

CreativeAI: Deep Learning for Graphics

Feature Visualization

Timetable

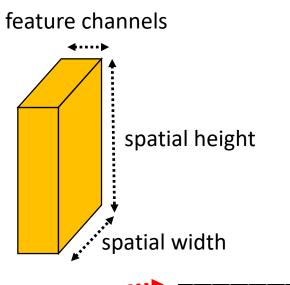
			Niloy	Paul	Nils
Theory and Basics	Introduction	2:15 pm	Х	Х	X
	Machine Learning Basics	~ 2:25 pm	Х		
	Neural Network Basics	~ 2:55 pm			Х
	Feature Visualization	~ 3:25 pm		Х	
	Alternatives to Direct Supervision	~ 3:35 pm		Х	
-		—— 15 min. br	eak ———		
State of the Art	Image Domains	4:15 pm		Х	
	3D Domains	~ 4:45 pm	Х		
	Motion and Physics	~ 5:15 pm			Х
	Discussion	~ 5:45 pm	Х	Х	X

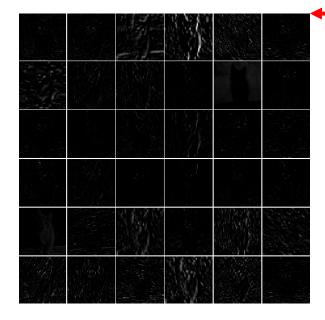
What to Visualize

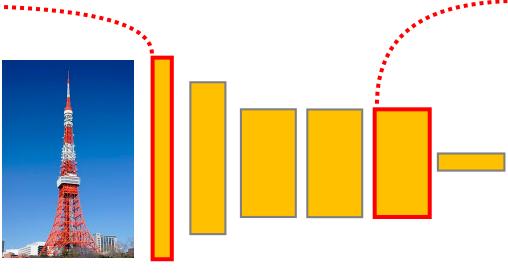
- Features (activations)
- Weights (filter kernels in a CNN)
- Attribution: input parts that contribute to a given activation
- Inputs that maximally activate some class probabilities or features
- Inputs that maximize the error (adversarial examples)

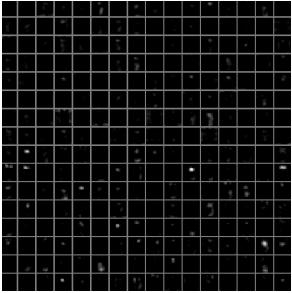
Feature Samples

- In good training, features are usually sparse
- Can find "dead" features that never activate







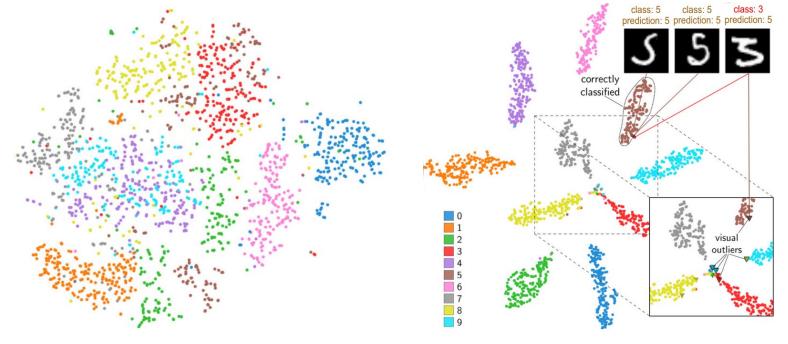


Images from: http://cs231n.github.io/understanding-cnn/

Feature Distribution using t-SNE

• Low-dimensional embedding of the features for visualization

t-SNE embedding of image features in a CNN layer

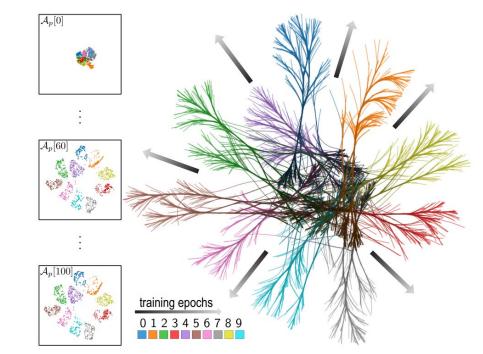


before training after training after training t-SNE embedding of MNIST (images of digits) features in a CNN layer, colored by class

