
Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TUM UCL

CreativeAI: Deep Learning for Graphics

Motion & Physics



SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

Computer Animation
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• Feature detection (image features, point features) 

• Denoising, Smoothing, etc.  

• Embedding, Distance computation  

• Rendering 

• Animation  

• Physical simulation 

• Generative models

• Motion over time 

• Loads of data, expensive 

• Relationships between spatial 
and temporal changes
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Character Animation
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[DeepLoco: Dynamic Locomotion Skills 
Using Hierarchical Deep Reinforcement 

Learning, SIGGRAPH 2017]
[DeepMimic: Example-Guided Deep 

Reinforcement Learning of Physics-Based 
Character Skills, SIGGRAPH 2018]

[Mode-Adaptive Neural Networks 
for Quadruped Motion Control, 

SIGGRAPH 2018]

[A Deep Learning Framework for 
Character Motion Synthesis and 

Editing, SIGGRAPH 2016]

• Learn controllers for character rigs 

• Powerful and natural 

• Beyond the scope of this course…



Physics-Based Animation
• Leverage physical models 

• Examples: 

• Rigid bodies 

• Cloth  

• Deformable objects  

• Fluids 
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Physics-Based Animation
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Experiment Theory Computation

Skip Theory with Deep Learning?
[No! More on that later…]

Observations / data Model equations Discrete representation
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Physics-Based Animation
• Better goal: support solving suitable physical models 
• Nature = Partial Differential Equations (PDEs) 
• Hence we are aiming for solving PDEs with deep learning (DL) 
• Requirement: “regularity” of the targeted function
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“Bypass the solving of evolution equations when these equations conceptually exist 
but are not available or known in closed form.” [Kevrekidis et al.]



SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

Partial Differential Equations
• Typical problem formulation: unknown 

function  

• PDE of the general form: 

• Solve in domain    , with boundary 
conditions on boundary  

• Traditionally: discretize & solve numerically. 
Here: also discretize, but solve with DL…
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Methodology 1
• Viewpoints: holistic or partial 

[partial also meaning “coarse graining” or “sub-grid / up-res”] 

• Influences complexity and non-linearity of solution space 

• Trade off computation vs accuracy: 

• Target most costly parts of solving 

• Often at the expense of accuracy
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Methodology 2
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• Consider dimensionality & structure of discretization 

• Small & unstructured  

• Fully connected NNs only choice 

• Only if necessary… 

• Large & structured 

• Employ convolutional NNs 

• Usually well suited
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Solving PDEs with DL
• Practical example: airfoil flow 

• Given boundary conditions solve stationary flow problem on grid 

• Fully replace traditional solver 

• 2D data, no time dimension 

• I.e., holistic approach with structured data
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Solving PDEs with DL
• Data generation 
• Large number of pairs: input (BCs) - targets (solutions)
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Airfoil profile Generated mesh
Full simulation domain

Inference region

Different free stream 
Velocities



Solving PDEs with DL
• Data generation 

• Example pair 

• Note - boundary conditions (i.e. 
input fields) are typically 
constant 

• Rasterized airfoil shape present 
in all three input fields

 12SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

Target

Pr
es

su
re

Ve
lo

ci
ty

 X
Ve

lo
ci

ty
 Y

128 x 128 x 1

128 x 128 x 1

128 x 128 x 1

Fr
ee

st
re

am
 X

Boundary 
Conditions

Fr
ee

st
re

am
 Y

M
as

k
128 x 128 x 1

128 x 128 x 1

128 x 128 x 1



SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics

Solving PDEs with DL
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Reduce spatial 

dimensions

Skip connections

Increase spatial 

dimensions

• U-net NN architecture
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Solving PDEs with DL

• Unet structure highly suitable for PDE solving 
• Makes boundary condition information available throughout 
• Crucial for inference of solution
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• U-net NN architecture
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Solving PDEs with DL
• Training: 80.000 iterations with ADAM optimizer 

• Convolutions with enough data - no dropout necessary 

• Learning rate decay stabilizes models
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Results
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• Use knowledge about 
physics to simplify 
space of solutions: 
make quantities 
dimension- less 

• Significant gains in 
inference accuracy
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Solving PDEs with DL
• Validation and test accuracy for different model sizes
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Saturated, little gain from 
weights and data



Code example 
Solving PDEs with DL
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Solving PDEs with DL
• Source code and training data available 

• Requirements: numpy / pytorch , OpenFOAM for data generation 

• Details at:  
https://github.com/thunil/Deep-Flow-Prediction and  
http://geometry.cs.ucl.ac.uk/creativeai/
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https://github.com/thunil/Deep-Flow-Prediction
http://geometry.cs.ucl.ac.uk/creativeai/
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Additional Examples
• Elasticity: material models 
• Fluids: up-res algorithm & dimensionality reduction 
• By no means exhaustive…
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Neural Material - Elasticity
• Learn correction of regular FEM simulation for complex materials

 21[Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data, arXiv 2018]



Neural Material - Elasticity
• Learn correction of regular FEM simulation for complex materials 

• “Partial” approach 

• Numerical simulation with flexible NN for material behavior 

 22[Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data, arXiv 2018]



Temporal Data
• tempoGAN: 3D GAN 

with temporal 
coherence

 23[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]



Temporal Data
• tempoGAN: 3D GAN 

with temporal 
coherence

 24[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Temporal Data

 25[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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• tempoGAN: 3D GAN 
with temporal 
coherence



 26[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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“Loss” for generatorTemporal Data
• tempoGAN: 3D GAN 

with temporal 
coherence



 27[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Temporal Data
• tempoGAN: 3D GAN 

with temporal 
coherence

Advection encoded in loss for G



Temporal Data

 28[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]



Latent Spaces
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• Learn flexible reduced representation for physics problems

[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]
[Deep Fluids: A Generative Network for Parameterized Fluid Simulations, arXiv 2018]



Latent Spaces
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• Learn flexible reduced representation for physics problems 
• Employ Encoder part (E) of Autoencoder network to reduce dimensions 

• Predict future state in latent space with FC network 

• Use Decoder (D) of Autoencoder to retrieve volume data

[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]
[Deep Fluids: A Generative Network for Parameterized Fluid Simulations, arXiv 2018]

E

tt-1t-2

.  .  .

EE

FC

t+1

D



Latent Spaces
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• Learn flexible reduced representation for physics problems

[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]
[Deep Fluids: A Generative Network for Parameterized Fluid Simulations, arXiv 2018]
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• Checklist for solving PDEs with DL: 

✓ Model? (Typically given) 

✓ Data? Can enough training data be generated? 

✓ Which NN Architecture?  

✓ Fine tuning: learning rate, number of layers & features? 

✓ Hyper-parameters, activation functions etc.?

Summary

 32
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• Approach PDE solving with DL like solving with traditional 
numerical methods: 

- Find closest example in literature 

- Reproduce & test 

- Then vary, adjust, refine …

Summary
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Thank you!

http://geometry.cs.ucl.ac.uk/creativeai/
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