Momentum, "weight decay"

New: (last 5-6 years)
Dropout
ReLUs
```

**Batch Normalization** 

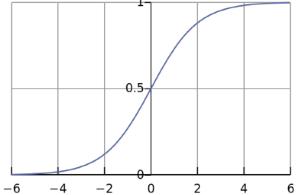


#### 'Neuron': Cascade of Linear and Nonlinear Function



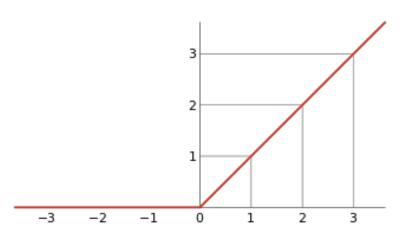
#### Sigmoidal ("logistic")

$$g(a) = \frac{1}{1 + \exp(-a)}$$



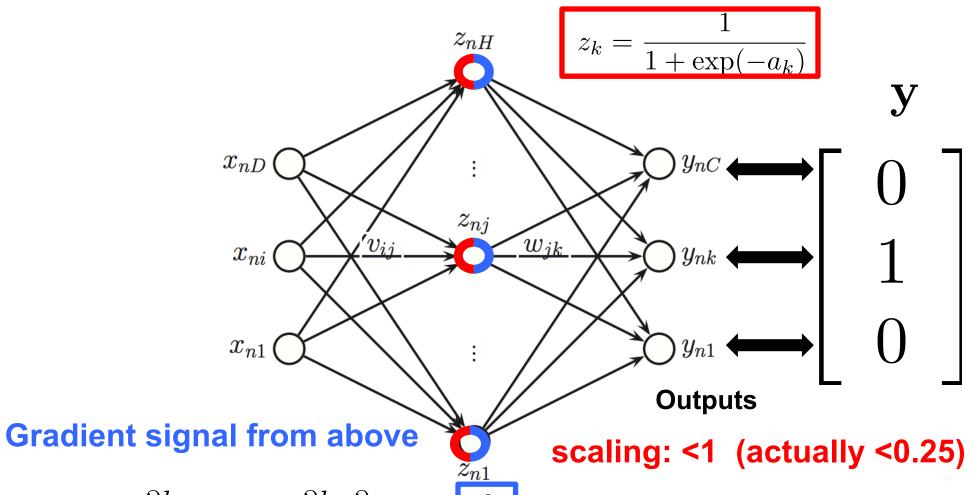
#### **Rectified Linear Unit (RELU)**

$$g(a) = \max(0, a)$$





#### Reminder: a network in backward mode





$$\frac{\partial l}{\partial a_k} = \sum_{m} \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \frac{\partial l}{\partial z_k} g'(a_k) = \frac{\partial l}{\partial z_k} g(a_k)(1 - g(a_k))$$

# Vanishing Gradients Problem

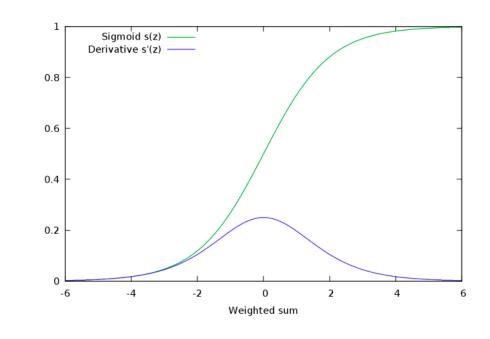
#### **Gradient signal from above**



scaling: <1 (actually <0.25)

$$\frac{\partial l}{\partial a_k} = \sum_{m} \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \frac{\partial l}{\partial z_k} g'(a_k) = \frac{\partial l}{\partial z_k} g(a_k)(1 - g(a_k))$$

Do this 10 times: updates in the first layers get minimal Top layer knows what to do, lower layers "don't get it" Sigmoidal Unit: Signal is not getting through!





# Vanishing Gradients Problem: ReLU Solves It

#### **Gradient signal from above**



**Scaling: {0,1}** 

$$\frac{\partial l}{\partial a_k} = \sum_{m} \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \frac{\partial l}{\partial z_k} g'(a_k)$$

$$g(a) = \max(0, a)$$

$$g'(a) = \begin{cases} 1 & a > 0 \\ 0 & a < 0 \end{cases}$$



# **Activation Functions: ReLU & Co**

$$g(a) = \max(0, a)$$

$$g'(a) = \begin{cases} 1 & a > 0 \\ 0 & a < 0 \end{cases}$$

Great! But... no gradient for negative half-space.

Lots of follow up work: LeakyReLU, eLU, etc.

Can improve results, but typically fine-tuning only.



# Neural Network Training: Old & New Tricks

```
Old: (80's)
Stochastic Gradient Descent, Momentum, "weight decay"

New: (last 5-6 years)
Dropout
ReLUs
Batch Normalization
```



# External Covariate Shift: your input changes

10 am 2pm 7pm









# "Whitening": Set Mean = 0, Variance = 1

Photometric transformation:  $I \rightarrow a I + b$ 



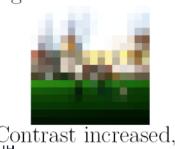


Original Patch and Intensity Values





Brightness Decreased





Make each patch have zero mean:

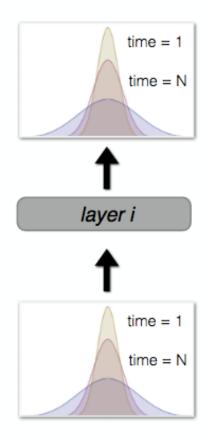
$$\mu = \frac{1}{N} \sum_{x,y} I(x,y)$$
 
$$Z(x,y) = I(x,y) - \mu$$

Then make it have unit variance:

$$\sigma^{2} = \frac{1}{N} \sum_{x,y} Z(x,y)^{2}$$
$$ZN(x,y) = \frac{Z(x,y)}{\sigma}$$

# Internal Covariate Shift

Neural network activations during training: moving target



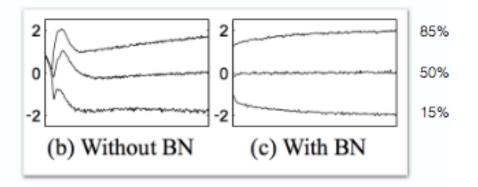


# **Batch Normalization**

#### Whiten-as-you-go:

- Normalize the activations in each layer within a minibatch.
- Learn the mean and variance (γ,β) of each layer as parameters

```
\begin{split} \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i & \text{// mini-batch mean} \\ \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 & \text{// mini-batch variance} \\ \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} & \text{// normalize} \\ y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) & \text{// scale and shift} \end{split}
```

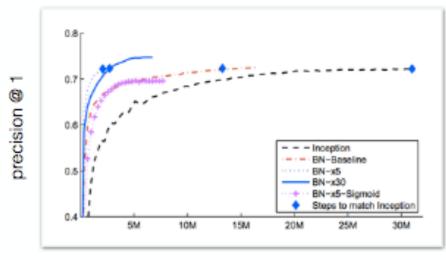


Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift S loffe and C Szegedy (2015)



# Batch Normalization: Used in all current systems

- Multi-layer CNN's train faster with fewer data samples (15x).
- Employ faster learning rates and less network regularizations.
- Achieves state of the art results on ImageNet.



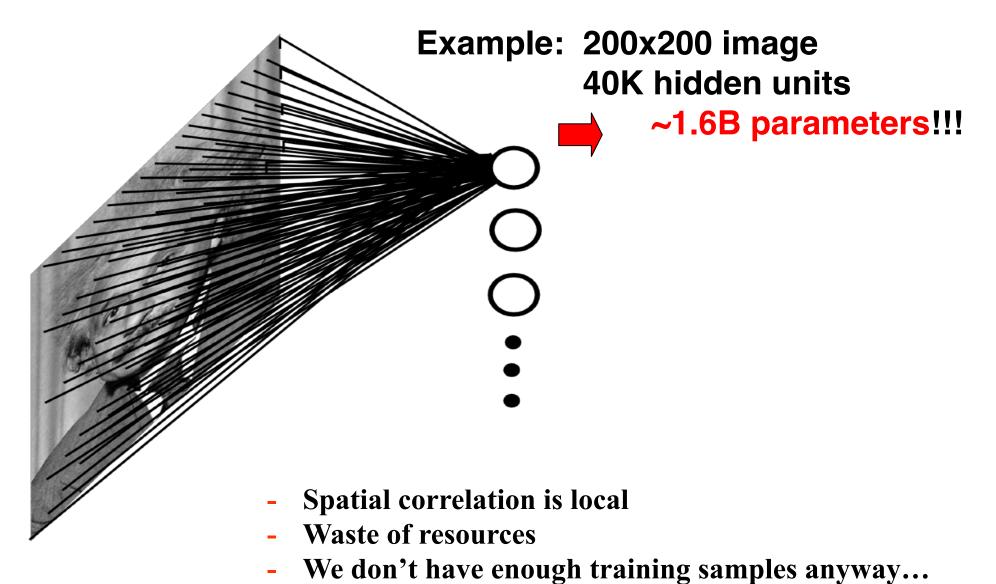
number of mini-batches



# **Convolutional Neural Networks**

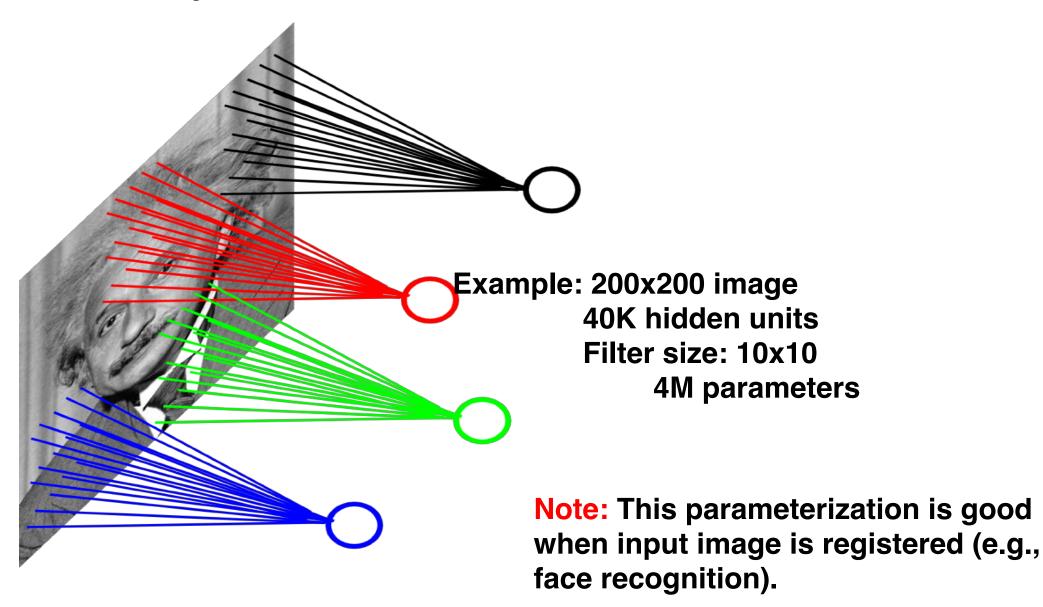


#### **Fully-connected Layer**



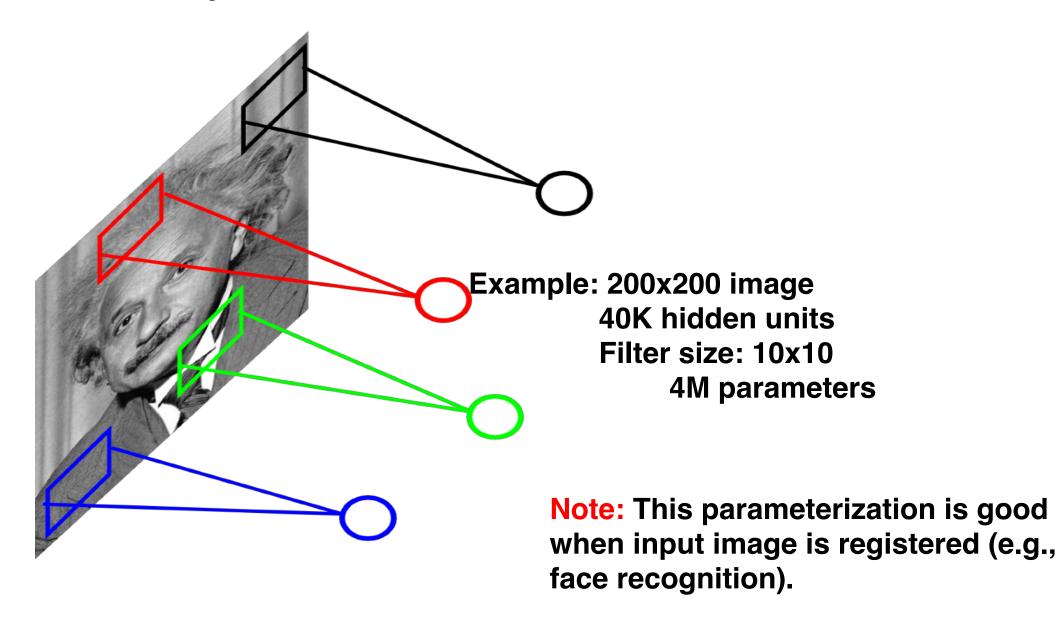


#### **Locally-connected Layer**

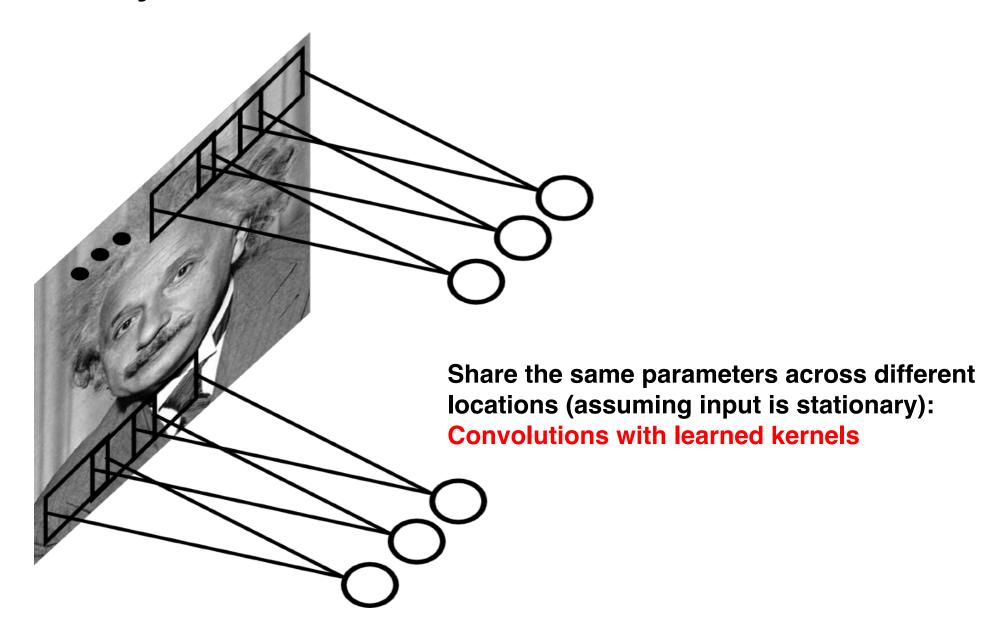




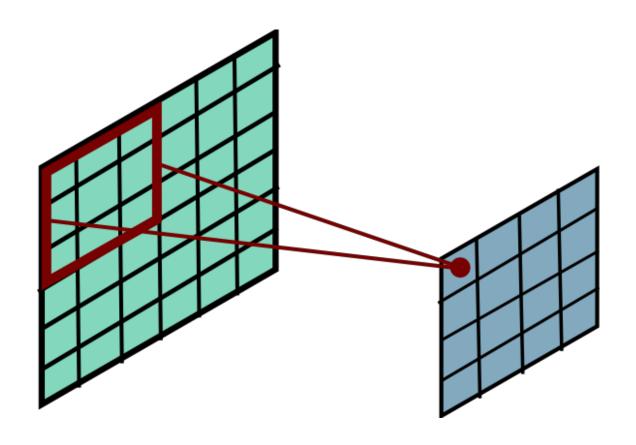
#### **Locally-connected Layer**



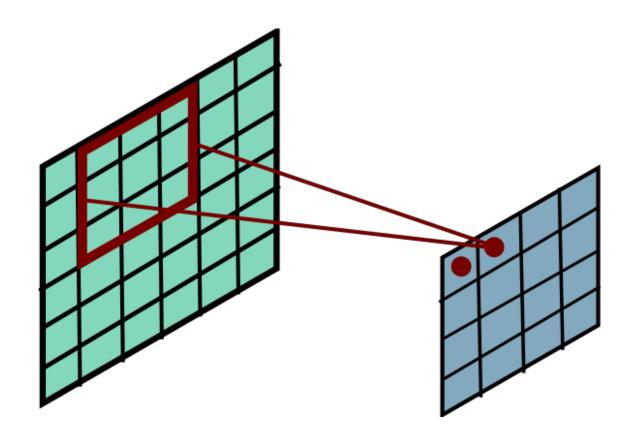




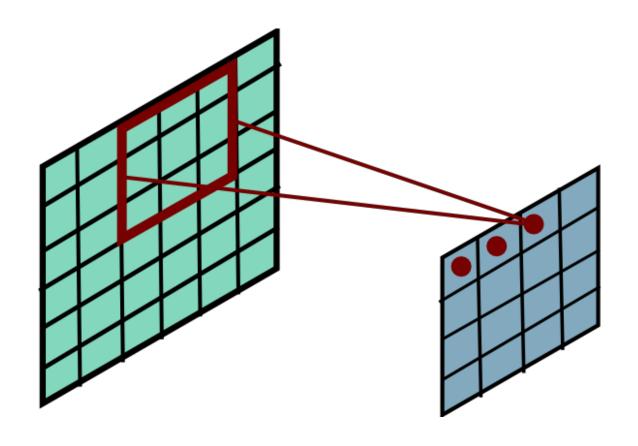




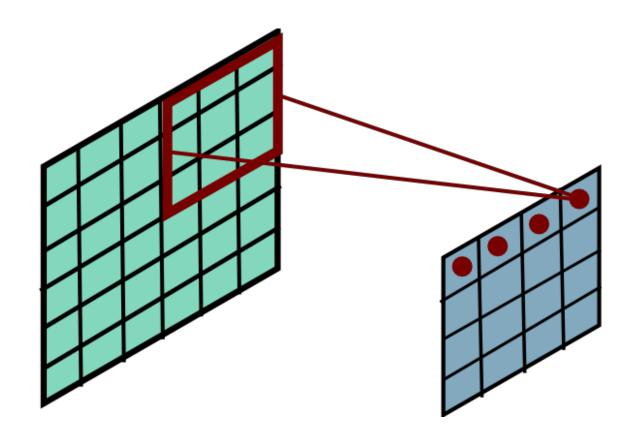




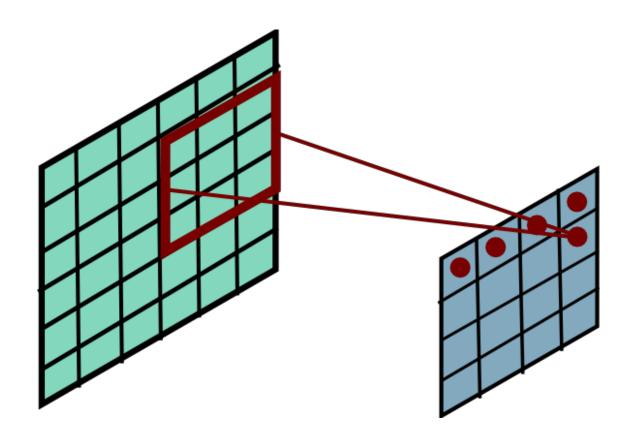




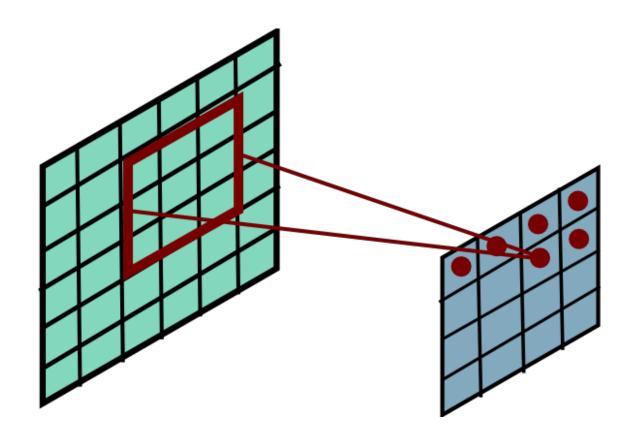




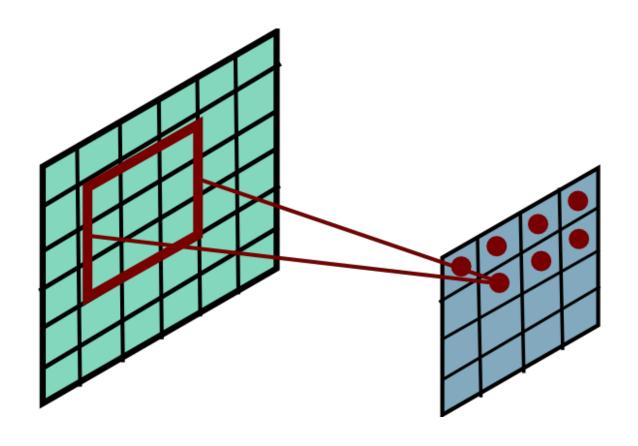




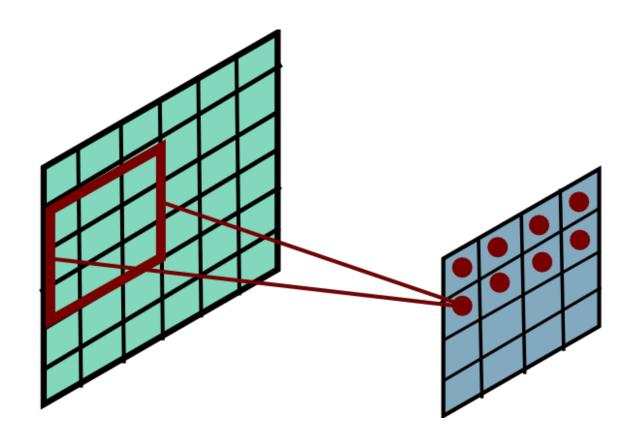




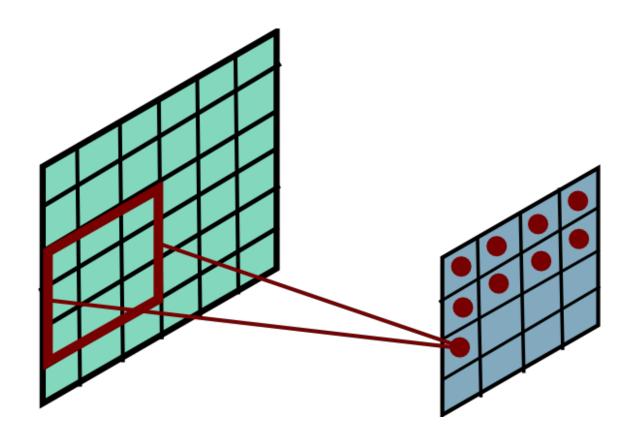




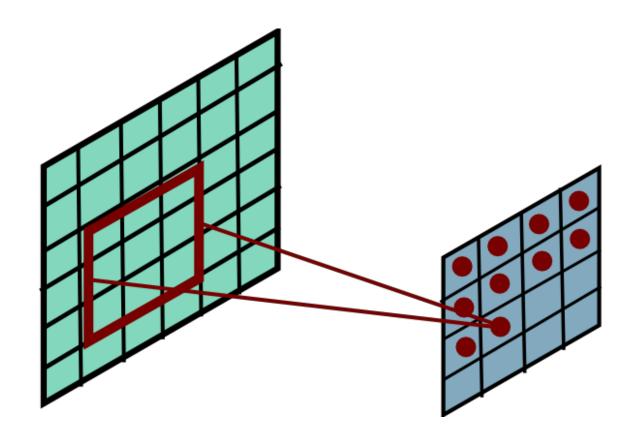




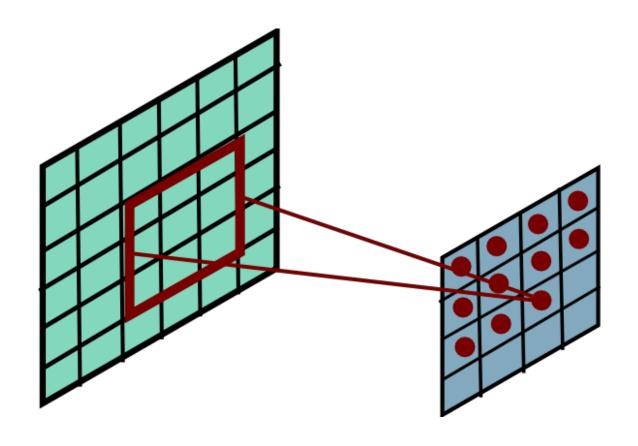




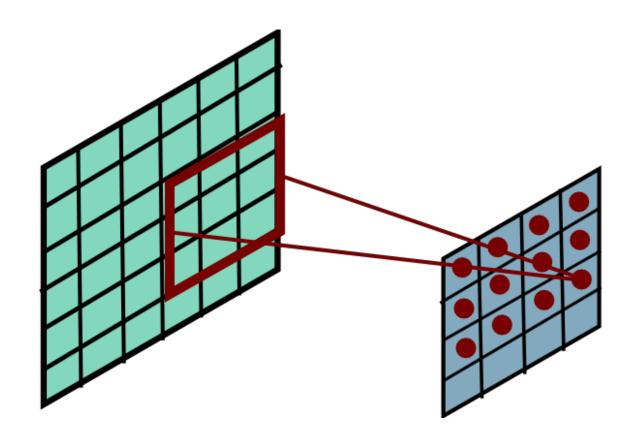




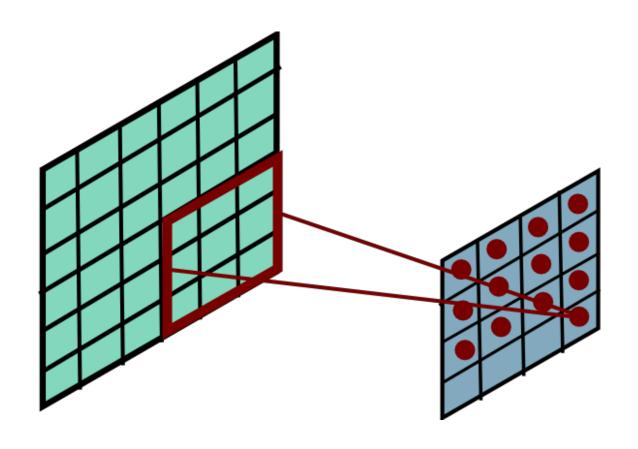




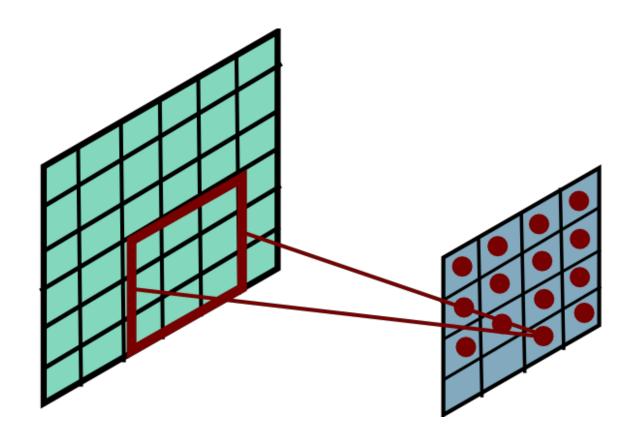






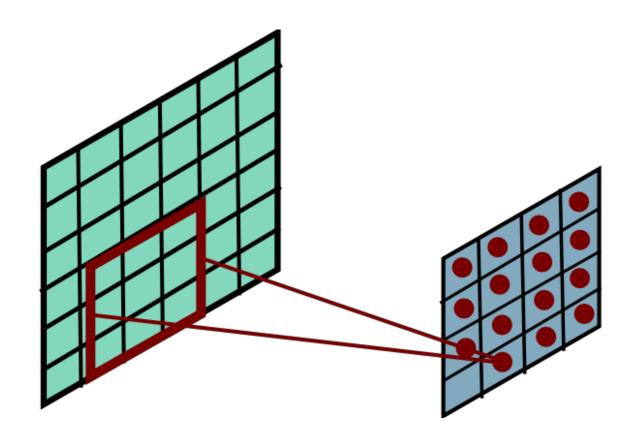






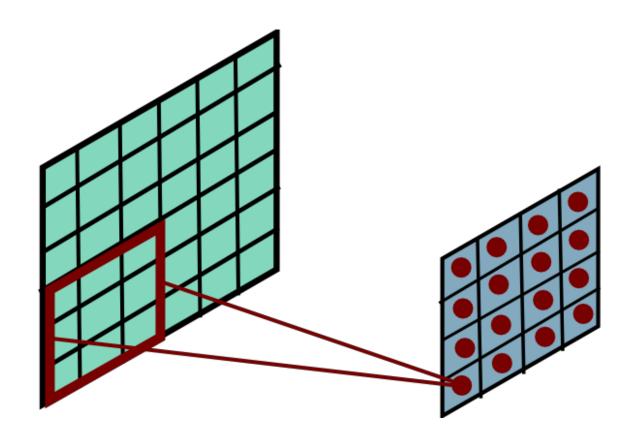


# **Convolutional Layer**



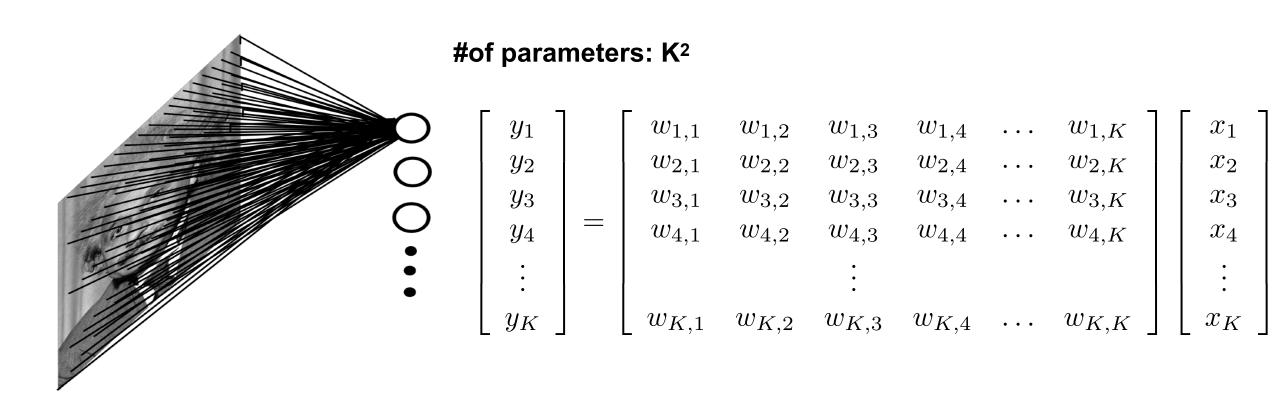


# **Convolutional Layer**



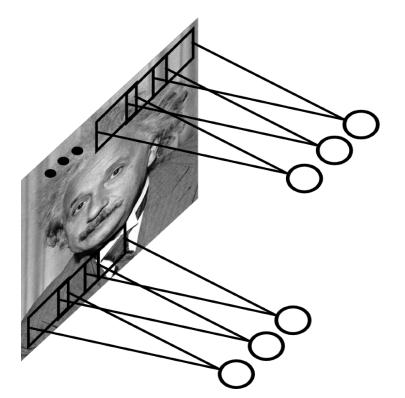


### Fully-connected layer





## Convolutional layer

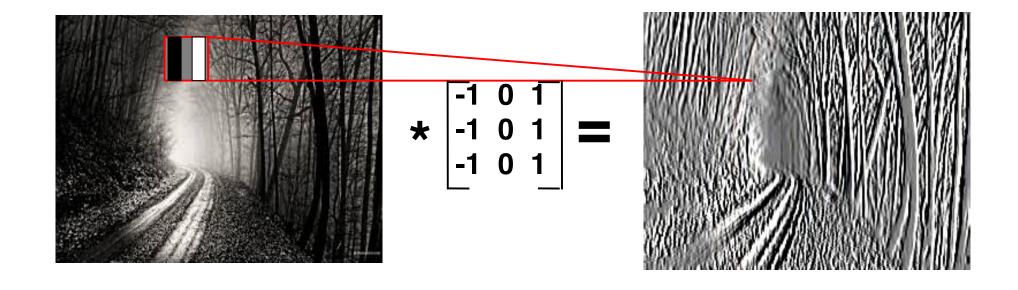


### #of parameters: size of window

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ \vdots \\ y_K \end{bmatrix} = \begin{bmatrix} w_0 & w_1 & w_2 & 0 & \dots & 0 \\ 0 & w_0 & w_1 & w_2 & \dots & 0 \\ 0 & 0 & w_0 & w_1 & \dots & 0 \\ 0 & 0 & 0 & w_0 & \dots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_K \end{bmatrix}$$



# Convolutional layer

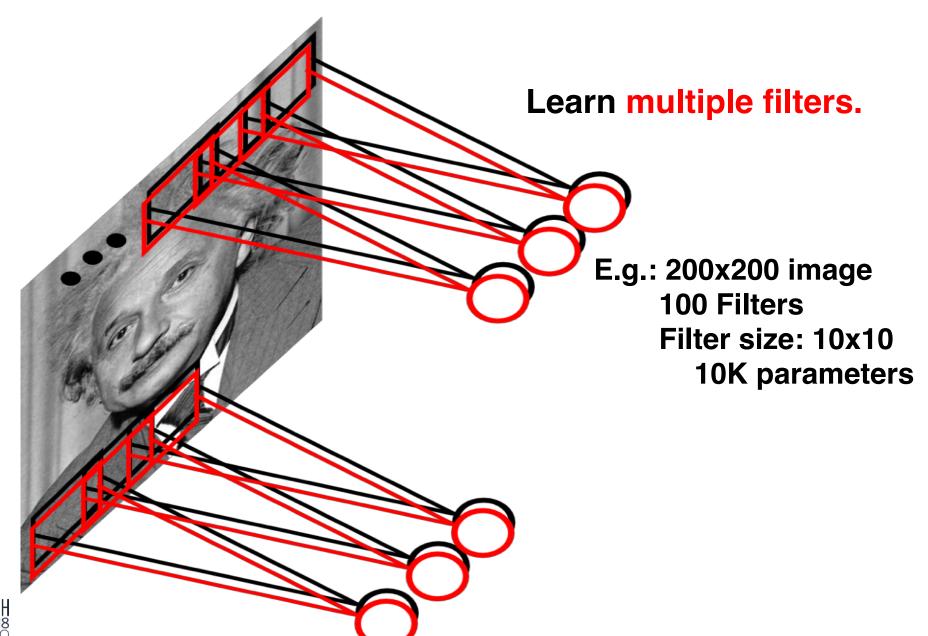




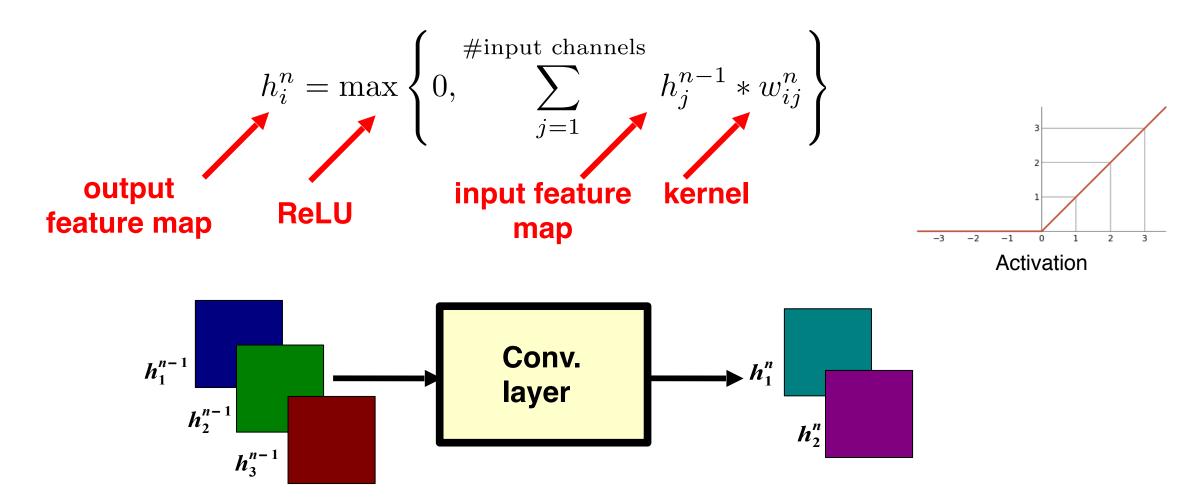
# Code example

Learning an edge filter

## Convolutional layer

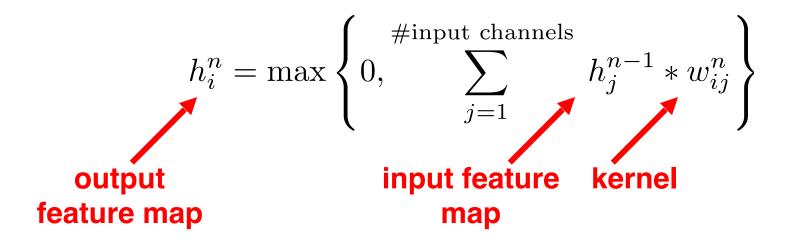


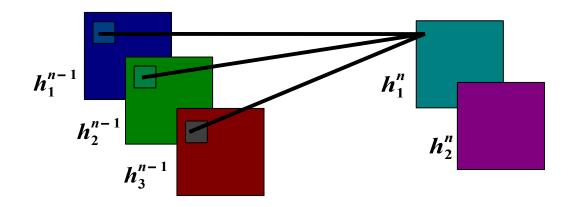
### Convolutional layer with ReLU activation





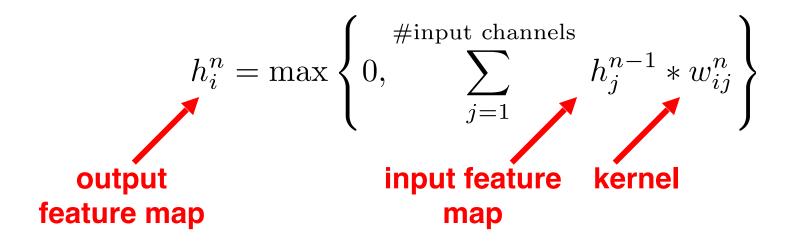
## Convolutional layer with ReLU activation

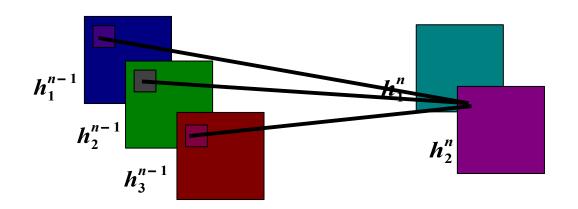






## Convolutional layer with ReLU activation

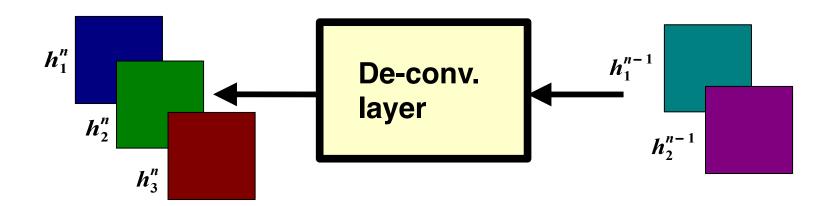






### De-convolutional layer with ReLU activation

$$h_i^n = \max\left\{0, \sum_{j=1}^{\# \text{input channels}} h_j^{n-1} * w_{ij}^n\right\} \begin{array}{c} \text{Still holds,} \\ \text{same structure} \end{array}$$

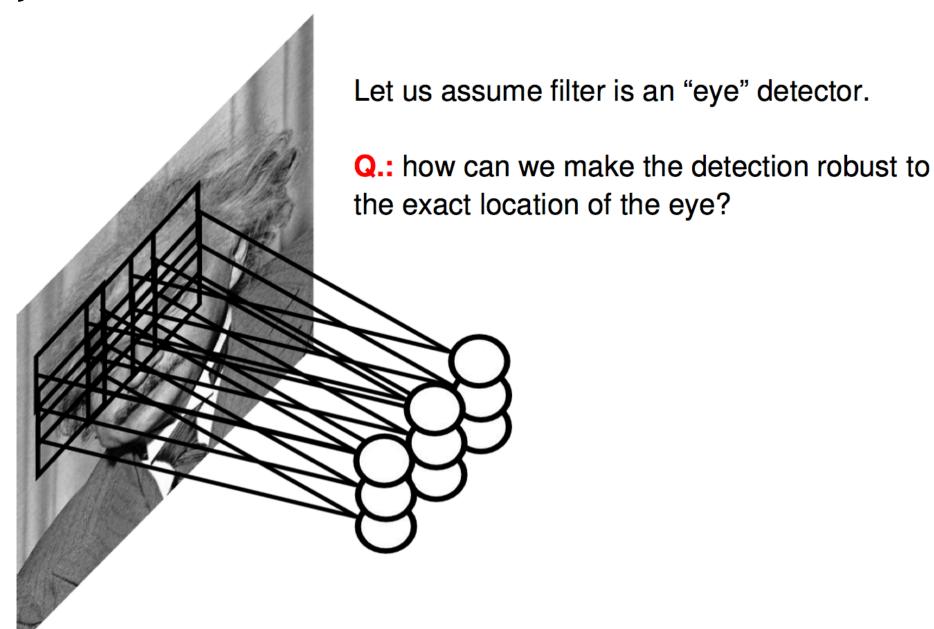


No real inverse - but convolutions can easily go the other way "De-convolution" or "Transposed convolution"

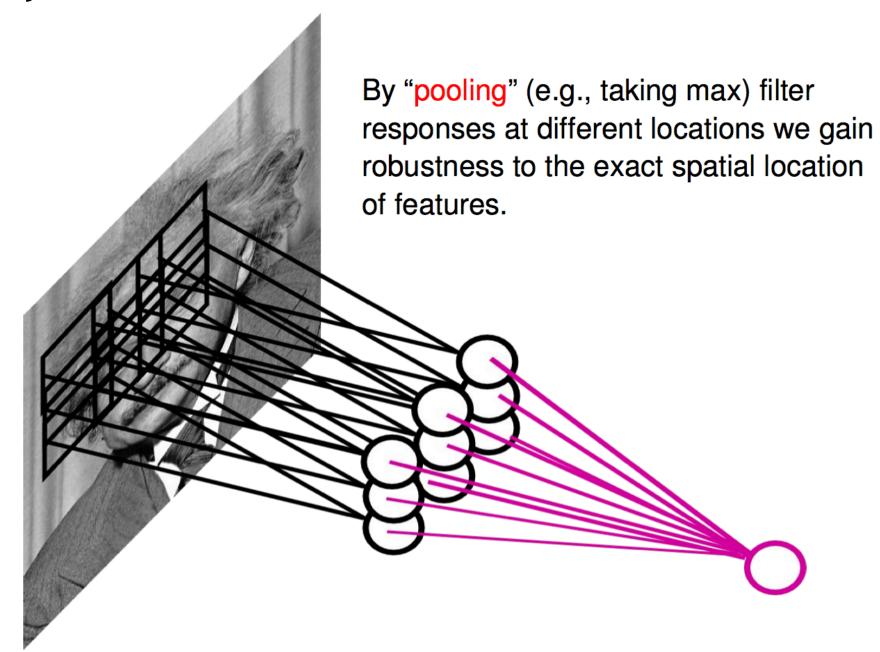
Also a convolution with transposed weight tensor



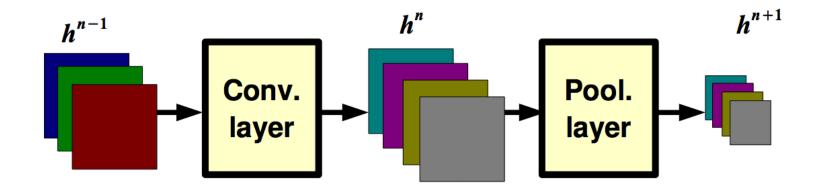
## Pooling layer



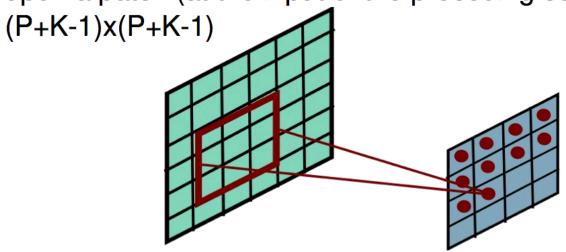
## Pooling layer



### Pooling layer: receptive field size

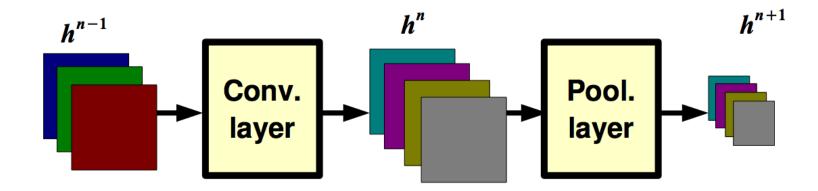


If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:

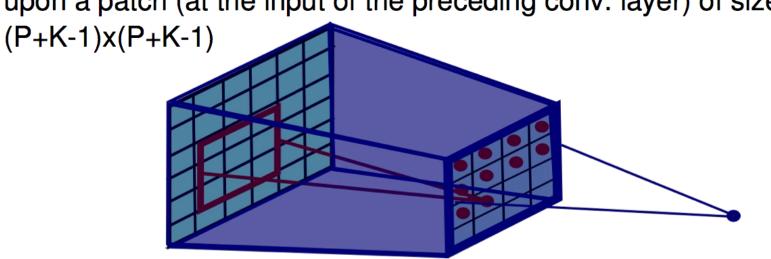




### Pooling layer: receptive field size



If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:











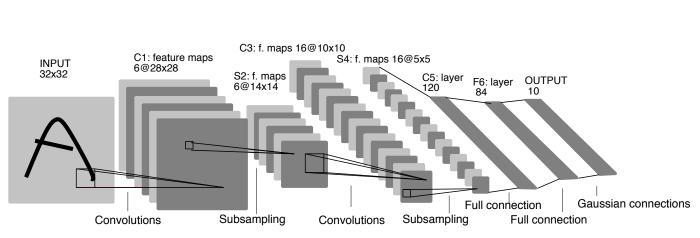




# **Modern Architectures**



# CNNs, late 1980's: LeNet



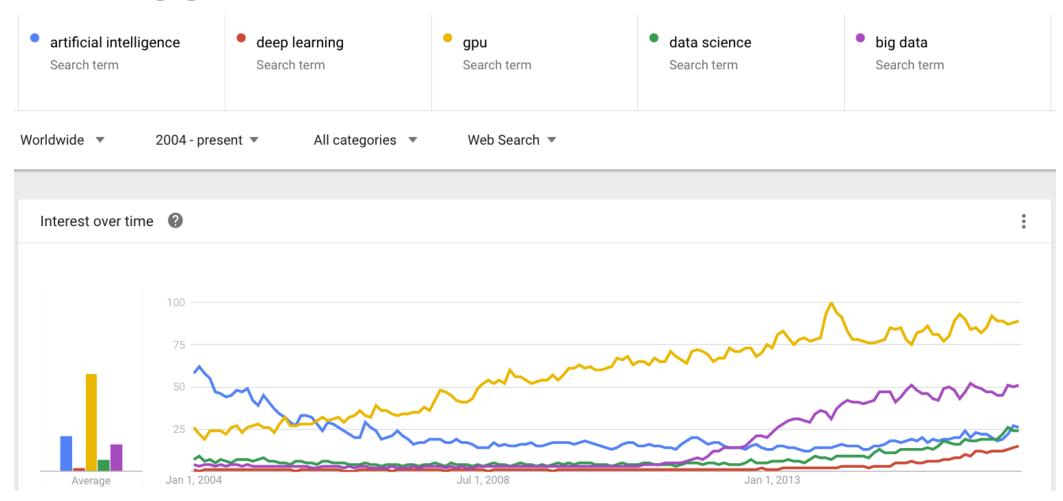
### https://www.youtube.com/watch?v=FwFduRA\_L6Q





Gradient-based learning applied to document recognition, Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998.

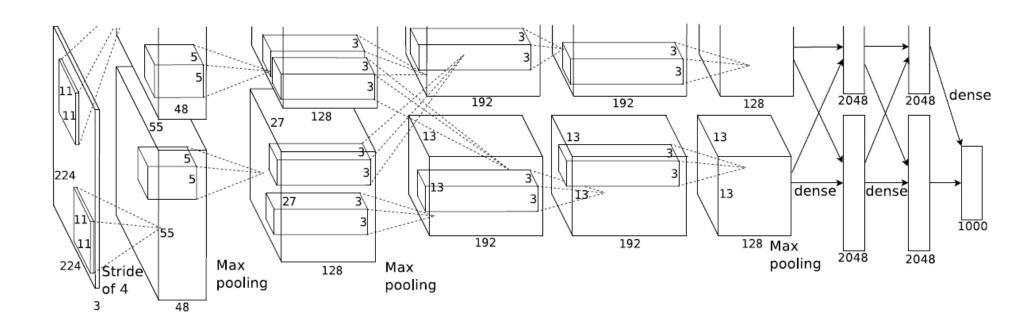
# What happened in between?



deep learning = neural networks (+ big data + GPUs) + a few more recent tricks!



# CNNs, 2012

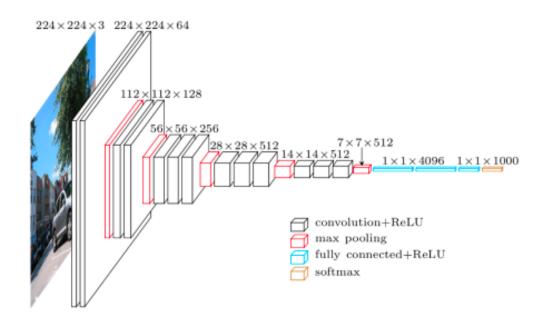


### **AlexNet**

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6): 84-90 (2017)



# CNNs, 2014: VGG

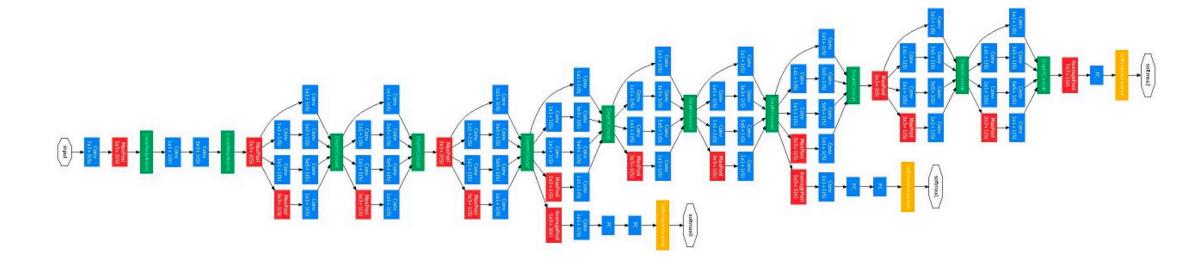


### **VGG**

Karen Simonyan, Andrew Zisserman (=Visual Geometry Group) Very Deep Convolutional Networks for Large-Scale Image Recognition, arxiv, 2014.



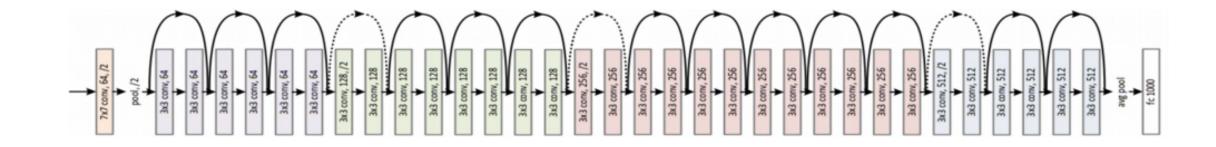
# CNNs, 2014: GoogLeNet



Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich Going Deeper with Convolutions, CVPR 2015



# CNNs, 2015: ResNet



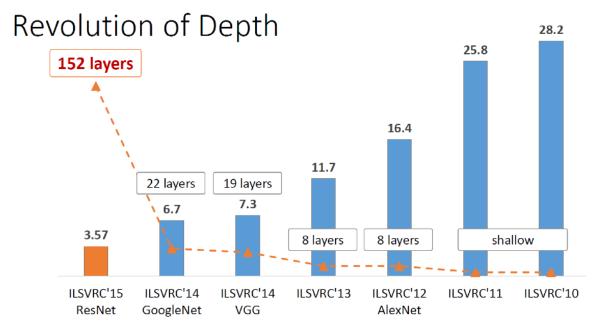
### ResNet

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, CVPR 2016.



# The Deeper, the Better

- Deeper networks can cover more complex problems
  - Increasingly large receptive field size & rich patterns

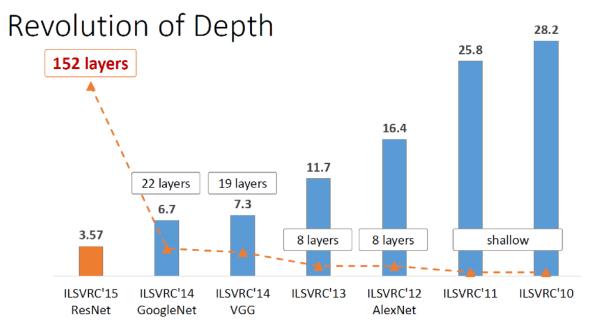






# **Going Deeper**

- From 2 to 10: 2010-2012
  - ReLUs
  - Dropout
  - ...

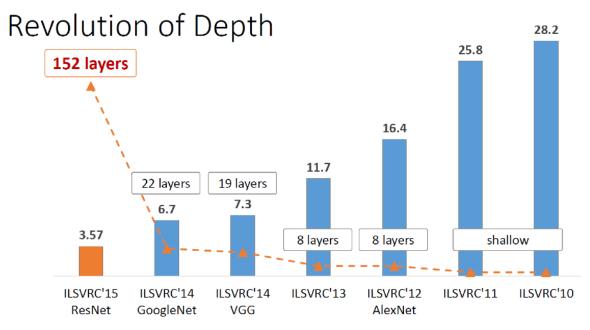






# **Going Deeper**

- From 10 to 20: 2015
  - Batch Normalization

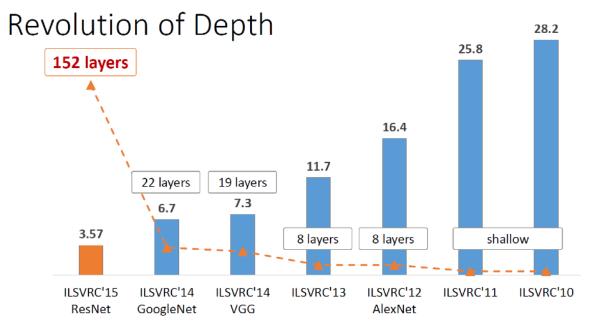






# **Going Deeper**

- From 20 to 100/1000
  - Residual networks

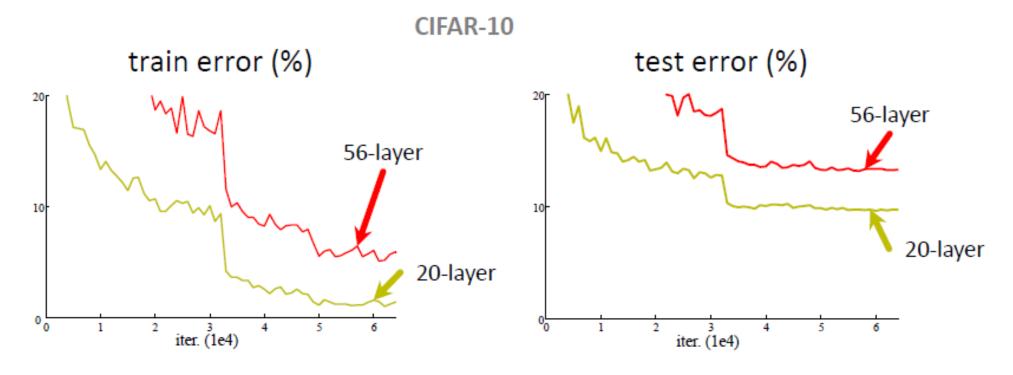






# Plain Network: Deeper is not necessarily better

- Plain nets: stacking 3x3 conv layers
- 56-layer net has higher training error and test error than 20-layer net

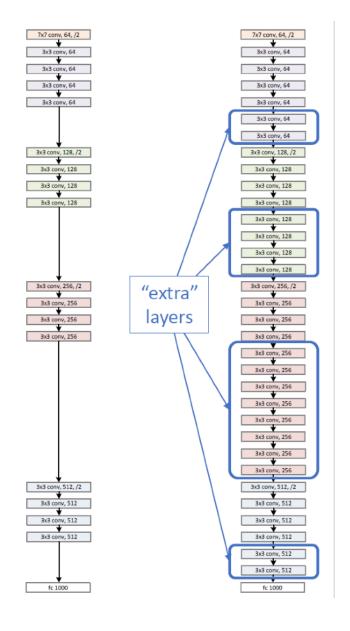




#### Residual Network

#### Naïve solution

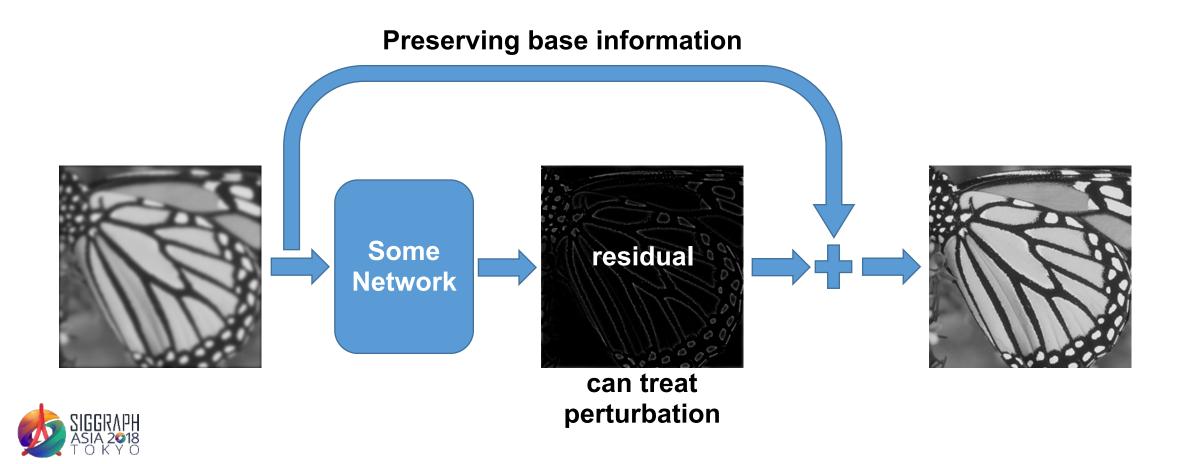
 If extra layers are an identity mapping, then training errors can not increase





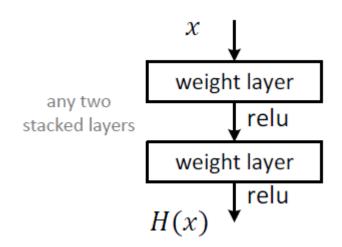
### Residual Modelling: Basic idea in image processing

• Goal: estimate update between an original image and a changed image



#### Residual Network

- Plain block
  - Difficult to make identity mapping because of multiple non-linear layers

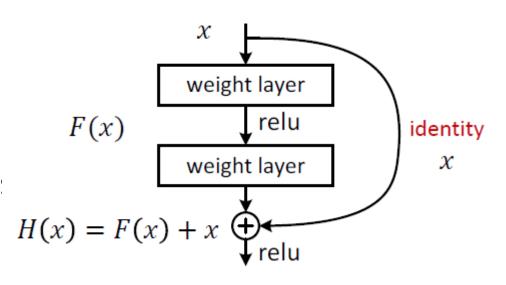




#### Residual Network

- Residual block
  - If identity were optimal, easy to set weights as 0
  - If optimal mapping is closer to identity, easier to find small fluctuations

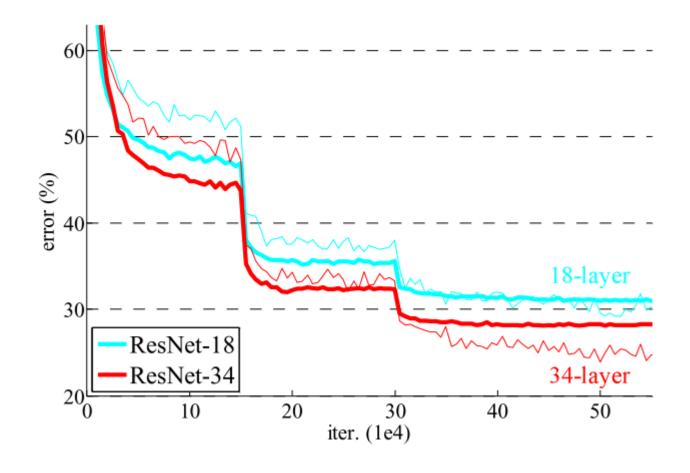
Appropriate for treating perturbation as keeping a base information





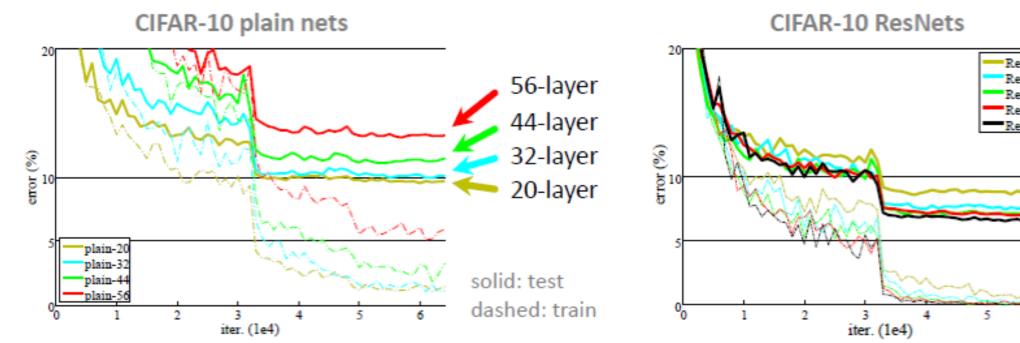
### Residual Network: Deeper is better

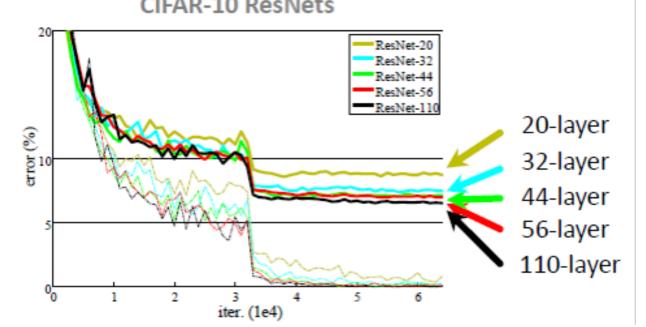
Deeper ResNets have lower training error





### Residual Network: Deeper is better

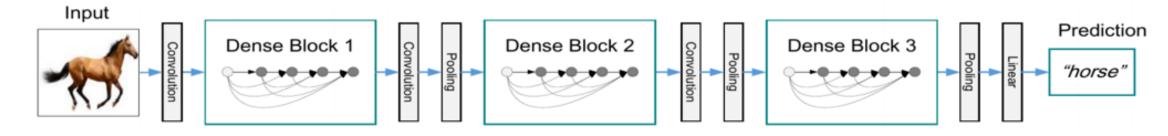




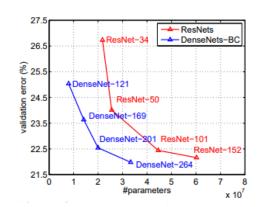


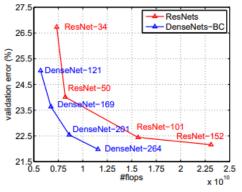
### CNNs, 2017: DenseNet

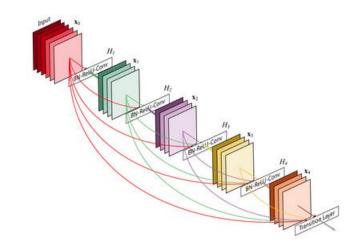
Densely Connected Convolutional Networks, CVPR 2017 Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger



#### Recently proposed, better performance/parameter ratio









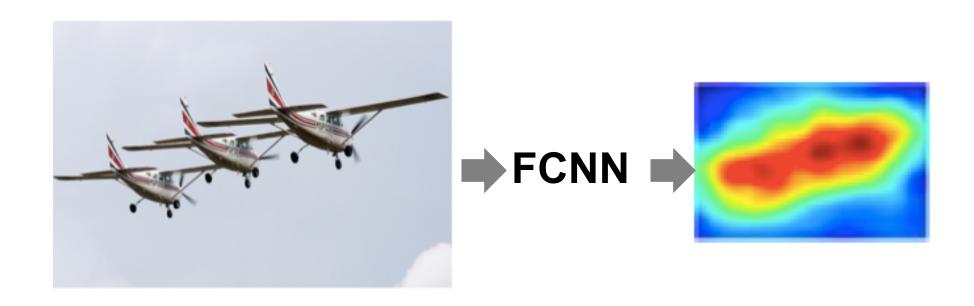
# Image-to-Image



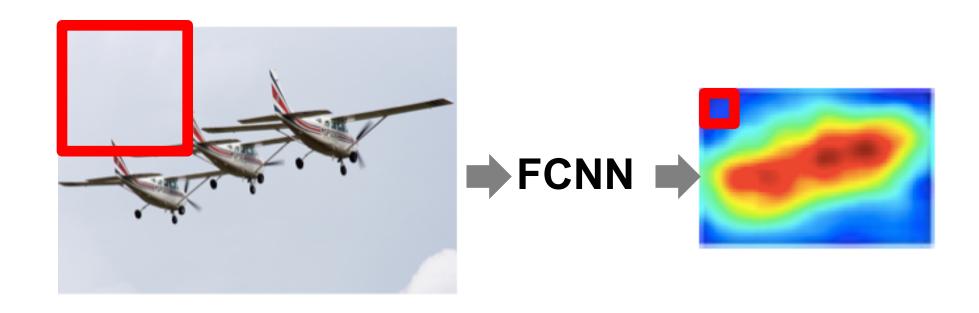
### **Image-to-image**

- So far we mapped an image image to a number or label
- In graphics, output often is "richer":
  - An image
  - A volume
  - A 3D mesh
  - ...
- Note: "image" just placeholder name here for any Eulerian data
- Architectures
  - Encoder-Decoder
  - Skip connections

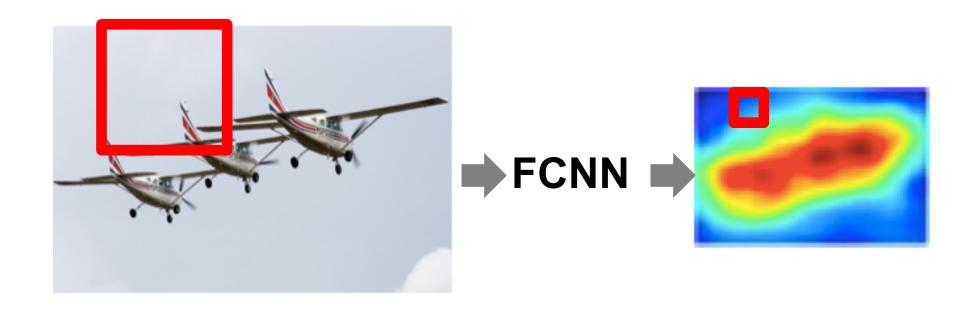




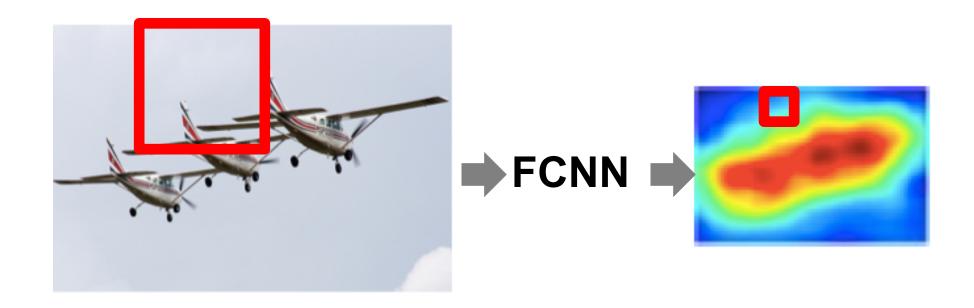




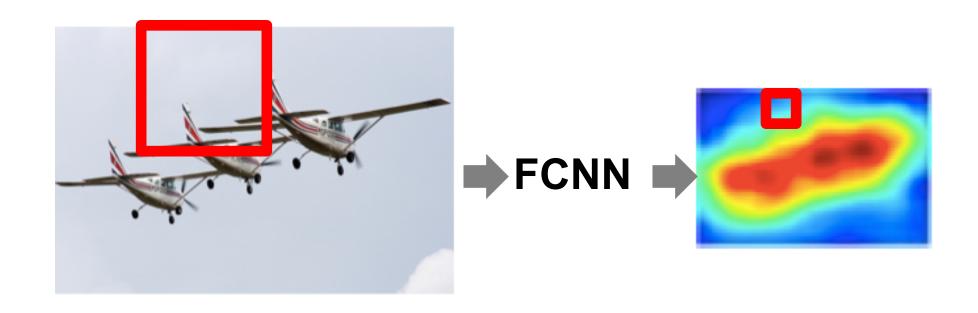








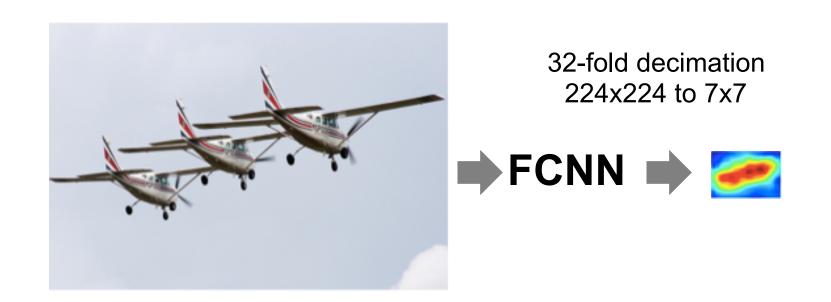




Flexible - works with varying input sizes



### Fully Convolutional Neural Networks in Practice

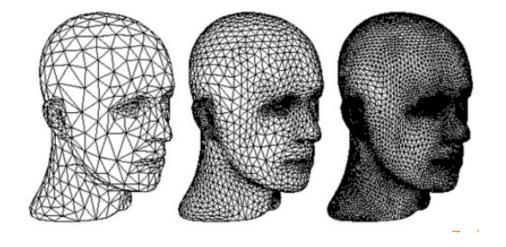


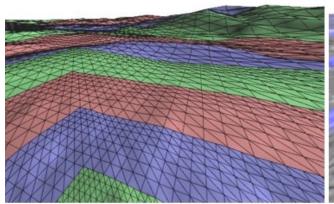
Flexible - works with varying input sizes
Typically reduces input by fixed factor

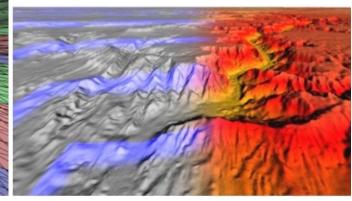


# Graphics: Multiresolution



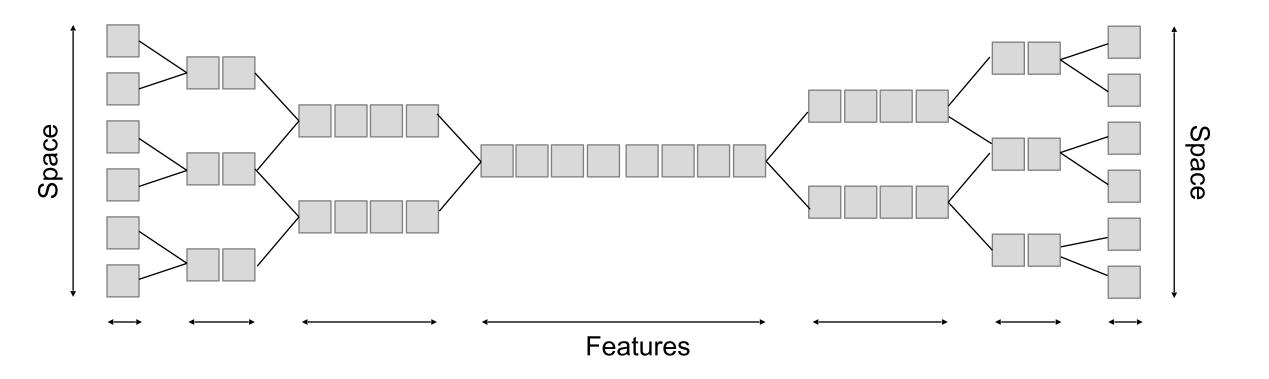








### **Encoder-Decoder**



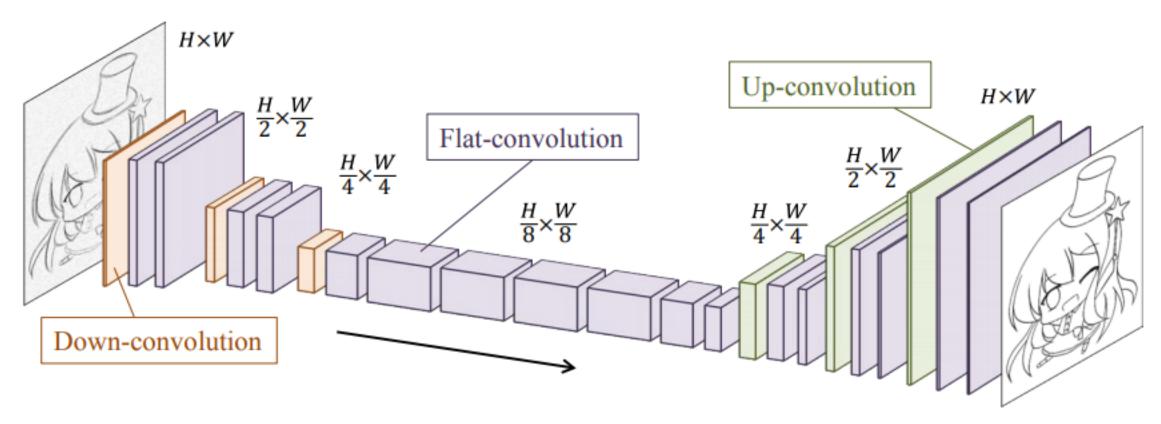


### Interpretation

- Encoder: turns data set (e.g. image) into vector
- This vector is a very compact and abstract "code"
- Lives in the "latent space" of the neural network
- Decoder: turns code back into image



### **Encoder-Decoder**



Learning to simplify. Simo-Serra et al. 2016



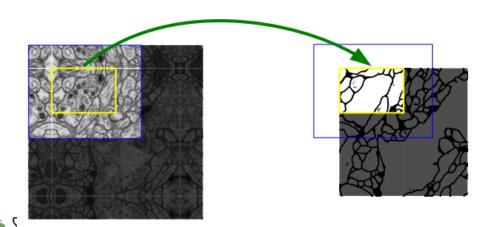
# **Up-sampling**

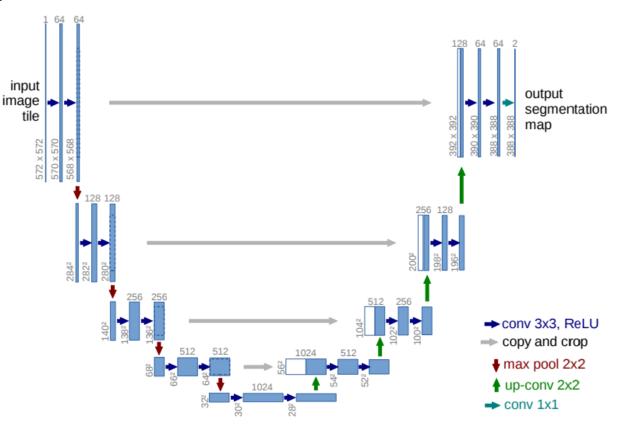
- We saw
  - ... how to keep resolution
  - ... how to reduce it with pooling
- But how to increase it again?
- Options
  - Interpolation
  - Padding (insert zeros)
  - Transpose convolutions



## **Encoder-decoder + Skip connections**

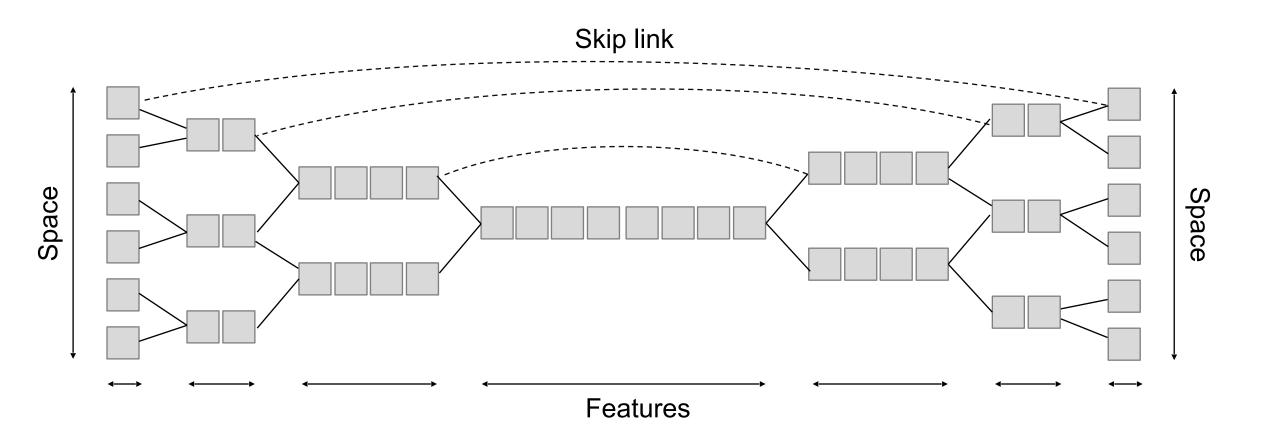
- 1st: Reduce resolutions as before
- 2<sup>nd</sup>: Increase resolution
- Transposed convolutions
- Preserves information
- But cannot be split into en- and decoder anymore





U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015

# Encoder-decoder with skip connections





### Interpretation

- Turns image into vector
- Turns vector back into image
- At every step of increasing the resolution, check back with the input to preserve details
- Familiar trick to graphics people
  - (Haar) wavelet
  - Residual coding
  - Pyramidal schemes (Laplacian pyramid, etc.)

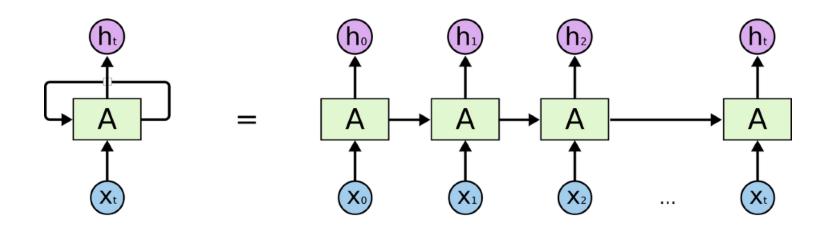


### Recurrent Neural Networks



### Recurrent Neural Networks

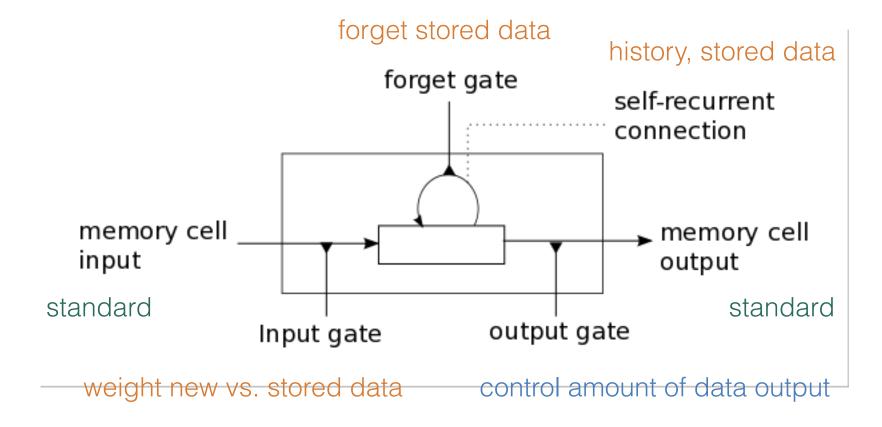
- Time dependent problems: repeated evaluations with internal "state"
- State x<sub>t</sub> at time t, depends on previous times
- Recurrent Neural Networks (RNNs)
- Specialized back-prop possible: Back-propagation through time (BPTT)
- Unrolled:





## Common Building Block: LSTM Units

- Long short term memory (LSTM) networks
- Three internal states: input, output, forget

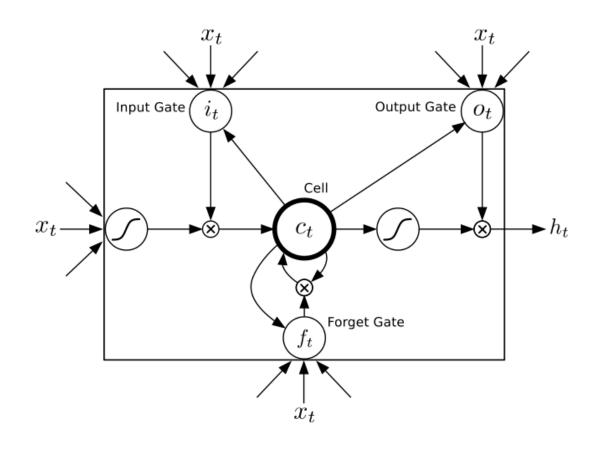




## Common Building Block: LSTM Units

- Long short term memory (LSTM) networks
- In equation form:

$$i_t = \sigma (W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)$$
 $f_t = \sigma (W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)$ 
 $c_t = f_tc_{t-1} + i_t \tanh (W_{xc}x_t + W_{hc}h_{t-1} + b_c)$ 
 $o_t = \sigma (W_{xo}x_t + W_{ho}h_{t-1} + W_{co}c_t + b_o)$ 
 $h_t = o_t \tanh(c_t)$ 





### Recurrent Neural Networks

- LSTM networks powerful tool for sequences over time
- Alternatives:
  - Gated Recurrent Units (GRUs)
  - Time convolutional networks (TCNs)
  - ...

[Chung et al., "Empirical evaluation of gated recurrent neural networks on sequence modeling",2014] [Bai et al., "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling", 2018]



# Deep Learning Frameworks



#### Main frameworks





(Python, C++, Java)

(Python, backends support other languages)





#### Currently less frequently used















(Python)

(Python, C++)

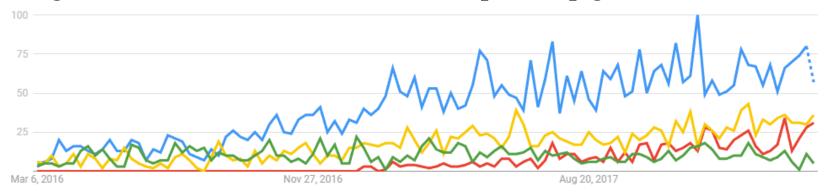
(Python, C++, C#) (Matlab)

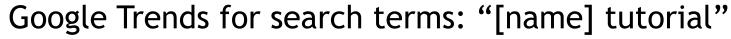
(Python, Java, (Python, C++, and others) Scala)

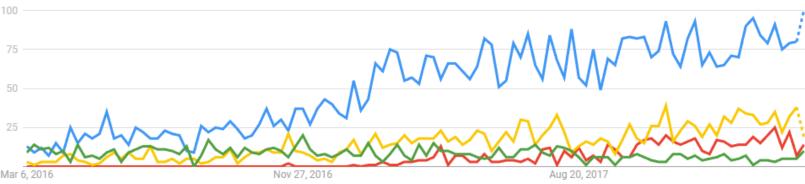


# **Popularity**

Google Trends for search terms: "[name] github"













— Caffe



# **Typical Training Steps**

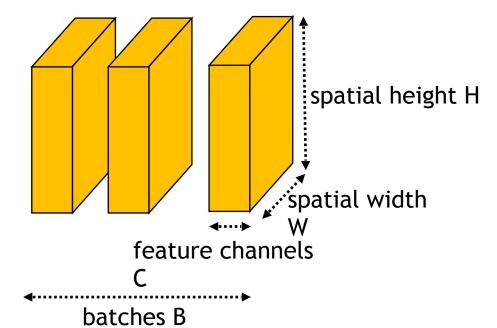
```
for i = 1 .. max iterations
     input, ground truth = load minibatch(data, i)
     output = network evaluate(input, parameters)
     loss = compute loss(output, ground truth)
     # gradients of loss with respect to parameters
     gradients = network backpropagate(loss, parameters)
     parameters = optimizer step(parameters, gradients)
```



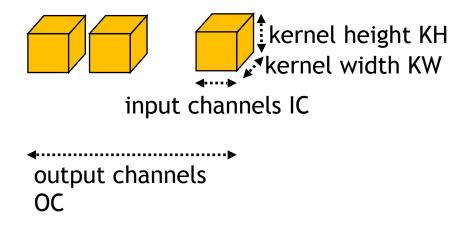
### **Tensors**

- Frameworks typically represent data as tensors
- Examples:

4D input data: B x C x H x W



4D convolution kernel: OC x IC x KH x KW





# What Does a Deep Learning Framework Do?

- Tensor math
- Common network operations/layers
- Gradients of common operations
- Backpropagation
- Optimizers
- GPU implementations of the above
- usually: data loading, network parameter saving/loading
- sometimes: distributed computing



### Automatic Differentiation & the Computation Graph

forward pass backward pass

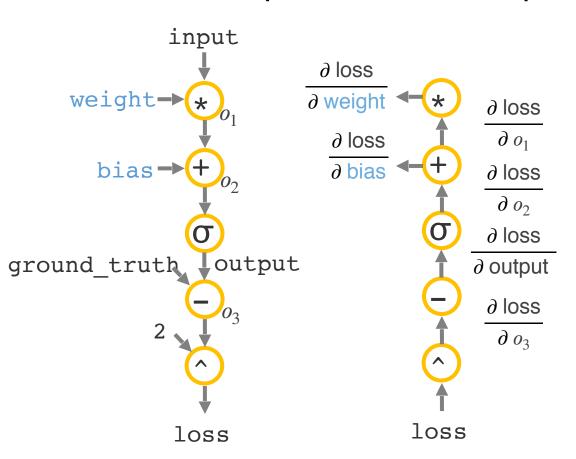
```
parameters = (weight, bias)

output = σ(weight * input + bias)

loss = (output - ground_truth)^2

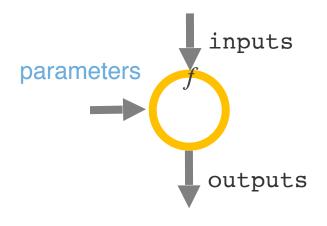
# gradients of loss with respect to parameters
gradients = backpropagate(loss, parameters)
```

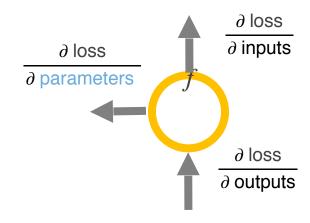
Since loss is a scalar, the gradients are the same size as the parameters





### Automatic Differentiation & the Computation Graph







# Static vs Dynamic Computation Graphs

- Static analysis allows optimizations and distributing workload
- Dynamic graphs make data-driven control flow easier
- In static graphs, the graph is usually defined in a separate 'language'
- Static graphs have less support for debugging

define once, evaluate during training

#### Static

```
x = Variable()
loss = if_node(x < parameter[0],
    x + parameter[0],
    x - parameter[1])

for i = 1 .. max_iterations
    x = data()
    run(loss)
    backpropagate(loss, parameters)</pre>
```

define implicitly by running operations, a new graph is created in each evaluation

#### Dynamic

```
for i = 1 .. max_iterations
    x = data()
    if x < parameter[0]
        loss = x + parameter[0]
    else
        loss = x - parameter[1]
    backpropagate(loss, parameters)</pre>
```



### **Tensorflow**



- Currently the largest community
- Static graphs (dynamic graphs are in development: Eager Execution)
- Good support for deployment
- Good support for distributed computing
- Typically slower than the other three main frameworks on a single GPU



# **PyTorch**



- Fast growing community
- Dynamic graphs
- Distributed computing is in development (some support is already available)
- Intuitive code, easy to debug and good for experimenting with less traditional architectures due to dynamic graphs
- Very Fast



#### Keras



- A high-level interface for various backends (Tensorflow, CNTK, Theano)
- Intuitive high-level code
- Focus on optimizing time from idea to code
- Static graphs



### Caffe



- Created earlier than Tensorflow, PyTorch or Keras
- Less flexible and less general than the other three frameworks
- Static graphs
- Legacy to be replaced by Caffe2: focus is on performance and deployment
  - Facebook's platform for Detectron (Mask-RCNN, DensePose, ...)



### Converting Between Frameworks

- Example: develop in one framework, deploy in another
- Currently: a large range of converters, but no clear standard

• Standardized model formats are in development / /github.com/ysh329/deep-learning-model-convertor

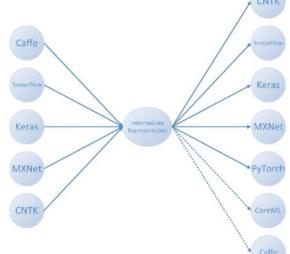
| convertor  | tensorflow                                                                                    | pytorch                                                | keras                                                                                                | caffe                                               | caffe2        | CNTK                                   | chainer | mxnet                                                            |
|------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------|----------------------------------------|---------|------------------------------------------------------------------|
| tensorflow | -                                                                                             | pytorch-tf/<br>MMdnn                                   | model-converters/<br>nn_toolsconvert-to-<br>tensorflow/MMdnn                                         | MMdnn/<br>nn_tools                                  | None          | crosstalk/MMdnn                        | None    | MMdnn                                                            |
| pytorch    | <u>pytorch2keras</u> (over<br>Keras)                                                          | -                                                      | Pytorch2keras/<br>nn-transfer                                                                        | Pytorch2caffe/<br>pytorch-caffe-<br>darknet-convert | onnx-caffe2   | ONNX                                   | None    | None                                                             |
| keras      | nn_tools /convert-to-<br>tensorflow/<br>keras to tensorflow/<br>keras to tensorflow/<br>MMdnn | MMdnn/<br>nn-transfer                                  | -                                                                                                    | <u>MMdnnnn_tools</u>                                | None          | <u>MMdnn</u>                           | None    | MMdnn                                                            |
| caffe      | MMdnn/nn_tools/<br>caffe-tensorflow                                                           | MMdnn/ pytorch-caffe- darknet- convert/ pytorch-resnet | caffe weight converter / caffe2keras/nn tools/ kerascaffe2keras/ Deep Learning Model Converter/MMdnn | -                                                   | CaffeToCaffe2 | crosstalkcaffe/<br>CaffeConverterMMdnn | None    | mxnet/tools/<br>caffe_converter/<br>ResNet_caffe2mxnet/<br>MMdnn |
| caffe2     | None                                                                                          | ONNX                                                   | None                                                                                                 | None                                                | -             | ONNX                                   | None    | None                                                             |
| CNTK       | <u>MMdnn</u>                                                                                  | ONNX MMdnn                                             | <u>MMdnn</u>                                                                                         | <u>MMdnn</u>                                        | ONNX          | -                                      | None    | <u>MMdnn</u>                                                     |
| chainer    | None                                                                                          | <u>chainer2pytorc</u><br><u>h</u>                      | None                                                                                                 | None                                                | None          | None                                   | -       | None                                                             |
| mxnet      | <u>MMdnn</u>                                                                                  | <u>MMdnn</u>                                           | <u>MMdnn</u>                                                                                         | MMdnn/MXNet2Caffe/<br>Mxnet2Caffe                   | None          | <u>MMdnn</u>                           | None    | -                                                                |



- Standard format for models
- Native support in development for Pytorch, Caffe2, Chainer, CNTK, and MxNet
- Converter in development for Tensorflow

### **MMdnn**

 Converters available for several frameworks



 Common intermediate representation, but no clear standard



# Thank you!



http://geometry.cs.ucl.ac.uk/creativeai/