Images from: https://cs.stanford.edu/people/karpathy/cnnembed/ and Rauber et al. *Visualizing the Hidden Activity of Artificial Neural Networks*. TVCG 2017

Feature Distribution using t-SNE

• Low-dimensional embedding of the features for visualization

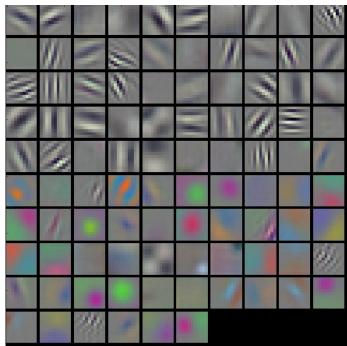


t-SNE embedding of image features in a CNN layer evolution during training t-SNE embedding of MNIST (images of digits) features in a CNN layer, colored by class

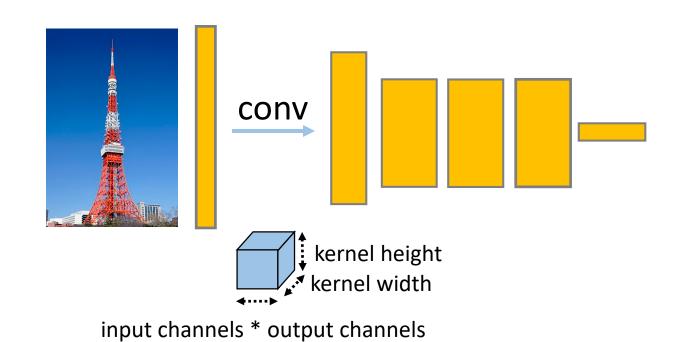
Images from: https://cs.stanford.edu/people/karpathy/cnnembed/ and Rauber et al. *Visualizing the Hidden Activity of Artificial Neural Networks*. TVCG 2017

Weights (Filter Kernels)

- Useful for CNN kernels, not useful for fully connected layers
- Kernels are typically smooth and diverse after a successful training



first layer filters of AlexNet



Images from: http://cs231n.github.io/understanding-cnn/

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

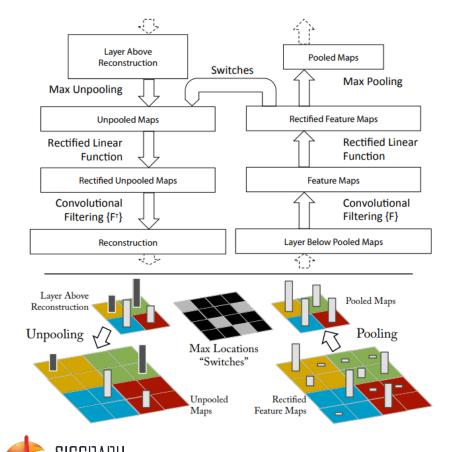
Code Examples

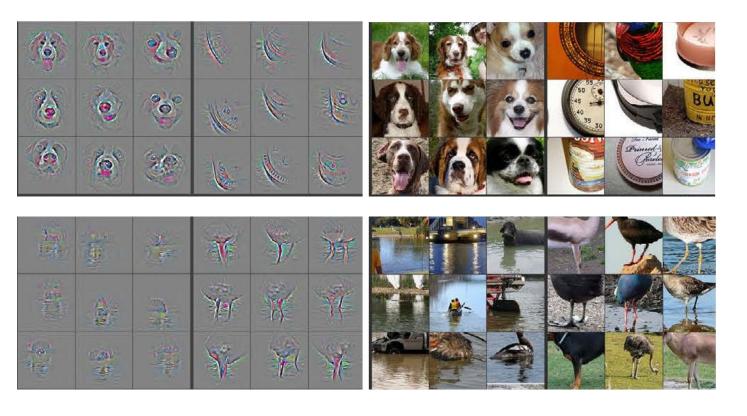
Filter Visualization

http://geometry.cs.ucl.ac.uk/creativeai

Attribution by Approximate Inversion

- Reconstruct Input from a given feature channel
- What information does the feature channel focus on?





Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

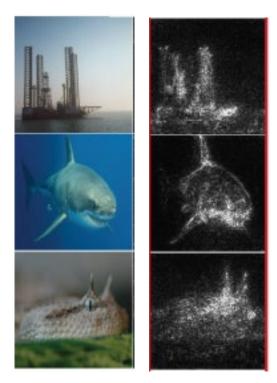
Perturbation-based Attribution

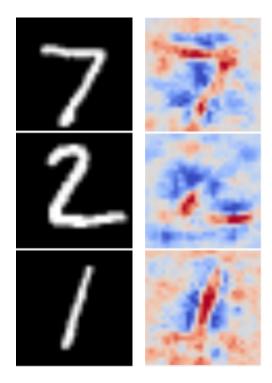
Probability for correct classification when centering the box at each pixel.

SIGGRAPH ASIA 2918 Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

Gradient-based Attribution

- Derivative of class probability w.r.t input pixels
- Which parts of the input is the class probability sensitive to?



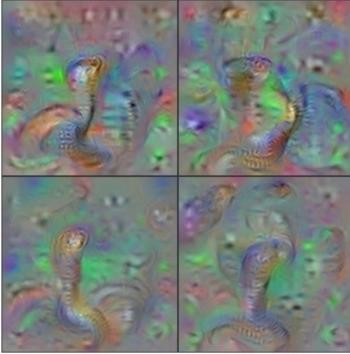


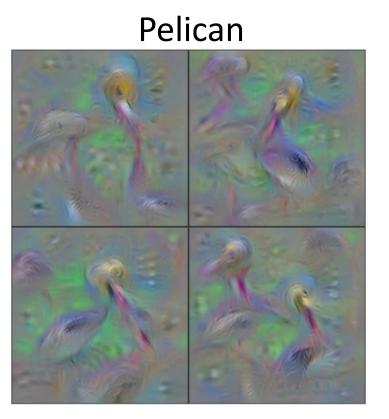
Smilkov et al., SmoothGrad: removing noise by adding noise, arXiv 2017

Inputs that Maximize Feature Response

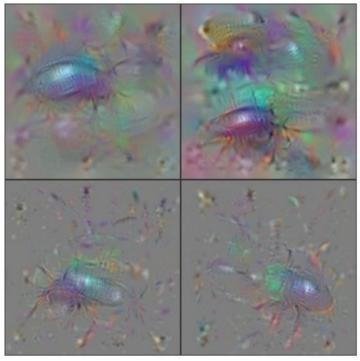
Local maxima of the response for class:

Indian Cobra





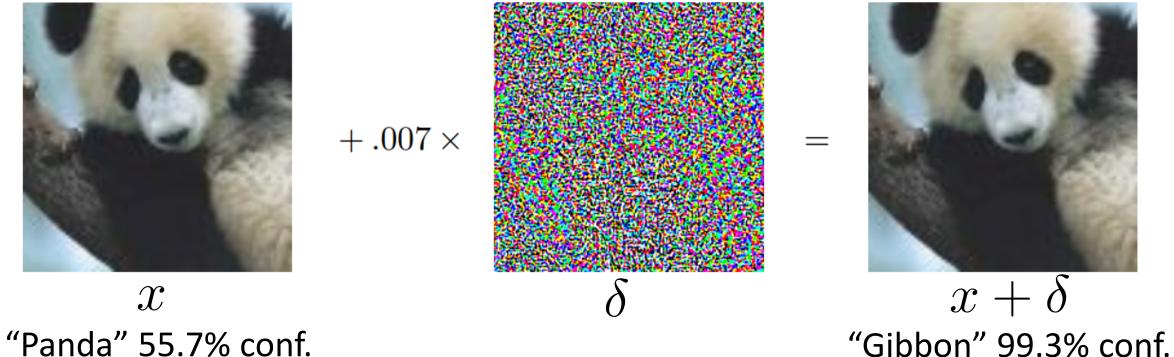
Ground Beetle



Images from: Yosinski et al. Understanding Neural Networks Through Deep Visualization. ICML 2015

Inputs that Maximize the Error

$$\max_{\delta \in \Delta} \mathcal{L}(x + \delta, y; \theta) \quad \Delta = \{\delta \in \mathbb{R}^d \mid \|\delta\|_p \le \varepsilon\}$$



Images from: Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR 2015

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics